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Cryo-EM of full-length α-synuclein reveals fibril
polymorphs with a common structural kernel
Binsen Li1, Peng Ge2, Kevin A. Murray3, Phorum Sheth1, Meng Zhang3, Gayatri Nair1, Michael R. Sawaya 3,

Woo Shik Shin1, David R. Boyer 3, Shulin Ye2, David S. Eisenberg 3, Z. Hong Zhou2,4 & Lin Jiang 1

α-Synuclein (aSyn) fibrillar polymorphs have distinct in vitro and in vivo seeding activities,

contributing differently to synucleinopathies. Despite numerous prior attempts, how poly-

morphic aSyn fibrils differ in atomic structure remains elusive. Here, we present fibril

polymorphs from the full-length recombinant human aSyn and their seeding capacity

and cytotoxicity in vitro. By cryo-electron microscopy helical reconstruction, we determine

the structures of the two predominant species, a rod and a twister, both at 3.7 Å resolution.

Our atomic models reveal that both polymorphs share a kernel structure of a bent β-arch,
but differ in their inter-protofilament interfaces. Thus, different packing of the same kernel

structure gives rise to distinct fibril polymorphs. Analyses of disease-related familial muta-

tions suggest their potential contribution to the pathogenesis of synucleinopathies by

altering population distribution of the fibril polymorphs. Drug design targeting amyloid fibrils

in neurodegenerative diseases should consider the formation and distribution of concurrent

fibril polymorphs.
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α-Synuclein (aSyn) is an intrinsically disordered protein,
which can aggregate into different fibril forms, termed
polymorphs. Polymorphic aSyn fibrils can recruit and

convert native aSyn monomers into the fibril state, a process
known as seeding1. Seeding of aSyn is associated with its
pathological spread in the brain, contributing to multiple neu-
rodegenerative diseases known as synucleinopathies, including
Parkinson’s disease (PD), dementia with Lewy bodies, and mul-
tiple system atrophy (MSA)2,3.

Different aSyn fibril polymorphs have shown distinct
seeding capacities in vitro and in vivo. Negative-stain electron
microscopy (EM) images of aSyn fibrils extracted from PD and
MSA patient brain tissues revealed fibril polymorphs with dif-
ferent widths: a major population of 10-nm-wide straight or
twisted filaments and a minor population of 5-nm-wide
straight filaments2,3. An additional EM study of recombinant
aSyn fibrils confirmed the presence of similar fibril polymorphs,
where each of the ~10-nm-wide filaments was composed of a
bundle of two aSyn filaments4. More recently, two in vitro gen-
erated polymorphic fibrils (named ribbons and fibrils) exhibit
different toxicity and in vitro5 and in vivo6 seeding properties.
Peng et al.7 demonstrated that brain-derived aSyn fibrils from
different synucleinopathies are distinct in seeding potencies,
which is consistent with the progression rate of each disease.
In order to better understand the molecular basis for toxicity
and seeding efficiency of aSyn aggregation in vitro and in vivo,
atomic resolution structures of aSyn fibril polymorphs are
crucially needed.

Previous studies have defined some structural details of
aSyn fibrils. By micro-electron diffraction (microED)8, structures
of the preNAC region (47GVVHGVTTVA56) and NACore
regions (non-amyloid-β component core, 68GAVVTGVTAVA78),
amyloidogenic segments critical for cytotoxicity and fibril for-
mation, each revealed a pair of tightly mated in-register β-sheets
forming a steric zipper. Moreover, a solid-state nuclear magnetic
resonance (ssNMR) structure of recombinant aSyn revealed a
Greek-key β-sheet motif in the hydrophobic core of a single fibril
filament9, where salt bridges (E46-K80), a glutamine ladder
(Q79), and hydrophobic packing of aromatic residues (F94)
contribute to the stability of the in-register β-sheet. These pre-
vious structural studies offer atomic insights into aSyn fibril
architecture; however, additional structures are needed to eluci-
date the differences between aSyn fibril polymorphs. This infor-
mation is necessary for the development of drugs targeting
aSyn aggregation and seeding.

We set out to determine the structures of aSyn fibril species,
and characterized one preparation of recombinant full-length
aSyn containing various filamentous fibrils. The in vitro gener-
ated aSyn fibrils demonstrated a dose-dependent cytotoxicity
and in vitro seeding in cells. Our cryo-EM study of the aSyn
fibrils revealed two major polymorphs, termed rod and
twister. Near-atomic structures (at a resolution of 3.7 Å) of
both polymorphs showed a pair of β-sheet protofilaments
sharing a conserved kernel consisting of a bent β-arch motif.
However, the protofilaments of the structures contact with
each other at different residue ranges, one at the NACore
and the other at the preNAC region, forming different fibril
cores. The involvement of NACore and preNAC steric zippers
in the fibril cores of aSyn fibrils is supported by X-ray fiber
diffraction experiments. In the rod and twister polymorphs,
interface packing differences between the protofilaments lead
to different fibril morphologies with distinct helical twists
along the fibril axis. Structural analysis of disease-related muta-
tions in the rod and twister structures suggests that aSyn
fibril polymorphs may play different roles in aSyn aggregation
and seeding.

Results
Seeding capacity and cytotoxicity of full-length human aSyn
fibrils. In order to produce a wide range of aSyn fibril poly-
morphs, we screened fibril growth conditions of full-length
recombinant human aSyn (1–140) by varying pH, salt, and
additives. All samples were incubated in quiescent conditions for
14–30 days, in order to best mimic the physiological conditions of
in vivo fibril growth. Fibril growth was monitored using thioflavin
T (ThT) aggregation kinetics. We confirmed the presence of a
wide range of fibril morphologies using negative-stain EM (see
Methods and Supplementary Fig. 1). One fibril preparation stood
out with well-separated single filaments with or without an
apparent twist (Fig. 1a and Supplementary Fig. 2) in the presence
of tetrabutylphosphonium bromide (an ionic liquid additive used
in protein crystallization) at room temperature. Two major
populations in this fibril preparation, the straight and twisted
filaments, were around 10 nm wide (Fig. 1b), which is consistent
with the previously reported aSyn fibrils either generated in vitro
or extracted from patient brains4,10.

We performed biological experiments to assess the pathological
relevance of the aSyn fibrils preparation. In vitro seeding of the
fibrils was monitored using a biosensor cell assay. Human
embryonc kidney 293T (HEK293T) cells endogenously express
disease-associated aSyn A53T mutant fused with cyan fluorescent
protein (CFP) or yellow fluorescent protein (YFP) as a
fluorescence resonance energy transfer (FRET) pair11. The aSyn
fibril seeds were transduced into cells and induced intracellular
aSyn aggregation or inclusions that was quantified by flow
cytometry-based FRET analysis11 (see Methods and Supplemen-
tary Fig. 3). At a concentration of aSyn fibril seeds as low as 10
nM, we observed aSyn inclusions as fluorescent puncta in cells
(white arrows in Fig. 1c). The quantified FRET signal indicated
the level of cellular aggregation seeded by the aSyn fibrils followed
a dose-dependent manner (Fig. 1d). We also characterized the
cytotoxicity of these aSyn fibrils in differentiated PC12 cells. The
aSyn fibrils used in in vitro seeding experiment showed a
significant cytotoxicity at 500 nM (Fig. 1e). Thus, the aSyn fibrils
used in this study were able to act as seeds and trigger
intracellular amyloid aggregation and subsequent cytotoxicity.

Cryo-EM structures of two aSyn fibril polymorphs. We per-
formed cryo-EM studies to further elucidate the structures of
fibril polymorphs. Two-dimensional (2D) classification of the
cryo-EM images revealed that the fibril preparation consisted of
two major populations, as well as several minor ones (Supple-
mentary Fig. 4). The two major populations were composed of
two fibril polymorphs, herein referred to as “twister,” which has a
twist in its projection views, and “rod,” which lacks an apparent
twist. We determined the three-dimensional (3D) structures for
both polymorphs to a resolution of 3.7 Å (Table 1, Fig. 2, and
Supplementary Figs. 5, 6). Both structures consisted of two
intertwined protofilaments related by an approximate 21 screw
axis of symmetry with a helical rise of 2.4 Å, which is consistent
with the 2.4 Å reflection observed in the fiber diffraction patterns
(Fig. 3e). The rod polymorph has a pitch of 920 Å and a right-
handed helical twist of 179.5°; the twister polymorph has a
shorter (460 Å) pitch and a right-handed helical twist of 179.1°
(Fig. 2a).

We were able to build atomic models for both the rod and
twister polymorphs, guided by side chain densities revealing
distinct landmarks (Supplementary Figs. 7, 8). Both structures are
composed of two protofilaments, each consisting of predomi-
nantly β-sheets. Out of the 140 amino acids in aSyn, 60 residues
(L38-K97) are sufficiently ordered to be visible in the rod
polymorph. As shown in the left panel of Fig. 2a, the polypeptide
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chains stack into a Greek-key-like core with two turns, similar to
the previous ssNMR-derived protofilament structure9. At both
ends of the chain are lower-resolution densities that cannot be
reliably modeled. In contrast, only 41 amino acids (K43-E83) are
ordered in the twister polymorph, forming a bent β-arch (Fig. 2a,
right panel). The more disordered chains at both termini project
radially outward; they may account for the larger maximal width
of the twister polymorph, as the ordered regions in both
polymorphs have similar diameters.

Unique inter-protofilament interfaces of the two polymorphs.
Comparison of the cryo-EM structures of the rod and twister
polymorphs demonstrated the presence of a common protofila-
ment kernel (root-mean-square deviation (RMSD) of residues
H50-V77= 2.2 Å for only Cα atoms, 2.5 Å for all atoms) (Fig. 3c,
d). The twister polymorph has a well-ordered bent β-arch motif,

while the rod polymorph also has a bent β-arch but uses addi-
tional ordered residues to form a Greek-key-like fold. A large
fraction of branched amino acid residues (Thr, Val) is involved in
the mainly hydrophobic core of the bent β-arch (Fig. 3a, b). Major
turns or bends in the backbones of the two structures coincide
with the presence of glycines (G67, G84), stabilizing hydrogen
bonds (N65 and G68, Q79 and G86), and solvent exposed
charged residues (E57, K58) (Fig. 3a, b). A hydrophilic channel,
lined by residues T54, T59, E61, T72, and T75 (Supplementary
Fig. 9), is adjacent to the hydrophobic core in the center of both
structures. The bent β-arch conformation represents a common
protofilament kernel between the rod and twister polymorphs.
Interestingly, the single protofilament structure in the ssNMR
study9 shows some similarities to the common protofilament
kernel in cryo-EM structures, with an Cα RMSD of 3.4 Å (rod)
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and 3.4 Å (twister), respectively, for the 28 matched residues
(Supplementary Fig. 10).

While a pair of identical protofilaments is intertwined in
both structures, different steric zipper interfaces are present
between the protofilaments. The highly complementary inter-
protofilament interface in the rod polymorph, with a calculated
shape complementary score12 of 0.77, consists of a steric homo-
zipper of the preNAC (47GVVHGVTTVA56) (Fig. 3c). The
preNAC steric zipper in the rod structure is associated with
six PD familial mutation sites (E46K, H50Q, G51D, A53E, A53T,
and A53V; Fig. 4a)13–18, with the potential to disrupt the preNAC
zipper of fibril core in the rod structure (Fig. 3f). Based on the
structural analysis (Supplementary Figs. 11 and 12), the mutation
H50Q would interfere with the potential salt bridge E57-H50. The
negative charge in the mutation G51D and A53E would likely
disrupt the steric zipper interaction between the two protofila-
ments, while A53T and A53V would weaken the hydrophobic
packing of the zipper.

In the twister structure, the interface between the
two protofilaments (SC= 0.71) is a steric homo-zipper of
the NACore (68GAVVTGVTAVA78) (Fig. 4c). The β-strands
of the NACore interdigitate with each other and form the
hydrophobic core, consisting of small apolar residues (A69, V71,
V74). In the structure, the preNAC residues are located at the
peripheral region away from the fibril core. Therefore, the six
familial mutations of the preNAC region which potentially
disrupt the rod structure may have little effect on the stability of

the twister structure (Fig. 3g and Supplementary Fig. 11). We find
generally good agreement between our energy calculations and
the hypothesized effects each familial mutation may have on each
polymorphic structure (Supplementary Fig. 12). An exception to
this agreement is the H50Q mutation, where the prediction
method fails to capture the complex H-bond networks of multiple
residues H50, E47, and K45.

Relevance of full-length aSyn fibrils with peptide zippers. X-ray
fiber powder diffraction of the full-length aSyn fibril polymorphs
revealed cross-β fibril structures consistent with those of NACore
and preNAC peptide fibrils (Fig. 3e). All fibril diffraction patterns
contain a strong 4.7 Å reflection, characteristic of the stacking of
β-strands along the fiber axis, and reflections near 8.0 and 11.5 Å,
likely stemming from the staggering between adjacent β-sheets in
the structure, either within a protofilament or between two pro-
tofilaments. All fibrils also have the reflection at 2.4 Å in their
diffraction patterns. Observed in both cryo-EM structures, a
helical rise of 2.4 Å, half the 4.8 Å spacing between β-strands,
permits the two sheets to interdigitate tightly together. Similar 2.4
Å helical rises are observed in the microED structures of preNAC
and NACore peptide fibrils8. This 2.4 Å reflection confirmed that
the structures of aSyn fibrils and the peptide fibrils are all defined
by an approximate 21 screw axis of symmetry. The resemblance of
all of these fibril diffraction patterns suggested that the aSyn
fibrils may share a fibril core in which NACore and preNAC are
involved.

In the aSyn fibril preparation, the protofilaments in both the
rod and twister structures share a conserved fibril kernel and
contact with adjacent protofilaments at either preNAC or
NACore regions. The rod polymorph has a longer pitch, while
the twister polymorph has a pitch shorter by half. Distinct fibril
morphologies indicated by fibril pitch thus arise from differences
in packing, which are revealed in our near-atomic structures.
Structural analysis of familial mutations in the rod and twister
structures suggests that aSyn fibril polymorphs may play different
roles in aSyn fibril formation in synucleinopathies.

Discussion
Protofilaments in aSyn fibrils are composed of single chains
arranged in parallel in-register β-sheets. Fibril protofilaments can
assemble in different arrangements to form several possible
polymorphic structures. α-Synuclein fibrils isolated from PD
patient brains have been shown to have polymorphic structures,
with fibril widths of ~5 and ~10 nm10. Our cryo-EM structures of
two polymorphs, each with a pair of protofilaments, are ~10 nm
in width (99 Å for the rod structure and 96 Å for the twister
structures, Fig. 2a). The single protofilament structure revealed in
the ssNMR study was ~5 nm in width9 and resembles the com-
mon protofilament kernel in cryo-EM structures of both rod and
twister polymorphs, with an RMSD of 3.5 and 3.8 Å, respectively
for the 38 matched residues (Supplementary Fig. 9). The recently
published cryo-EM structure of a truncated aSyn (residues 1–121)
fibril19 has a structure similar to the rod polymorph of the full-
length protein reported here (with an RMSD of 2.1 Å). Thus,
different aSyn fibril polymorphs could arise from alternative
arrangements of the same protofilament kernel. Similar phe-
nomena have been observed in other amyloid proteins, including
tau and β-amyloid, where different packing arrangements of the
same protofilament kernel lead to polymorphic structures20,21.
These observations suggest a generic mode of fibril architecture
by the concurrent assembly of identical protofilaments (Fig. 4b).

Our structural studies reveal that the rod and the twister
protofilaments assemble symmetrically about a homo-zipper of
the preNAC segment or of the NACore segment, respectively.

Table 1 Cryo-EM data collection, refinement, and validation
statistics

Rod polymorph Twister polymorph

EMD-7618 EMD-7619

PDB:6CU7 PDB:6CU8

Data collection
Magnification ×130,000 ×130,000
Defocus range (μm) 1.5–4 1.5–4
Voltage (kV) 300 300
Microscope Titan Krios Titan Krios
Camera Gatan K2 Summit

(GIF)
Gatan K2 Summit
(GIF)

Frame exposure time (s) 0.2 0.2
No. of movie frames 50 50
Total electron dose (e−/Å−2) 80 80
Pixel size (Å) 1.07 1.07

Reconstruction
Box size (pixel) 432 432
Inter-box distance (Å) 36 36
No. of segments extracted 182,253 182,253
No. of segments after
Class2D

23,830 61,698

No. of segments after
Class3D

N/Aa 34,091

Resolution 3.7 3.7
Map sharpening B-factor (Å2) 100 100
Helical rise (Å) 2.40 2.40
Helical twist (°) 179.53 179.06

Atomic model
No. of protein residues 60 41
Ramachandran plot values
Most favored (%) 87.9 97.4
Allowed (%) 10.3 2.6
Disallowed (%) 1.72 0.0

Rotamer outliers 0.0 0.0
RMS deviations
Bond lengths (Å) 0.01 0.01
Bond angles (°) 0.89 0.87

Clashscore 25.67 22.39
Map CC (whole unit cell) 0.356 0.375
Map CC (around atoms) 0.754 0.727

N/A not applicable
Particles from Class2D are used in the refinement
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Since the twister and rod fibrils have structurally conserved ker-
nels but contact at either the preNAC or NACore segments, the
fibril polymorph is determined by the location of the protofila-
ment packing interface instead of the kernel structures. The two
structures of aSyn polymorphs revealed the steric homo-zipper
core of the preNAC and NACore between the protofilaments.
Together with the crucial contribution of the preNAC and
NACore segments to the formation of aSyn fibrils, our structures
present these unique protofilament interfaces as therapeutic tar-
gets to halt the fibrillization of aSyn. Atomic details of the pre-
NAC and NACore zippers from our aSyn polymorphic structures
provide insights in the structural-based designs of aSyn aggre-
gation inhibitors in synucleinopathies.

Different aSyn fibril preparations, whether obtained from brain
tissue or produced in vitro, may have different compositions
of polymorphs. Each polymorph is distinguished by packing
differences between protofilament kernels and makes distinct

contributions to the biological activities of seeding and toxicity.
The aSyn fibril preparation containing fibril polymorphs with
different compositions thus could have discrete seeding efficiency
and cytotoxicity profiles. Therefore, it is essential to characterize
the biological function of each individual polymorph in order
to understand the pathological role of the complex polymorphic
fibrils.

The cryo-EM structure of the rod polymorph constructed
around the fibril core of the preNAC region, and five PD familial
mutations (E46K, H50Q, G51D, A53E, A53T, and A53V) are
located at and associated to the preNAC region (Fig. 4a). Our
structural analysis suggests that all these mutations would dis-
favor the fibril core of the rod structure without affecting the
twister structure constructed around a different fibril core.
Therefore, those point mutations would result in a different
composition of polymorphic aSyn fibrils, by decreasing or elim-
inating the population of the rod polymorph while potentially
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aSyn fibrils agree with those of NACore and preNAC peptide fibrils. f, g The two protofilaments in the rod (f) and twister (g) polymorphs contact by
different residues (space-filled) and have distinct fibril core of tightly packed steric zippers of preNAC (blue) and NACore (red), as previously observed
in those peptide fibril structures. PD familial mutation residues are labeled with underlines. The cryo-EM density maps are shown as gray mesh surfaces.
Intra-protofilament hydrogen bonds are shown in black dashed lines, and inter-protofilament hydrogen bonds are in magenta
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inducing the formation of another fibril polymorph (Fig. 4b).
The resulting changes in the ensembles of fibril polymorphs
may alter their biological activity and underlie the phenotypic
differences in patients with PD due to familial point mutations,
suggesting aSyn fibril polymorphs have pathogenic contributions
to synucleinopathies.

In summary, we have determined the cryo-EM structures of
two fibril polymorphs of full-length recombinant aSyn with dis-
tinct protofilament interfaces. The rod and twister polymorphs
are composed of protofilaments with highly conserved kernel
structure assembled around different steric zipper interfaces,
giving rise to polymorphism in aSyn fibrils. The two structures
of fibril polymorphs elucidate atomic interactions of the steric
zippers within the fibril cores, potentially guiding the future

drug design of aSyn aggregation inhibitors. These structural and
functional studies thus establish the need to consider the con-
tributions of all polymorphs and their relevance to overall
pathogenesis when performing future rational design of ther-
apeutic agents based on fibril structures.

Methods
Expression and purification of recombinant aSyn (1–140). Full-length aSyn
protein was expressed in Escherichia coli (BL21-DE3 Gold strain, Agilent Tech-
nologies, Santa Clara, CA, USA) and purified according to a published protocol8.
The bacterial induction started at an OD600 of ~0.6 with 1 mM isopropyl β-D-1-
thiogalactopyranoside for 6 h at 30 °C. The harvested bacteria were lysed with a
probe sonicator for 10 min in an iced water bath. After centrifugation, the soluble
fraction was heated in boiling water for 10 min and then titrated with HCl to pH
4.5 to remove the unwanted precipitants. After adjusting to neutral pH, the protein
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Fig. 4 Morphogenesis of aSyn fibril polymorphs arising from inter-protofilament packing. a Primary sequence of preNAC (blue) and NACore (red) critical
for the aggregation of aSyn 1–140 and six PD familial mutations (cyan) located near the preNAC region. b Protofilaments sharing a kernel structure of a
bent β-arch assemble into the rod and twister fibril polymorphs by packing at preNAC and NACore zipper interfaces, respectively. The PD familial
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was dialyzed overnight against Q Column loading buffer (20 mM Tris-HCl, pH
8.0). The next day, the protein was loaded onto a HiPrep Q 16/10 column and
eluted using elution buffer (20 mM Tris-HCl, 1 M NaCl, pH 8.0). The eluent was
concentrated using Amicon Ultra-15 centrifugal filters (Millipore Sigma) to ~5 mL.
The concentrated sample was further purified with size-exclusion chromatography
through a HiPrep Sephacryl S-75 HR column in 20 mM Tris, pH 8.0. The purified
protein was dialyzed against water, concentrated to 3 mg/mL, and stored at 4°C.
The concentration of the protein was determined using the Pierce™ BCA Protein
Assay Kit (cat. no. 23225, Thermo Fisher Scientific).

Fibril preparation monitored using ThT assay. The fibril growth conditions were
screened in the 96-well plate format in various pH, salts, and additives. Specifically,
purified aSyn (100, 200, or 300 µM) was diluted in phosphate-buffered saline
(PBS), 50 mM Tris buffer, or 5 mM Tris buffer at various pH (5.5, 6.5, 7.5, or 8.5)
in the presence or absence of 24 commercially available crystal screening additives
in the Ionic Liquid Screen (Hampton Research, Aliso Viejo, CA, USA). The
samples were adequately mixed with 20 μM ThT and added into each well. The 96-
well plates were incubated at either room temperature or 37 °C for 14–30 days. The
ThT signal was monitored using the FLUOstar Omega Microplate Reader (BMG
Labtech, Cary, NC, USA) at an excitation wavelength of 440 nm and an emission
wavelength of 490 nm. Selected fibrils conditions from the ThT assay were used to
grow the fibrils in the absence of ThT to be further characterized in the negative-
stain EM. Out of hundreds of fibril growth conditions screened, one fibril growth
condition (300 µM aSyn, 15 mM tetrabutylphosphonium bromide, room tem-
perature) was selected for the rest of our study.

Transmission electron microscopy. The fibril sample (3 μL) was spotted onto a
freshly glow-discharged carbon-coated electron microscopy grid. After 1 min, 6 μL
uranyl acetate (2% in aqueous solution) was applied to the grid for 2 min. The
excessive stain was removed by a filter paper. The samples were imaged using an
FEI T12 electron microscope.

Cryo-EM reconstruction and atomic modeling. A 2.5-μL aliquot of the narrow
fibrils sample was applied to each “baked” Quantifoil 1.2/1.3 μm, 200 mesh grid.
The grid was then blotted and plunged into liquid nitrogen-cooled liquid ethane in
a Vitrobot Mark IV (FEI, Hillsboro, OR, USA) machine22. Cryo-EM data were
acquired in a Titan Krios microscope (FEI, operated at 300 kV high tension and
×130,000 nominal magnification) equipped with a Quantum LS Imaging System
(Gatan, Pleasanton, CA, USA; energy filter slit width was set at 20 eV and K2
camera at counting mode; calibrated pixel size is 1.07 Å). The microscope was
aligned as previously described23. Data collection was automated by Leginon
software package24. The defocus value target was set to a single value of 2.7 μm.
Dose-fractionation movies were recorded at a frame rate of 5 Hz for a total
duration of 10 s. The dosage rate was targeted at 6 electrons (e)/(Å2 s), as initially
measured by Digital Micrograph (Gatan) software, though fluctuations (within
±10%) in dosage potentially due to electron source instability were subsequently
noticed during the imaging session of about 2 days.

Frames in each movie were aligned and summed to generate a micrograph as
previously described25. Micrographs generated by summing all frames were used to
determine defocus values and particle locations by CTFFIND4 (ref.26) and manual
picking, respectively. We used the micrographs generated by summing the 3rd (5 e/
Å2) through the 20th frames (accumulated dose 30 e/Å2) for data processing.
Micrographs with severe astigmatism (>9%), obvious drift, or measured underfocus
values outside the allowed range (1.5–4 μm) were discarded.

We manually picked filaments indiscriminately in EMAN27 helixboxer (see
statistics in Table 1). The 2D classification revealed two major populations (rod and
twister polymorphs) and several minor populations. The other minor populations
were too poorly defined to be further characterized, and thus omitted in the
analysis. Of the classes suitable for analysis, the relative percentages of the rod and
twister polymorphs are ~30 and ~70%, respectively. The number is calculated from
the accepted classes using Class2D.

We performed 2D and 3D classifications in GPU-accelerated Relion 2.0 (ref.28)
to separate the particles belonging to the rod and twister polymorphs into subsets
as reported previously25. We also performed 2D classification of segments
extracted with a very large (1024 pixels) box size to determine the pitches of the
two polymorphs. Helical parameters were deduced from these pitches with the
assumption that each helix had a twisted twofold screw axis. The initial models for
the 3D classifications and reconstructions were generated by running Class3D with
1 class, an elongated Gaussian blob as the starting reference, and a fixed helicity
based on the above-mentioned assumption. Specifically, the rod class was separated
with solely Class2D, and the twister class was separated with Class2D followed by
Class3D similar to previously described25.

We further refined the 3D reconstructions of the rod and twister filaments using
Class3D in Relion as previously described25, except that we now used version 2.0 of
Relion with built-in real-space helical reconstruction. Briefly, we started a run of
Class3D with one class, with low initial T factor (i.e., “--tau-fudge”) and larger
(7.5°) angular interval. We gradually increased the T factor and reduced the
angular interval with close manual monitoring. We eventually reached a T factor of
256 and an angular interval of 0.975° (healpix order 6) for the final map.

We tested the resolutions of the two resulting maps as previously reported25.
Two types of Fourier shell correlation (FSC) was calculated: one between the
map and atomic model and the other between the 3D reconstructions from two-
half datasets (Supplementary Fig. 5). The former, map-model FSC evaluation
indicates that the resolutions for both the rod and twister maps are 3.7 Å based
on the FSC= 0.5 criterion29. For the latter, we divided the helical particles by
even and odd micrographs (to prevent particles from the same fiber contributing
to two different reconstructions), and then calculated a 3D reconstruction
from each half dataset using the fully refined center and orientations
parameters and performed the FSC calculation. (This FSC is thus not gold
standard, as the dataset was not divided in the beginning and was refined in its
totality.) Therefore, we used the FSC= 0.5 criterion28 to evaluate the
resolution. We did not apply any density-based or model-based mask for the FSC
tests, but a spherical mask of a 170-pixel diameter and 10-pixel apodization, after
clipping the density map into 192 × 192 × 192 box. This evaluation indicates that
the resolutions for the rod and twister maps are 3.5 and 3.6 Å at FSC= 0.5,
respectively.

We built atomic models for the two maps and refined them in central nervous
system30,31 and Phenix phenix.real_space_refine32 with the final Relion refined
helical parameters as NCS restraints, as previously described25. The statistics are
summarized in Table 1.

Structural analysis and energy calculations. Based on the two cryo-EM struc-
tures of aSyn fibrils, energies for the wild-type and familial mutants were calculated
with Rosetta33. During the energy evaluation, we omitted the contributions from
the statistical terms in the Rosetta scoring function which are derived from
monomeric proteins. The total score of each structure was calculated by the sum of
the physically meaningful energy components (Lennard–Jones interactions, sol-
vation, hydrogen bonding, and electrostatics). Using either rod or twister structure,
the contribution of each mutant was evaluated by the score difference between the
mutant and the WT.

Fiber diffraction. The procedure followed the protocol described by
Rodriguez et al.8. To replace the solvent with water, the fibril sample (50 μL)
were pelleted by centrifugation at 8000 × g for 5 min and washed with
deionized H2O for three times. The fibrils were resuspended in 10 μL of H2O,
placed between two capillary glass rods, and allowed to air dry. The next day, the
glass rods with fibrils aligned in between were mounted on a brass pin for x-ray
diffraction. Each pattern was collected using 1.54 Å x-rays produced by a Rigaku
FRE+ rotating anode generator equipped with an HTC imaging plate at a distance
of 150 mm for 5° rotation width. The results were analyzed using the Adxv
software34.

Cellular toxicity assay. The protocol was adapted from the Provost and
Wallert laboratories35. Thiazolyl blue tetrazolium bromide for the 3-(4,5-dime-
thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell toxicity assay was
purchased from Millipore Sigma (M2128-1G; Burlington, MA, USA). PC12 cells
were plated in 96-well plates at 10,000 cells per well in Dulbecco’s modification of
Eagle’s medium (DMEM), 5% fetal bovine serum (FBS), 5% heat-inactivated horse
serum, 1% penicillin/streptomycin, and 150 ng/mL nerve growth factor 2.5S
(Thermo Fisher Scientific). The cells were incubated for 2 days in an incubator with
5% CO2 at 37 °C. The cells were treated with different concentrations of aSyn fibrils
(200, 500,1000, 2000 nM). The aSyn fibrils were sonicated in a water bath sonicator
for 10 min before being added to the cells, the same as the fibrils tested in the
in vitro seeding experiment. After 18 h of incubation, 20 μL of 5 mg/mL MTT was
added to every well and the plate was returned to the incubator for 3.5 h. With the
presence of MTT, the experiment was conducted in a laminar flow hood with the
lights off and the plate was wrapped in aluminum foil. The media were then
removed with an aspirator and the remained formazan crystals in each well were
dissolved with 100 μL of 100% DMSO. Absorbance was measured at 570 nm to
determine the MTT signal and at 630 nm to determine background. The data
were normalized to those from cells treated with 1% sodium dodecyl sulfate (SDS)
to obtain a value of 0%, and to those from cells treated with PBS to obtain a value
of 100%.

Fibril seeding experiment in the aSyn biosensor cells. Based on a published
protocol36, FRET-based aSyn biosensor cells, HEK293T cells expressing disease-
associated aSyn A53T mutant fused with CFP or YFP, were grown in DMEM
(4mM L-glutamine and 25 mM D-glucose) supplemented with 10% FBS and 1%
penicillin/streptomycin. Trypsin-treated HEK293T cells were harvested, seeded on
flat 96-well plates at a concentration of 4 × 104 cells per well in 200 μL culture
medium per well, and incubated in 5% CO2 at 37 °C.

After 18 h, aSyn fibrils were prepared by diluting with Opti-MEM™ (Life
Technologies, Carlsbad CA, USA) and sonicating in a water bath sonicator for
10 min. The fibril samples were then mixed with Lipofectamine™ 2000
(Thermo Fisher Scientific) and incubated for 15 min and then added to the
cells. The actual volume of Lipofectamine™ 2000 was calculated based on the
dose of 1 μL per well. After 48 h of transfection, the cells were trypsinized,
transferred to a 96-well round-bottom plate, and resuspended in 200 μL
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chilled flow cytometry buffer (Hank's balanced salt solution, 1% FBS, and 1 mM
EDTA) containing 2% paraformaldehyde. The plate was sealed with parafilm and
stored at 4 °C for flow cytometry.

No apparent toxicity is observed at the tested concentrations of aSyn fibrils used
in the seeding assay (Supplementary Fig. 13), which rules out the contribution of
cell death to aSyn seeding.

Flow cytometry-based FRET analysis. Intracellular aSyn aggregation or
inclusions were quantified by the flow cytometry-based FRET analysis. The
protocol was adapted from the Diamond laboratory37. The fluorescence signals of
the cells were measured using the settings for CFP (ex. 405 nm, em. 405/50 nm
filter), YFP (ex. 488 nm, em. 525/50 nm filter), and FRET (ex. 405 nm, em. 525/50
nm filter) with an LSRII Analytic Flow Cytometer (BD Biosciences). FRET signals
were used to differentiate the aggregated aSyn from the non-aggregated aSyn. A
bivariate plot of FRET vs. CFP was created to introduce a polygon gate to
exclude all of the FRET-negative cells treated with only Lipofectamine and to
include the FRET-positive cells treated with fibril seeds (Supplementary Fig. 3). The
integrated FRET density, calculated by multiplying the percentage of FRET-positive
cells by the mean fluorescence intensity of the FRET-positive cells, was reported in
the results.

Statistical analysis. All statistical analyses were performed in SigmaPlot version
13.0 (Systat Software Inc., San Jose, CA, USA). The Grubbs' test was used to
exclude outliers. One-way analysis of variances were used to assess differences
between the fibril-treated and control-treated cells in the in vitro cytotoxicity assay.
P values <0.01 were considered statistically significant.

Data availability
The cryo-EM density maps of the rod and twister polymorphs have been deposited in the
Electron Microscopy Data Bank under accession number EMD-7618 and EMD-7619,
respectively, with associated atomic coordinates deposited in the RCSB Protein Data
Bank under accession number 6CU7 and 6CU8, respectively. Other data are available
from the corresponding authors upon reasonable request.
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