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de Lyon 1, Villeurbanne, France, 5Centre Léon Bérard, Lyon, France, 6Wellcome Trust Genome Campus, Hinxton,
Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK and 7Department of Computer Science (DTAI), KU
Leuven, Leuven 3001, Belgium

Received March 03, 2015; Revised August 25, 2015; Accepted August 29, 2015

ABSTRACT

Disease-gene identification is a challenging process
that has multiple applications within functional ge-
nomics and personalized medicine. Typically, this
process involves both finding genes known to be as-
sociated with the disease (through literature search)
and carrying out preliminary experiments or screens
(e.g. linkage or association studies, copy number
analyses, expression profiling) to determine a set
of promising candidates for experimental valida-
tion. This requires extensive time and monetary re-
sources. We describe Beegle, an online search and
discovery engine that attempts to simplify this pro-
cess by automating the typical approaches. It starts
by mining the literature to quickly extract a set of
genes known to be linked with a given query, then
it integrates the learning methodology of Endeav-
our (a gene prioritization tool) to train a genomic
model and rank a set of candidate genes to gener-
ate novel hypotheses. In a realistic evaluation setup,
Beegle has an average recall of 84% in the top
100 returned genes as a search engine, which im-
proves the discovery engine by 12.6% in the top
5% prioritized genes. Beegle is publicly available at
http://beegle.esat.kuleuven.be/.

INTRODUCTION

Determining which genes cause which diseases is an impor-
tant yet challenging problem (1). It has a variety of applica-
tions that range from DNA screening and early diagnosis, to
gene sequence analysis and drug development (2). However,

it is resource intensive both in terms of time investment and
monetary cost. Traditionally, disease-gene identification is
approached manually and is conducted in two phases. The
first phase involves narrowing down a large set of candidate
genes (e.g. the whole genome) into a significantly smaller
set of genes that has a high probability of containing a dis-
ease causing gene. Different ways exist to tackle this phase,
such as linkage analysis, genome sequencing and associa-
tion studies (3–5). Then, in the second phase, experts exper-
imentally evaluate the selected genes to confirm which of
those candidates are truly disease causing. This involves wet
lab experimentation for every selected gene. Consequently,
an important advancement in this field has been the devel-
opment of computational methods that can help the experts
address the first phase of this process by automatically pri-
oritizing a set of candidate genes for final experimental val-
idation to maximize the yield of the second phase.

Many computational methods for human gene prioriti-
zation have been developed, and several review articles ex-
ist that describe their approaches, their differences, and how
they can be used in practice (6–9). These methods differ in
their expected inputs, their returned outputs and their pri-
oritization strategies. A previous study compared the per-
formance of eight of these methods that are publicly avail-
able as web-based tools (10). The evaluation setup used a
realistic scenario where data prior to a certain date were
used to generate the gene prioritizations and then the pre-
dictions were compared to disease-gene annotations discov-
ered later. The results showed that Endeavour (11), GeneDis-
tiller (12) and ToppGene (13) performed best when measur-
ing the true-positive rates among the top returned genes. All
three tools require a set of training genes (genes that are
known to be linked to the disease of interest) or keywords
(describing the disease under study) as input, which is then
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used to infer several models (according to different genomic
sources) and rank a set of candidate genes based on the
learned models. These approaches all require hand-selected
input to compute the gene prioritizations. Normally, ex-
perts undertake this challenging and time-consuming pro-
cess by collecting information from (i) generic or disease
specific association databases (e.g. OMIM (14), GAD (15)),
(ii) relevant literature or (iii) their own data and expertise
(including for instance relevant patient records). Therefore,
a tool that would support automatic identification of the
training genes as an initial step to candidate gene prioritiza-
tion would provide better usability to researchers interested
in candidate gene prioritization (16).

Text mining is one popular strategy for automatically
associating biomedical entities with each other (17–24).
MeSHOP (22) and Genie (24) are two examples that asso-
ciate genes with diseases. These tools can be used to rank a
set of genes given a disease query, hence they could be used
by the genetic experts to automatically search for the train-
ing input required by the gene prioritization tools. However
these tools do not distinguish known gene associations from
unknown ones. Hence, for a user who is interested in select-
ing a set of training genes prior to conducting a gene prior-
itization process, the existing tools are limited and require
post processing to filter out the resulting gene associations.

This article presents Beegle, an online tool for disease-
gene prioritization. First, Beegle mines the literature to au-
tomatically identify a list of genes known to be linked with
a given query. Next, Beegle employs Endeavour, which in-
tegrates multiple genomic models to automatically rank a
set of candidate genes (e.g. the human genome) according
to a selected set of genes identified in the first step. We eval-
uated Beegle in two different ways. First, we evaluated its
ability to identify known disease-gene associations from the
literature. To do this, we have extracted a list of experimen-
tally validated disease-gene associations from the OMIM
database. Then, for each disease in this list, we compared
the associations returned by Beegle to the known associ-
ations from OMIM. In addition, we compared Beegle to
MeSHOP, a similar tool, on a subset of the OMIM list us-
ing the same experimental setup. Second, we evaluated the
suitability of the returned genes to serve as input to train
genomic models and generate novel hypothesis. Here, we
employed an evaluation methodology that mimics real dis-
covery by using rolled-back data to generate the gene pri-
oritizations, and then by testing on disease-gene associa-
tions that were reported after the training data were col-
lected. For this we have used two benchmarks: one based
on literature that has already been described (10) and a new
one that we have generated from the OMIM database. Our
OMIM benchmark is a secondary contribution of this work
and is made publicly available as supplementary data so that
other researchers can use it to evaluate gene prioritization
approaches.

MATERIALS AND METHODS

The pipeline

An overview of the current methodology of Beegle is shown
in Figure 1. Beegle starts from a user query (e.g. a disease)

and proceeds in two phases. First, it automatically analy-
ses the literature to identify the genes that are potentially
related with the given query. We call this phase the search
phase. Second, it uses these genes (identified in the first step)
as a seed set that is provided to Endeavour, which then anal-
yses a number of genomic data sources to finally prioritize
a set of candidate genes. We call this phase the discovery
phase.

Annotating the literature

We use the biomedical database MEDLINE as our source
of literature. Offline, we have indexed every MEDLINE ab-
stract using MetaMap (25), which identifies the UMLS con-
cepts (26) within a given abstract text. UMLS is a large,
multi-purpose and multi-lingual thesaurus that brings to-
gether many health and biomedical vocabularies and stan-
dards (e.g. MeSH and SNOMED CT). With this strategy we
have associated each MEDLINE abstract to a list of UMLS
concepts. This corresponds to 12 308 151 abstract-concepts
entries. We report the corresponding list of MEDLINE ids
in Supplementary Data 1.

For every gene, we find the list of associated MED-
LINE abstracts according to GeneRIF (downloaded in
May 2012). Hence, we could generate a UMLS concept pro-
file for all Entrez gene entries (16 493 genes in total, which
we report in Supplementary Data 2). The gene profiles are
described using 66 883 concepts, which we call the Genes-
vocabulary. For every query, we find the list of associated
MEDLINE abstracts according to PubMed, where we only
consider the top 10 000 PubMed Ids to generate a corre-
sponding UMLS profile. We restrict the query profiles to
the concepts that already appear in the Genes-vocabulary.

The search phase

In the search phase, Beegle applies two text mining ap-
proaches to identify the genes most related to a given query.
The first one is based on the number of abstracts in which
the query and a given gene co-occur. We call this the ex-
plicit approach, since it relies on the explicit co-occurrence
of a query and a given gene in the literature. We count three
values: (i) the number of abstracts associated with the query,
(ii) the number of abstracts associated with the gene and (iii)
the number of abstracts associated with both the query and
the gene. Then we use the Jaccard similarity to measure the
strength of the association according to Equation (1):

similarity explicit(q, g) = Xq,g

Nq + Kg − Xq,g
(1)

where N is the number of abstracts associated with the
query, K is the number of abstracts associated with the gene
and X is the number of abstracts associated with both query
and gene.

The higher the similarity score, the more confident we are
that the association between the gene and the given query is
real.

The second approach is based on the number of con-
cepts shared between a gene and the given query profiles.
We call this approach the implicit approach, since it goes
one step further and tries to find hidden indirect associa-
tions between a gene and the given query. Given the UMLS
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Figure 1. An illustration of Beegle’s pipeline. The disease-gene annotation in Beegle follows two phases: search and discovery. The search phase involves
two text mining techniques, while the discovery phase involves fusing different genomic models.

concept profiles that correspond to both the query and a
gene, we apply the TF-IDF (Term Frequency-Inverse Doc-
ument Frequency) transformation to each term in both the
query and gene profiles. This transformation is commonly
used in text mining and information retrieval (see (27) for
more details), and it consists of two components: the term
frequency (TF) and the inverse document frequency (IDF).
The TF corresponds to the number of times the concept ap-
pears in all abstracts linked to a query or a gene. Intuitively,
TF rewards concepts that are frequently associated with the
gene. The IDF is calculated as the total number of docu-
ments divided by the number of documents that the concept
appears in. The IDF gives higher weights to concepts that
are commonly associated with a given gene but rare in gen-
eral, and lower weights to concepts that are associated with
many genes. Intuitively, IDF helps identify concepts that are
more meaningful or discriminative for a given profile. Sup-
plementary Table S1 illustrates how we compute TF-IDF
scores. To measure how similar two concept profiles are, we
calculate the cosine similarity between their TF-IDF map-
pings according to Equation (2):

similarity implicit(q, g) = (tf × log(idf))q • (tf × log(idf))g
∥
∥(tf × log(idf))q

∥
∥

∥
∥(tf × log(idf))g

∥
∥

(2)

where tf is the term frequency and idf is the inverse docu-
ment frequency (note that we use the log for scaling pur-
poses).

Beegle assigns a final gene-query score by using the best
rank of both approaches. We call this approach, the com-
bined approach. We show an example in Supplementary Ta-
ble S2. Hence, Beegle’s output for this phase is an ordered
list of the genes identified as being potentially related to the
given query according to the literature.

The discovery phase

In the second phase, Beegle integrates Endeavour to gener-
ate the final gene prioritization for a given query. Endeavour
relies on three inputs: (i) a set of training genes known to be
linked to the query under study, (ii) a set of data sources
that are used to build the query models using the training
genes and (iii) a set of candidate genes to investigate (i.e. to

prioritize). Per data source, Endeavour ranks the candidate
genes according to how similar a gene is to the correspond-
ing model, therefore providing one ranked list for each data
source. To combine the lists, Endeavour applies the Order
Statistics to produce a single ranking, which is the final pri-
oritization list for the given query. For more details about
Endeavour, we refer the reader to our previous work (11,28).
Hence, in this phase, Beegle uses a training set (that the user
selected from the known query-genes retrieved by Beegle in
the search phase) to train the Endeavour models and rank
a user-defined set of candidate genes. Note here that we re-
strict the data sources used by Endeavour in this phase to a
predefined set that performed best in our experiments.

The web interface

Beegle is freely available online as a web interface that ac-
cepts any combination of one or many biomedical con-
cepts (similar to PubMed queries such as ‘Alzheimer’s dis-
ease’, ‘Diabetes and Pregnancy’ and ‘Congenital Heart De-
fects or Eye Diseases’). Given the input query, Beegle re-
trieves the MEDLINE abstracts annotated with any of the
query terms (according to PubMed) and generates the cor-
responding concept profile. Then for every human gene, it
computes two scores according to our two text mining ap-
proaches (as discussed above). Finally, Beegle returns an or-
dered list of the genes most likely to be linked to the given
query. Since in this phase we are only aiming to retrieve
known annotations, we restrict the output list to genes that
are co-mentioned with the query at least once in the litera-
ture. The response time for this phase ranges from few sec-
onds to few minutes, depending on whether or not the query
has been previously processed.

Next, the user can initiate the discovery phase by: (i) se-
lecting a set of training genes (given the search output list),
and (ii) defining a list of candidate genes that are of inter-
est to prioritize. After the literature search, the interface al-
lows users to review the evidence linked to the association by
displaying relevant MEDLINE abstracts and concept pro-
files. This allows for the quick removal of spurious associa-
tions (false positives). Any association that might have been
missed (false negative) can still be manually added to the
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list of genes to be used for the prioritization. Also, the user
has the option to directly upload a set of training or candi-
date genes. Here the users have full control of fine tuning the
selection process according to their expertise. Next, Beegle
trains the genomic models and prioritizes the user-defined
candidate set according to the selected training genes and
the different genomic sources that are predefined (see list
below). Finally, Beegle returns the prioritized list in a sim-
ple and user-friendly way. The response time for this phase
ranges from few minutes (ranking a few candidate genes)
up to 20 min (ranking the whole genome). Figure 2 presents
three snapshots of the most important screens from the web
interface. In addition, we invite the reader to visit the Beegle
website and watch a simple tutorial on how to use system.

Data sources and background corpus

The public web interface of Beegle relies on the 2013
PubMed release ‘downloaded on March 4th 2013’. Then
it uses the 2013 (or the latest) version of the following
data sources for the discovery phase: Gene Ontology (an-
notations for gene products) ‘downloaded on May 15th
2013’, Uniprot (protein sequence and functional informa-
tion) ‘downloaded on June 14th 2013’, Text (MEDLINE
literature) ‘downloaded on March 4th 2013’, STRING (ge-
nomic data integration) ‘downloaded on June 10th 2013’,
Genetic Association Database ‘downloaded on June 14th
2013’, Rat Gene Database ‘downloaded on June 20th 2013’,
gene predicted pathogenicity (29) and expression data (30).

The literature-based benchmark

The first benchmark we apply to mimic novel discovery is
an existing validation set (10), which was previously used
to compare the predictive performance of several publicly
available prioritization tools. Briefly, it was manually pre-
pared by reviewing the scientific literature to gather novel
disease-gene associations. For more details about the con-
struction of this validation set, we refer the reader to our
previous work (10). This set is composed of 34 queries and
42 annotations with at least one novel gene reported in 2010.
In this benchmark, the training sets used for prioritization
were manually extracted from the literature and dedicated
databases.

The OMIM benchmark

OMIM provides a list of disease-gene annotations (6377 an-
notations in July 2013) based on experimental evidence. The
annotation list is a combination of disease-gene entries that
contains both confirmed and non-confirmed entries, as well
as different mapping evidence. Note that each entry has a
list of gene symbols, which includes both official symbols
and aliases. Furthermore, many OMIM entries refer to the
same disease concept. We refine this list in five steps:

(i) We remove non-confirmed entries.
(ii) We keep only the annotations whose evidence is based

on mutations that are located within genes.
(iii) We keep only official gene symbols.
(iv) We combine disease entries that refer to the same dis-

ease concept.

Figure 2. The main three screens that Beegle returns on the web interface.
These correspond to (i) the home page, (ii) the results from the search phase
and (iii) the results from the discovery phase.

(v) We keep only disease entries that have at least three
genes annotated.

This results in a refined list of disease-gene annotations
(314 diseases and 2654 annotations) based on the OMIM
database (version 2013). We call this list the OMIM-search
validation set.

To generate a benchmark that allows a validation that
mimics novel discovery, we used two versions of OMIM
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(2010 and 2013) as follows: for both versions, we refined
the list as described above. We then compared the output
of Step 1 between both versions and discarded the diseases
that did not appear in both lists. We also discarded diseases
for which we could not find at least one ‘novel’ gene (i.e. re-
ported in the 2013 version and not mentioned in the 2010
one). Finally, to avoid false positives, we verified the result-
ing entries by manually looking into the scientific literature.
Our aim was to make sure the annotated genes were as-
signed to their correct disease concepts, and have indeed
been reported in the correct period. This process resulted
in a final OMIM list of 104 diseases that had annotations in
both the 2010 and 2013 versions, and for which we had at
least one novel gene. This corresponds to a total of 959 an-
notations reported in 2010, and a total of 277 annotations
newly reported after 2010. We call these lists the OMIM-
discovery validation set. The interest of this setup is that for
a version of Beegle limited to using information obtained
prior to 2010, the discoveries made in the 2010–2013 period
will serve as a prospective validation of the tool.

Since we consider both the OMIM-search and the
OMIM-discovery validation sets a secondary contribution
of this work, we release the full lists in Supplementary Data
3–6. Hence, other researchers can use them for evaluating
different gene prioritization methodologies. Table 1 pro-
vides a summary of the benchmark data sets.

The evaluation setup

The goal of the empirical evaluation is to (i) assess the qual-
ity of the text mining approaches in terms of retrieving
known gene associations, and (ii) evaluate the ability of the
genes retrieved to serve as training sets for building the En-
deavour models and proposing novel hypothesis.

To address the first question, we employed the follow-
ing methodology. First, we used the OMIM-search valida-
tion set to measure the percentage of recall in the top genes
returned by Beegle in the search phase. Here, recall corre-
sponds to the number of true positive genes retrieved at a
certain rank threshold. For each query, we calculated the re-
call in the top 10, 25, 50 and 100 ranked genes. We then cal-
culated the average recall over all disease queries. Note that
our lists of ranked genes are based on the 2013 MEDLINE
release. Second we compared Beegle to MeSHOP, which
is a similar text mining tool. MeSHOP uses concept pro-
file similarity to rank a list of human genes given an input
MeSH term (22). We chose MeSHOP since their current re-
sults are also based on the 2013 PubMed release. We com-
pared the two systems using a subset of the OMIM bench-
mark, such that each query returned a reasonable number
of genes (ranging between 3 and 30). Since MeSHOP is re-
stricted to using MeSH terms as queries, we further limited
our subset to diseases where we could find equivalent MeSH
terms. This resulted in 18 disease queries, which we pro-
vide in Supplementary Table S3. We call this the OMIM-
comparison set. For every query in this set, we used each
system to generate a gene ranking. Then, for each system
and query, we computed the recall in the top 10, 25, 50 and
100 ranked genes (according to the corresponding OMIM
genes reported in 2013). Finally, we computed both Beegle

to MeSHOP’s average recall over all queries for a specific
rank threshold.

For the second evaluation, we used the literature-based
validation set in one experiment, and then we used the
OMIM-discovery validation set in a second one. For the
literature-based set, we conducted the experiment as fol-
lows. We trained and compared three Endeavour models:
one using the manually selected set of input genes, one us-
ing the top-10 genes retrieved by Beegle, and one using the
top-n genes, where n is the number of genes in the query’s
manual training set. We chose the candidate set to be the
whole genome. Given the results, we compared the recall,
when considering the top 5%, 10% and 30% of the prior-
itized genes. We used these thresholds because they were
previously used to compare Endeavour and other prioriti-
zation tools (10). On average, the thresholds correspond to
the top 1000, 2000 and 6000 ranked genes. For the OMIM-
discovery set, we ran Endeavour once with the set of OMIM
genes reported until 2010, once with the top-10 genes re-
trieved by Beegle, and once with the top-n genes (where n
is the number of OMIM genes for a given query). Again,
we used the whole genome as our candidate set. Then we
compared the recall, and the average AUC (Area Under
the ROC Curve) results using each training set. For the
ROC curves, we defined a number of rank thresholds (start-
ing from 10 until 22000), then for each query we measured
the TPR (True Positive Rate) and the FPR (False Positive
Rate) at each threshold. Afterwards, we computed the av-
erage TPR and FPR results at each threshold given all the
queries, and we used these average values to plot the ROC
curves. Note that in both experiments, the genes retrieved
by Beegle and the final prioritizations generated by Endeav-
our were based on literature and genomic data sources be-
fore 2010. The two validation sets are based on disease-gene
associations reported from 2010 onwards. Thus our priori-
tizations were not contaminated by novel information.

RESULTS

Evaluating the search phase

We present the results of the OMIM-search set in Table 2.
We observe that using co-occurrence alone results in an av-
erage recall of 54% in the top 10 versus 73% in the top 100.
Similarly, using concept profile similarity alone results in an
average recall of 48% in the top 10 versus 68% in the top
100. However, we observe that using the best rank achieves
the best recall of 56% in our top 10 and 78% in our top
100 ranked genes. The same table also reports the number
of genes that are confirmed by both approaches (separately
and on average) in the top 10, 25, 50 and 100 ranked genes.
We observe a 41% intersection in the top 10 ranked genes
versus 21.7% at the top 100. In addition, we report the aver-
age recall at different P-value levels using co-occurrence in
Table 3. We observe similar results to measuring the recall
at different rank levels as reported in Table 2.

Table 4 compares Beegle and MeSHOP on the OMIM-
comparison set. We observe that Beegle results in an average
recall of 69% in the top 10 and 84% in the top 100. Similarly,
MeSHOP results in an average recall of 51% in the top 10
and 63% in the top 100. Supplementary Data 7 and 8 con-
tain the full lists of returned genes by each tool.
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Table 1. A summary of the OMIM benchmarks

No. of diseases No. of genes
No. of disease-gene
pairs

OMIM-search set 314 2055 2654
OMIM-discovery set 2010 104 859 959
OMIM-discovery set 2013 104 1107 1236
OMIM-discovery set 2013–2010 104 265 277

A summary of the different OMIM benchmarks that we used in our evaluation mentioning the counts of covered diseases, genes and disease-gene pairs.
We used two versions (2010 and 2013).

Table 2. The results of the OMIM-search set

Top 10 Top 25 Top 50 Top 100

Co-occurrence 54% 64% 69% 73%
Concept profile similarity 48% 57% 62% 68%
Best rank 56% 67% 74% 78%
The average number of confirmed genes by both approaches 4.1 8.1 13.3 21.7

A comparison of the average recall in the top 10, 25, 50 and 100 returned genes using co-occurrence, concept profile similarity and best rank. The best rank
returns the best recall results. We also present the average number of confirmed genes by both co-occurrence and concept profile similarity. We observe
higher intersection in the top10 versus top100.

Table 3. The results of the OMIM-search set at different P-value levels using co-occurrence

The P-value level 0.0000001 0.001 0.005 0.01 0.1 0.5 1

The average rank level 24 44 55 60 104 158 16493
The average recall 0.6316 0.6944 0.7091 0.7139 0.7451 0.7678 1.0000

The average recall at different P-value levels using co-occurrence. We observe similar results to measuring the recall at different rank levels.

Table 4. The results on the OMIM-comparison set

Top 10 Top 25 Top 50 Top 100

Beegle 69% 80% 83% 84%
MeSHOP 51% 60% 62% 63%

A comparison of the average recall in the top 10, 25, 50 and 100 returned genes using Beegle and MeSHOP. Beegle obtains better recall results, where it
improves MeSHOP by 18% in the top 10 returned genes.

Evaluating the discovery phase

Table 5 presents the results of the literature-based set. Using
the top-10 genes retrieved by Beegle as an input set to train
the Endeavour models results in an average recall of 41.2%,
48.5% and 77.5% in the top 5%, 10% and 30% prioritized
genes, and using the top-n genes similarly results in an av-
erage recall of 33.3%, 46.6% and 73.0%. In comparison, us-
ing manually extracted input sets result in recalls of 28.6%,
38.1% and 71.4%. Hence Beegle’s automatic input set can
improve the recall by up to 12.6%, 10.4% and 6.1% in at the
top 5%, 10% and 30% prioritized genes, respectively.

Table 6 presents the recall results for the OMIM-
discovery set. The results are comparable when using Bee-
gle’s top retrieved genes and OMIM-reported genes as input
sets. This corresponds to an average recall of 34.3%, 43.3%
and 65.7% in the top 5%, 10% and 30% prioritized genes.
Figure 3 shows the ROC curves comparing all input sets.
On average, the AUC is 0.73.

DISCUSSION

Our results show the potential of Beegle to annotate genes
to diseases starting from the literature. On the one hand,
the results from the search phase show that counting on ei-

Figure 3. The ROC curves for the final gene prioritizations on the OMIM-
discovery set. The green curve corresponds to OMIM 2010 derived training
sets, the magenta curve corresponds to Beegle’s top-10 training sets, and
the blue curve corresponds to Beegle’s top-n training sets. The results are
comparable.
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Table 5. The results on the literature-based set

Input set Recall in top 5% Recall in top 10% Recall in top 30%

Manually-extracted 28.6% 38.1% 71.4%
Beegle’s top-10 41.2% 48.5% 77.5%
Beegle’s top-n 33.3% 46.6% 73.0%

A comparison of the average recall results for the final gene prioritizations (using the literature-based set) in the top 5%, 10% and 30% prioritized genes using
the manually-extracted, Beegle-extracted top-10, and Beegle-extracted top-n input sets. The automatic input set from Beegle improves the recall results (with
slight improvement using top-10).

Table 6. The results on the OMIM-discovery set

Input set Recall in top 5% Recall in top 10% Recall in top 30%

OMIM-reported 35% 45% 67%
Beegle’s top-10 36% 44% 66%
Beegle’s top-n 32% 41% 64%

A comparison of the average recall results for the final gene prioritizations on the OMIM-discovery set for the top 5%, 10% and 30% of the prioritized
genes using the manually-extracted, Beegle-extracted top-10, and Beegle-extracted top-n input sets. The automatic input set from Beegle shows comparable
results to the one extracted from OMIM (with slight improvement using top-10).

ther an explicit signal (that comes directly from the text),
or an implicit one (that is interpreted from the fraction of
shared concepts), to annotate genes to diseases tend to work
successfully. They also show that combining both the ex-
plicit and the implicit signals results in a stronger retrieval as
demonstrated by the increased number of experimentally-
validated genes that appear in the top ranked genes. In addi-
tion, we found that Beegle improves the recall by an average
of 18% and 21% at the top 10 and 100 returned genes when
compared to MeSHOP. On the other hand, the results from
the discovery phase demonstrated that Beegle can automat-
ically generate an interesting training set to build models
for predicting novel genes. They also show that using the
top-10 returned genes as a training set slightly improves
the performance relative to using the top-n genes. While we
believe that expert input remains invaluable, we were sur-
prised to observe that the results of automatic retrieval are
at least as good as those for manually curated gene sets. We
do however believe that additional review of potential train-
ing genes identified by Beegle (and the addition of any im-
portant gene missed during the retrieval phase) will further
enhance the performance of the approach significantly (al-
though this is difficult to quantify in a benchmark).

Beegle allows experts to find existing gene associations
and predict new ones in an easy and straightforward man-
ner. First, through the free-text query support, users can
try any combination of biomedical concepts of interest,
for which they can explore gene associations. Second, in
the search phase, for every gene returned, Beegle presents
two additional outputs: (i) at least one piece of literature
in which the gene and the query are reported together, and
(ii) a word cloud that views the concepts that most describe
the gene in comparison to those of the query. These ex-
tra outputs provide an additional level of insight through
which users can further assess the query-gene association
and decide whether to add a given gene to the training set
or not. Finally, in the discovery phase, in addition to the
global rank, Beegle presents a detailed rank of the candi-
date genes according to the different genomic sources em-
ployed. Hence users are provided with additional insights
that help them to assess the viability of the candidate gene

to further decide whether or not to take it to the next step
(e.g. for wetlab experiments).

Methodologically, Beegle mines the abstracts on MED-
LINE to retrieve a ranked list of known genes using two
text mining techniques. The first measures co-occurrence
and the second measures concept profile similarity between
genes and biomedical concepts. This is novel compared
to previous research that has focused on using one of the
two techniques in isolation to generate biomedical associa-
tions (17–22). CoPub (21) and MeSHOP (22) are two ex-
amples of such methodology. Beegle separates the search
for known genes from the search for possible candidate
genes. This is different from existing work that merge known
and unknown gene associations in the same ranking (21–
24). BITOLA (23) and Genie (24) are two examples of such
methodology. Furthermore, Beegle supports the search us-
ing any free text query, which among existing systems is
only possible in Genie. The rest of the existing tools are lim-
ited to specific vocabularies (e.g. MeSH terms). Supplemen-
tary Table S4 conceptually compares Beegle and four of the
most closely related systems: CoPub, MeSHOP, BITOLA
and Genie.

Nevertheless, Beegle is limited in the following ways. On
the one hand, the user of Beegle is not allowed to choose the
genomic sources which are used in the discovery phase and
has to follow our preselection of sources (which proved to
work best in our experiments). Also the user is expected to
manually add training genes only in the form of gene sym-
bols (that have a corresponding Entrez id). On the other
hand, the response time of Endeavour is relatively slow and
it can take up to 20 min to prioritize the whole genome. This
is not optimal when our users expect an instantaneous re-
sponse time, based on their experience with other search en-
gines, such as Google for example.

For future work, we plan to enhance Beegle as follows.
One way would be by improving the identification of known
genes, which would be possible through applying enhanced
text mining approaches. For instance, one approach could
be to use a refined vocabulary set to generate the concept
profiles for our queries and genes. This could be achieved
by selecting high-quality concepts and discarding confus-
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ing ones. Another way would be to develop even better val-
idation sets to measure the quality of the gene prioritiza-
tions. In this work, most of our control diseases are linked
to just one future gene. We thus believe that a more exten-
sive set with better gene coverage will give us a better insight
into the performance of our tool. We also plan to integrate
Beegle with variant prioritization tools (that are comple-
mentary to gene prioritization tools), such as eXtasy (31).
We also plan to enhance the web interface, which is possi-
ble through (i) adding user accounts support (for managing
personal queries, gene lists, etc.) and (ii) improving the re-
sponse time by using a compact version of our data sets (e.g.
compacting the vocabulary).
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