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Abstract
Background: There has been recent concern regarding the inability of predictive modeling
approaches to generalize to new data. Some of the problems can be attributed to improper
methods for model selection and assessment. Here, we have addressed this issue by introducing a
novel and general framework, the C1C2, for simultaneous model selection and assessment. The
framework relies on a partitioning of the data in order to separate model choice from model
assessment in terms of used data. Since the number of conceivable models in general is vast, it was
also of interest to investigate the employment of two automatic search methods, a genetic
algorithm and a brute-force method, for model choice. As a demonstration, the C1C2 was applied
to simulated and real-world datasets. A penalized linear model was assumed to reasonably
approximate the true relation between the dependent and independent variables, thus reducing the
model choice problem to a matter of variable selection and choice of penalizing parameter. We
also studied the impact of assuming prior knowledge about the number of relevant variables on
model choice and generalization error estimates. The results obtained with the C1C2 were
compared to those obtained by employing repeated K-fold cross-validation for choosing and
assessing a model.

Results: The C1C2 framework performed well at finding the true model in terms of choosing the
correct variable subset and producing reasonable choices for the penalizing parameter, even in
situations when the independent variables were highly correlated and when the number of
observations was less than the number of variables. The C1C2 framework was also found to give
accurate estimates of the generalization error. Prior information about the number of important
independent variables improved the variable subset choice but reduced the accuracy of
generalization error estimates. Using the genetic algorithm worsened the model choice but not the
generalization error estimates, compared to using the brute-force method. The results obtained
with repeated K-fold cross-validation were similar to those produced by the C1C2 in terms of model
choice, however a lower accuracy of the generalization error estimates was observed.

Conclusion: The C1C2 framework was demonstrated to work well for finding the true model
within a penalized linear model class and accurately assess its generalization error, even for datasets
with many highly correlated independent variables, a low observation-to-variable ratio, and model
assumption deviations. A complete separation of the model choice and the model assessment in
terms of data used for each task improves the estimates of the generalization error.
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Background
A common task in computational biology/bioinformatics
and computational chemistry/chemometrics (hereafter
abbreviated BBCC) is to model a dependent variable from
a set of independent variables; this gives insight into the
workings of the process being modeled and enables pre-
diction of future observations. Typical examples include
analyzing potential drug activity through proteochemo-
metrics and quantitative structure-activity relationship
(QSAR) modeling [1-3], discovering gene regulatory bind-
ing-site modules [4], and predicting clinical outcomes of
cancer from gene expression data [5]. However, recent
articles have indicated that predictive modeling
approaches have not fully fulfilled expectations for solv-
ing real problems. This issue has for instance been dis-
cussed in the fields of QSAR [6] and microarray gene
expression data modeling [7,8]. While some of the prob-
lems may be attributed to incorrect use and interpretation
of the models, others can be ascribed to improper model
selection and assessment. Our aim is here to address the
latter issue by introducing the C1C2, a general framework
for model choice and assessment.

Let D = {Xn, yn} be a dataset, where Xn = (x'1, ..., x'n)' is an

n × pX matrix whose ith row, xi, is the value of a pX-vector

of independent variables associated with yi, the ith row of

the n × 1 matrix, y = (y1, ..., yn)'. A statistical model, 

can be used to characterize the relation between Xn and yn.

In general, given the dataset D,  must be chosen from

a set of models,  according to

some criterion (typically the minimization of a loss func-

tion). The most common way to select  from  in

BBCC is to use K-fold cross-validation; that is, the dataset
D is split into K mutually exclusive subsets, D1,..., Dk,...,

Dk, of approximately equal size and  (D) is picked to

minimize the function:

where L is a loss function and D-k denotes that the kth sub-

set was excluded from D during the model fitting;  is

the number of observations in subset Di; and m = 1,..., M,

where M is the number of models in . This model
selection method may seem straightforward and intuitive,
however it neglects the fact that all the data at hand is used
to make the model choice. Thus, we no longer have an
independent testset to assess the chosen model by. The

result is that, typically, C0( ) underestimates the gener-

alization error (see for instance [9]), defined as the
expected prediction error over an independent test sam-
ple. This problem has been highlighted in relatively recent
works [9,10], but was noted initially in 1974 [11]. To
obtain a more accurate generalization error estimate, the
model selection process must be separated from the
model assessment in terms of the data that is used. Ideally,
if data were abundant and easily produced, we would set
aside a large test dataset and use it to assess – but not to

choose! – the model , and subsequent model refine-

ments could be assessed with new, unseen data. In prac-
tice, this is however often impossible since BBCC data is
typically scarce, and expensive to produce. The luxury of
large independent testsets can thus rarely be afforded. To
tackle this problem, Freyhult et al. [9] suggested using a K-
fold cross-validatory assessment of an H-fold cross-valida-

tory model choice, , as a way of simultaneously

choosing  and assessing its performance; thereby sep-

arating the model selection from its assessment. The
model is assessed by the function

where  (D-k) is the cross-validatory choice of 

based on D-k; that is, the model  that minimizes the

function

where D-hk denotes the dataset D with the kth and hth sub-

sets omitted. In the present work we build on and gener-
alize this idea into the C1C2 framework. In general, the
number of models in  is huge, thus it is unfeasible to
go through even a small subset of them manually. Hence,
for a framework such as the C1C2 to be useful in practice,
automated methods for searching the model space  are
necessary; in this sense the C1C2 is similar to the automatic
modelling approaches taken in for instance [12-14]. Here,
the specific use of the C1C2 is demonstrated by applying it
together with two search methods to simulated and real-
world datasets. The results are compared to those
obtained by employing the function (1) for model selec-
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tion and assessment. In the interest of clarity, we have
restricted our attention to the study of model choice and

assessment within a linear model class,  (defined
below) for a quadratic loss function. We discuss the
results of the demonstrations, the pros and cons of the
generality of the C1C2, and set out some directions for fur-
ther research.

Results
Algorithm
Let C1, C2 ∈ C = {C1,..., CJ}, where C is a set of model
assessment criteria and C1, C2 represent two specific crite-
ria (i.e. C1 = Ci, C2 = Cj, i, j = 1,..., J). Further, let S ∈ S,
where S is a set of search methods; let L ∈ L, where L is a
set of loss functions; let G denote a sequence of data
processing steps (e.g. mean-centering, transformations,
whitening, etc) and let G' contain the results of G applied
to D-k (the roles of G and G' are exemplified in the discus-
sion following the pseudococe below); let R be a positive
integer and K an integer between 1 and n, where n is the
number of observations. The C1C2 procedure is outlined
with the following pseudocode:

Initiate , G, L, C1, C2, R, and K.

for (r in 1,..., R) {

a. Partition data, D = {Dk}k = 1,..., k.

for (k in 1,..., K) {

b. Apply G to D-k. Save results in G'.

c. Search  using the data D-k and C2 as objective

function. Assume  is found to maximize (or mini-

mize) C2. Save .

d. Apply G to Dk using G'.

e. Assess  using C1 and Dk. Save assessment result.

}

}

The data partitioning in (a) separates data for the model
choice from data for the model assessment. Note that the
partitioning is dependent on the choice of C1 and does not
necessarily need to be done in a cross-validation fashion.
For instance, the choice C1 = ".632 estimator" [15,16], par-
titions the data by independently sampling n rows from D
with replacements and lets the observations not included

among the sampled observations constitute the test set.
The output from the C1C2 is also dependent on the choice
of C1; for example, the choice C1 = C2 = Bayesian Informa-
tion Criterion (BIC, see [17] and Methods) would not give
a direct estimation of the generalization error, but rather
an assessment of model overfitting. To clarify the roles of
G and G', we give the following example: Let G only con-
tain a processing step that scales to unit variance. In (b) G
is applied to D-i and the standard deviation of each col-
umn of D-k is saved in G'. In (d), G' is applied to Dk, that
is, the columns in Dk are scaled using the standard devia-
tions calculated in (b). This treatment of G ensures that Dk
indeed constitutes an independent testset. The 'for loop'
over r is introduced to enable calculation of confidence
intervals for estimates and, by averaging the estimates
over R repetitions, it permits reduction of the variance in
parameter and error (or overfitting) estimates by a factor
of 1/R.

Figure 1 gives a graphical gives a graphical view of the
C1C2 framework. We emphasize that the generality of the
framework allows C1, C2, and S to be chosen to fit the
problem at hand. Adequate choices of C1, C2, and S make
the model selection and assessment more accurate and
faster, which we will discuss below.

Datasets used in the testing
Both the simulated and the real data used for evaluating a
new method or algorithm should reflect typical dataset
properties found in real-world application domains.
Examples of such properties in BBCC are multicollinear-
ity, a large number of independent variables relative to the
number of observations, and binary and categorical inde-
pendent variables.

Simulated data
We simulated datasets as follows:

Let Δ = (δi)i = 1,..., p, where ,

represents a subset of Xn, and let βp(Δ) = (βi(δi))i = 1,..., p,

where , is a vector of regression

coefficients. The data matrix, Xn was sampled from a

twenty-dimensional multivariate normal distribution.

Thus, xi ~ N20(020, Σ20), i = 1,..., n, where 020 is a twenty-

dimensional vector of zeroes and Σ20 is either the I20 iden-

tity matrix or a covariance matrix, S20, estimated from a

real in-house QSAR dataset that originated from HIV pro-
tease inhibitors. The HIV QSAR dataset contains highly
correlated independent variables resulting in an S20 with
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many large absolute values in the off-diagonal elements.

Three δi in Δ were chosen to be nonzero and equal to one;

the positions were chosen at random to be 11, 14, and 18
(but remained fixed throughout the experiment for evalu-
ation purposes). The corresponding regression coeffi-

cients, β11(δ11), β14(δ14), and β18(δ18), were, for

simplicity, all set equal to 1. The variables 11, 14, and 18
were slightly correlated with an estimated covariance

matrix .

Datasets were generated assuming that yn followed a linear
model according to: yn = Xn βp(Δ) + εn, where εi~N(0,1.5).
Four datasets were simulated in order to evaluate the
C1C2s performance in settings where n <px, n > px, and
where the observations were sampled from an orthogonal
multivariate normal distribution or not, according to the
following schema:

1. n = 15, Σ20 = I20

2. n = 200, Σ20 = I20

3. n = 15, Σ20 = S20

4. n = 200, Σ20 = S20

The simulated datasets are available in CSV format from
Additional files 1, 2, 3, 4.

The Selwood dataset
This is a real dataset, made available from a website [18]
and originally published in 1990 [19]. It is a widely stud-
ied dataset (see [20,21] and references therein). It con-
tains one dependent variable, 53 independent variables,
and 31 observations. The 53 independent variables corre-
spond to numerical descriptions of molecules (antifilarial
antimycin analogues) designed to capture their physico-
chemical properties. The dependent variable is the in vitro
antifilarial activity of the molecules. This dataset exhibits
extremely strong correlations between the independent
variables and contains real valued, binary and categorical
independent variables. It is known from previous studies
that this dataset contains nonlinearities, but that decent
models can be found using linear methods.

Testing

To demonstrate the use of the C1C2, it was applied to the
simulated and real-world datasets described above (here-
after referred to as "the datasets"). Below we describe the
choices for R, K, , G, L, C1, C2, and S and the motiva-
tion for each selection.

Choice of R and K

The larger the choice of R, the higher the accuracy in the
estimate of the generalization error; the choice of R is thus

Σ( , , )11 14 18 =
⎛ 4.07 15.28 -0.01

15.28 3423.20 -0.33

-0.01 -0.33 0.01⎝⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.

M

The C1C2 frameworkFigure 1
The C1C2 framework. The data partitioning in step (a) in the pseudocode separates the model choice from its assessment, 
which is highlighted in purple in the figure. The left side of the figure relates to steps (b) to (d) in the pseudocode, and the right 
side to step (e); i.e. the left side relates to choosing the model and saving the parameter estimates, and the right side to assess-
ing the model and saving the assessment results.
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constrained by time and is dependent on the size of the
dataset and the computational complexity of the choices
of , G, L, C1, C2, and S. The choice of K is a trade-off
between bias and variance; the larger the K, the more var-
iance and the less bias in the estimates of the generaliza-
tion error [22]. R was here set to 12 and K to 5.

Choice of 

We make the assumption that a normal linear model
forms a reasonable approximation of the data. This model

is given by: yn = Xn βp + εn, where the subscripts denote the

number of rows in a matrix, βp are regression coefficients,

and εn~N(0,σ2 I). Further, because n <p and the columns

in Xn are highly correlated in some of the datasets, we

decide to use the ridge estimator,  (see Methods), of

the regression coefficients, βp. Let  be the linear

class of models given by: yn = Xn βp + εn, where βp is esti-

mated by . We thus choose . The prob-

lem of model choice within  reduces to the
problem of variable selection, i.e. choosing which subset
of the p columns in Xn to include in the model, and the

problem of choosing the ridge penalizing parameter λ
(see Methods). Hence, letting Δ = (δi)i = 1,..., p (see simulated

data above) represent a subset of Xn, we want to choose Δ

and λ using the C1C2 framework. A choice of Δ and λ for

given values of r and k will be termed "an estimate" of Δ

and λ, respectively, and be denoted  and . Averages of
estimates over the K folds and the R repeats in the C1C2 are

denoted  and , respectively.

Choice of G
As the columns in the Selwood dataset are measured in
different units using different scales, we choose to make G
contain mean centering and scaling to unit variance
processing steps.

Choice of L
We use the standard quadratic loss function given by:

Choice of C1 and C2

Others [12,13] have suggested choosing C1 = C2 = cross-
validation. Here, we choose C1 = cross-validation and C2 =
BIC. Hence, in this demonstration we assess a model

choice  according to:

where  (D-k) is the  chosen according to

BIC based on D-k; that is, the value of  that opti-

mizes the function:

m = 1,..., M, where M is the number of models in .
df in (5) is the number of free parameters in the model

 (note that this is not equal to the number of

parameters in the model , see for instance [16]).

The choice of C1 is motivated by that we wish to get a

direct estimate, , of the generalization error, εgen, of

our model choice. Provided that the assumptions behind
BIC are fulfilled, the choice C2 = BIC has several advan-
tages over C2 = cross-validation, including: a reduction of
bias in parameter estimates [22], a reduction of variance
by the Rao-Blackwell type relation derived in [23], and a
drastic reduction of the computational cost of the proce-
dure.

Choice of S
A genetic algorithm (GA) was chosen as a search method
because it is very easy to adapt to different situations and
in general effective for nondeterministic polynomial-time
hard combinatorial problems, such as the problem of esti-
mating Δ [24]. A trial solution in the GA is here a varying
length chromosome that contains a real-valued number
representing λ and a vector of integers representing the
indices of the δi in Δ that are nonzero. The fitness function
is our choice of C2. For the simulated datasets, we also
chose to run the C1C2 with a brute force search method:
for each λ ∈ {0,0.01,0.02,...,10} an exhaustive search in
the Δ space (i.e. an all-subset regression) was performed.
This enabled comparisons between the GA method and a
search method guaranteed to find the optimal model
(given a specific objective function and the resolution and
limits of λ).

Some remarks regarding the demonstration
To enable comparisons with the estimates of Δ, λ, and εgen
obtained with repeated K-fold cross-validation, the dem-
onstration described above was repeated with the func-
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tion (1) used as a criterion for model choice and for
assessing the model. Note that, since the C1C2 includes the
'for loop' over r, (1) was repeated R = 12 times, each time
with a new, independent data partitioning. This was done
to facilitate an impartial comparison between the two
methods.

The demonstration of the C1C2 framework can be com-
pared with the work of for instance Nicolotti and Carotti
[20], where a genetic algorithm was employed to estimate
Δ. In contrast to that approach, the C1C2 framework com-
pletely separates model choice and assessment whereby
more accurate generalization error estimates in general are
achieved. Further, the use of specific ad hoc objective
functions is avoided by choosing C2 to be a formally
derived model selection criterion, and simultaneous esti-
mation of model parameters other than Δ (for example,
the ridge parameter λ in the demonstration) can be
afforded. Typically, in works that have employed a search
method for estimating Δ, a given number of nonzero δi in
Δ is assumed (see for instance [20,25]). Therefore it was of
interest to investigate the effect of this assumption on pro-
ducing good estimates of Δ and εgen. This can be tested for
the simulated datasets in the demonstration, where the
number of nonzero δi is known. The C1C2 was therefore
applied to the simulated datasets both with an assump-
tion about the number of nonzero δi and without the
assumption. For simplicity (however somewhat unrealis-
tically), we assumed the correct number of nonzero δi.

Results of the testing
Simulated datasets
The four simulated datasets in combination with the use
of either the C1C2 or repeated K-fold cross-validation for
model choice and assessment, the GA or the brute-force
search method, and either with or without the assump-
tion of prior knowledge of the number of nonzero δi con-
stitute a two-level, five-factor, full factorial experimental
design. The C1C2 and the repeated K-fold cross-validation
were applied four times to each factor combination, thus
providing four replicates of the whole demonstration for
the simulated data. The design can be analyzed within the
normal linear model

wiv = γ0 + γ1 z1i + γ2z2i + γ3z3i + γ4z4i + γ5z5i + η i (i = 1,...,128),
(6)

where zji, j = 1,2,3,4,5, are factors corresponding to C1C2

or repeated K-fold cross-validation model choice and

assessment, brute force or GA search, Σ20 = I20 or Σ20 = S20

in the multivariate normal distribution from which the
data was sampled, 200 or 15 observations, and assuming

three nonzero δi or no such assumption, respectively. i

goes from 1 to 128 in (6) as there are 32 factor combina-

tions in four replicates. wiv, v = 1,2,3, are response varia-

bles defined according to the following: the Euclidean

norm wi1 =  was used to measure how well Δ on

average was estimated, wi2 =  was used as a response

variable in the λ case (as the correct choice of λ is not

known), and wi3 =  was used to measure how

well the generalization error ε on average was estimated;

 denotes the estimate of εgen for given values of r and

k;  denotes the

generalization error estimate obtained by using the corre-

sponding choice of model, , to predict the response

values in a large (N = 500,000) external test set, generated
in the same way as the dataset used for choosing the

model and estimating ; the bar denotes the average

over the R·K individual estimates. The generalization
error can be decomposed into three parts: one irreducible
error (corresponding to the error added when simulating
the data), the squared bias, and the variance. The latter
two are dependent on the model choice and consequently
the generalization error is dependent on the model
choice. We here assume that the large-sample estimate of

the generalization error, , closely represents the true

generalization error, ε, for a given model choice.

The results for choosing a model  for the

simulated datasets are available in Additional file 5, where

, , and  are tabulated for each fac-

tor combination and replicate. The parameter estimates

for fitting the model (6) using , , and

 as response variables are shown in Tables 1,

2, and 3, respectively. All fitted models were highly signif-

icant (F5,122 = 26.1, p-value < 2.2 × 10-16 with  as

response; F5,122 = 47.7, p-value < 2.2 × 10-16 with  as

response; and F5,122 = 12.1, p-value = 1.6 × 10-9 with

 as response); residual plots showed no large

deviations from the assumptions of normality of error dis-
tribution (an asymptotic normal distribution of the
response variables is warranted by the central limit theo-
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rem), homoscedasticity, and independent errors (data not
shown). A few outliers were however observed, probably
resulting from "unfortunate" data partitions.

Selwood dataset

Applying the C1C2 to the Selwood dataset yielded  that

on average contained 11.4 ± 3.5 nonzero . The 11 most

frequently picked variables were the partial atomic charge
for atoms ATCH1, ATCH3, and ATCH6; electrophilic
superdelocalizability for atom ESDL3; the van der Waal's
volume VDWVOL; the surface area SURF_A; the principal
moments of inertia MOFI_Y and MOFI_Z; the principal
ellipsoid axis PEAX_X; the partition coefficient LOGP; and
the sum of F substituent constant SUM_F (see [19] for

more details about the variables). The estimation of λ by

 was 2.50 ± 0.09 and the estimation of the generaliza-

tion error by  was 0.42 ± 0.038, where  is an aver-

age over the R·K  produced in the C1C2.

Applying repeated K-fold cross-validation for model
choice and assessment to the Selwood dataset gave on
average 14.1 ± 4.8 selected variables. The 14 most fre-
quently picked variables included the same 11 variables
picked by the C1C2 (see above) plus DIPMOM (the dipole
moment), ATCH7 (partial charge of atom 7), and DIPV_Y
(the dipole moment vector in the Y-direction). The esti-

mation of λ by  was 3.01 ± 0.22 and the estimation of

the generalization error by  was 0.35 ± 0.041, where 

is an average over the R·K  produced in the repeated K-
fold cross-validation.

Implementation
Computer programs to implement the C1C2 were written
in Java (Sun Microsystems [26]) as a part of the library P,
that will serve as the data analysis plugin for Bioclipse
[27]. P is available under the GSPL license from the web-
site [28]; it is open source and free for academics. It has a
modular architecture that enables plugging in new fea-
tures, including modeling methods, model selection crite-
ria, and search procedures. P relies on a modified version
of the JGap library (available from the website [29]) for
the genetic algorithm computations (the modifications
are available under the LGPL license from the website
[30]). The R-package, pvclust [31,32], was used for the
cluster analysis (see Discussion).

Discussion
Simulated datasets

The model (6) fitted to w =  (see Table 1) showed

a relatively clear significant difference (on the 90% level)

in average Δ estimates depending on whether the data

came from a multivariate normal distribution with Σ20 =

I20 or Σ20 = S20. Furthermore, we observed significant pos-

itive impacts on average Δ estimates with more observa-

tions and knowledge about the number of nonzero δi. All

these findings were expected; highly correlated variables

Δ̂

d̂ i

l̂

ê gen ê gen

ê gen

l̂

ê ê
ê

Δ̂ Δ−

Table 1: Coefficient estimates of model (6) with wi1 = , 

i = 1, ..., 128, as a response variable.

Estimate Std.Error t-value Pr(>|t|)

intercept -0.01992 0.04606 -0.433 0.6661
c1c2 -0.04337 0.03761 -1.153 0.2511

ga 0.15683 0.03761 4.170 5.72e-05
cor 0.07211 0.03761 1.918 0.0575
15 0.21324 0.03761 5.670 9.75e-08
all 0.32754 0.03761 8.710 1.78e-14

c1c2 – the C1C2 was used (as opposed to repeated K-fold cross-
validation), ga – the GA search method was used (as opposed to the 
brute force search method), cor – correlated independent variables 
in the dataset (as opposed to uncorrelated,) 15 – n = 15 observations 
in the dataset (as opposed to n = 200), all – no assumption regarding 
the number of nonzero δi (as opposed to the assumption of three δi = 
1).

Δ̂ Δ−
i

Table 2: Coefficient estimates of model (6) with wi2 = , i = 1, 

..., 128 as a response variable.

Estimate Std.Error t-value Pr(>|t|)

Intercept 0.02864 0.04732 0.605 0.546181
c1c2 -0.04804 0.03863 -1.244 0.216065

ga -0.07329 0.03863 -1.897 0.060193
cor 0.56058 0.03863 14.510 < 2e-16
15 0.14307 0.03863 3.703 0.000321
all 0.11504 0.03863 2.977 0.003506

See Table 1 for notation explanation.

l̂i

Table 3: Coefficient estimates of model (6) with wi3 = 

, i = 1, ..., 128 as a response variable.

Estimate Std.Error t-value Pr(>|t|)

intercept 0.034642 0.004841 7.157 6.73e-11
c1c2 -0.024003 0.003952 -6.073 1.47e-08

ga -0.001149 0.003952 -0.291 0.771710
cor 0.006198 0.003952 1.568 0.119423
15 0.013469 0.003952 3.408 0.000888
all -0.012089 0.003952 -3.059 0.002732

See Table 1 for notation explanation.

ê egen gen i
− %
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should provide worse estimates of Δ, whereas more obser-
vations and trustworthy prior knowledge should provide

better estimates. A significant improvement in average Δ
estimates was observed when using the brute-force search
compared to the GA. The GA on average selected slightly
more variables than needed and than what the brute-force
method did. No clear significant difference could be seen
between using the C1C2 rather than repeated K-fold cross-
validation.

It can be shown that the optimal choice of λ (in terms of
minimized expected generalization error) tends to zero as
the number of observations tends to infinity and
decreases with decreasing number of variables (see for
instance [33]) and with decreasing correlations between
the independent variables. The model (6) fitted with w =

 as a response (see Table 2) showed that the average

estimated λ was significantly smaller for the data that

came from a multivariate normal distribution with Σ20 =

I20 compared to Σ20 = S20, when more observations were

used, and when prior knowledge about the number of

nonzero δi in Δ was assumed. Although the true value of λ
is not known, these results are thus consistent with theory
and provide evidence that both the C1C2 and repeated K-

fold cross-validation gave reasonable estimates of λ in the

demonstration. However, the average λ estimates are not
equal to zero for all orthogonal datasets, presumably due
to the stochastic nature of the GA and to errors in yn. No

significant differences were observed between using the
GA or the brute force search methods or between the C1C2

and the repeated K-fold cross-validation.

Fitting model (6) with w =  as a response (see

Table 3) showed that the average error estimates were sig-
nificantly worsened with the assumption of a given

number of nonzero δi and that no significant difference

was observed when using the GA or the brute force
method, or when the independent variables in the dataset
were correlated or not. These findings might seem confus-
ing given that the assumption of a given number of

nonzero δi, the use of the brute-force search method, and

uncorrelated independent variables all improved model
selection. The findings can be explained by the fact that,
in general, without an assumption of a given number of

nonzero δi, when using the GA for searching the model

space, and when independent variables were correlated,

more nonzero δi are on average selected (see Table 1).

Thus the chances of also selecting the correct ones
improve. This implies that it is worse to estimate at least

one δi = 1 with  = 0 than to estimate all δi = 1 with  =

1 and at least one δi = 0 with  = 1. This makes sense,

because the former models are incorrect, whereas the lat-
ter ones contain the true model, but are inefficient due to
their unnecessary large size. The average error estimates
were significantly improved with a large number of obser-
vations and when the C1C2 was employed to produce the
estimates compared to when the repeated K-fold cross-val-
idation was used (see Fig. 2 and Table 3). The latter result
seems contradictory with that no clear difference was

found between the average Δ estimates produced with the
C1C2 and those obtained with the repeated K-fold cross-
validation (see above). It can however be explained by

studying the R·K individual Δ estimates, where a clear
(99% level) positive effect could be observed when using
the C1C2 compared to the repeated K-fold cross-valida-

tion. The individual Δ estimates were thus worse when
repeated K-fold cross-validation was used, resulting in
worse generalization error estimates. However the average

Δ estimates from the respective method were almost the
same. This observation is seconded by the higher confi-

dence intervals of the average Δ estimates produced with
repeated K-fold cross-validation (see Additional file 5).
The finding that the C1C2 produces more accurate general-
ization error estimates than repeated K-fold cross-valida-
tion is consistent with the results presented in for instance
[9] and provides evidence for that a complete separation
of the data used for model choice and the data used for
model assessment is necessary to obtain better estimates
of the generalization error.

Selwood dataset
The result of estimating Δ was, expectedly, less clear when
applying the C1C2 and repeated K-fold cross-validation to
real-world data; the Selwood dataset is particularly diffi-
cult to model due to the extremely high correlations
between variables (many variable pairs have correlation
coefficients > 0.95), the low observation-to-variable ratio,
and deviations from the linearity and homoscedasticity
assumptions (see [20]). 11.4 out of the 53 variables were
on average selected by the C1C2 and 14.1 by K-fold cross-
validation. Interestingly, the 11 most frequently picked
variables selected by the C1 C2 is a proper subset of the 14
most recurrently selected variables by K-fold cross-valida-
tion. Hierarchically clustering the 14 most frequently
picked variables chosen by K-fold cross-validation (which
thus includes the 11 variables selected most often by the

l̂

ê egen gen− %

d̂ i d̂ i

d̂ i
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C1C2) using the absolute correlation as a distance measure
revealed three distinct clusters and one subcluster (see Fig.
3). Good models (in terms of estimated generalization
error) for the Selwood dataset can be achieved by selecting
LOGP and one variable from the set of variables in the
blue subcluster (PEAX_X, MOFI_Y, MOFI_Z, VDWVOL,
and SURF_A) and one from the set of variables in the
green cluster (ESDL3, ATCH1, ATCH3, ATCH6, ATCH7,
and SUM_F). LOGP appears to be sufficiently different
from the rest of the variables in the red cluster to improve
model performance. The variables in the respective blue
and green clusters are highly correlated and it is sufficient
to have one variable from each cluster in a model.

Models containing LOGP and one variable each from the
green and blue clusters have high predictive power and
comply to the QUICK rules for credible predictive models
proposed previously [21]. Furthermore, these models
have been found credible in the works of others
[20,25,34]. The C1C2 chose 11 variables belonging to the
green, red, and blue clusters, whereas K-fold cross-valida-
tion chose an additional three variables: ATCH7 in the
green cluster, and DIPMOM and DIPV_Y belonging to the
third distinct (yellow) cluster. Variables from the yellow
cluster do not improve the internal predictive ability
when testing models containing LOGP and one variable
from the respective green, blue, and yellow clusters on the
whole Selwood dataset (data not shown); this result is
supported by the work of Nicolotti and Carotti (see Table
1 in [20]). More variables in the Selwood dataset were
thus on average selected with repeated K-fold cross-valida-
tion than when using the C1C2 (the difference was signifi-
cant on the 80% level, tested by a one-sided Welch's t-
test), including two that not seem to improve the predic-
tive ability of the models. The generalization estimates
obtained with the K-fold cross-validation was lower than
those obtained with the C1C2 (significant on the 70%
level). Although these differences are not highly signifi-
cant, it is tantalizing to arrive at the conclusion that the
models selected by repeated K-fold cross-validation in this

Generalization errors obtained with the C1C2 and repeated K-fold cross-validationFigure 2
Generalization errors obtained with the C1C2 and 
repeated K-fold cross-validation. The figure shows 

, where  were produced using the C1C2 

(blue) and repeated K-fold cross-validation (red) for all other 
factor combinations in model (6). The plot is based on 

pooled  over the four replicates for each 

method. The bars show the 95% confidence interval, calcu-
lated from the pooled results (the confidence intervals are 
only shown in one direction to avoid cluttering). The factor 
combinations in model (6) are coded as: ga – the GA search 
method was used, bf – the brute force search method was 
used, uncor – orthogonal independent variables in the data-
set, cor – correlated independent variables in the dataset, 15 
– n = 15 observations in the dataset, 200 – n = 200 observa-
tions in the dataset, all – no assumption regarding the 
number of nonzero δi, 3 – three δi = 1 were assumed.

ê egen gen− % ê gen

ê egen gen− %

Cluster dendrogram of the 14 selected variables from the Selwood dataset using repeated K-fold cross-validationFigure 3
Cluster dendrogram of the 14 selected variables 
from the Selwood dataset using repeated K-fold 
cross-validation. Three distinct clusters can be noted 
(shown in red, green, and yellow rectangles). One sub-clus-
ter can be seen within the red cluster (shown in a blue rec-
tangle). The red and green numbers are p-values of a given 
cluster; they indicate how well the cluster is supported by 
data (see [31] for details). +Additional variables selected by 
repeated K-fold cross-validation compared to the C1C2.
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particular case are more prone to overfitting and that this
is reflected in the lower generalization error estimates.

The C1C2

We have here introduced the C1C2 framework for simulta-
neous model choice and assessment. The main idea is a
complete separation of the choice of a model and its
assessment in terms of the data used for each task. The
C1C2 was applied to the problem of choosing a model,

. Previously, others have described meth-

ods that, within the linear model, tackle the problem of
regression coefficient shrinkage and variable selection
simultaneously, for example, the lasso [35]. However, the
C1C2 framework is general and is easily applied to other
settings. For instance, different choices of C2 are favorable
in different situations; Akaike's information criterion
(AIC) [36] is known to be consistent within the linear
model if the true model is very complex, whereas BIC is
favorable within linear models of finite dimension [37],
and cross-validation is preferable to use in situations
where the degrees of freedom of a model is difficult to
define, and so forth. The search method can also be tai-
lored to the problem at hand; for instance, brute-force
methods are advantageous for small problems, whereas
GAs are faster and thus applicable to larger problems.
Moreover, if required,  can be chosen to contain non-
linear models, L can be chosen to be exponential in order
to increase the penalty on outliers, and instead of using

the search method to produce an estimate of Δ (as we did
in the demonstration) we can let G contain a dedicated
variable selection method. The cost of this generality is
uncharacterized convergence rates (in finite time) of the
parameter estimates, which is coupled to the need of
employing a general search method (like a GA) rather
than solving standard convex problems. Running the
C1C2 R times enables averaging of estimates and calcula-
tion of confidence intervals, but renders problems in
choosing which out of the R models to use for interpreta-

tion and future predictions. A potential remedy to these
problems is, instead of choosing a model, to employ all
chosen models in a stacking-like schema (see [38] for
details on stacking). Testing this idea and further testing of
the C1C2 for other choices of , G, L, C1, C2, and S will
be pursued in future research.

Conclusion
We have presented some evidence that suggests that the
C1C2 works well in terms of choosing the correct model
and produce good estimates of the generalization error. It
was demonstrated to perform well within a penalized lin-
ear model, even for "difficult" datasets with highly corre-
lated independent variables, a low observation-to-
variable ratio, and deviations from model assumptions
(see Table 4 for a summary of the findings in the demon-
strations). However, more research is needed to fully
assess the methods performance for more general, for
instance nonlinear, models and to provide theoretical
insight to frameworks such as the C1C2. The C1C2 is gen-
eral and reasonable choices of , G, L, C1, C2, and S help
in achieving as unbiased estimates with as low a variance
to as low a computational cost as possible. A framework
that completely separates model choice from assessment
in terms of used data, like the C1C2, should always be
employed for model selection and assessment in order to
avoid positive bias in the generalization error estimates
and, ultimately, to avoid false conclusions and using
dubious models to direct further research.

Methods
Bayesian Information Criterion (BIC)

Suppose we have a set of candidate models,  and cor-

responding model parameters, θm, and we wish to choose

the best model among . Assuming we have a prior dis-

tribution, P(θm| ) for the parameters of each model,

, the posterior probability of a given model is:

M l
ridge ridge∈ M

M

M

M

M

M
Mm

Mm ∈ M
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Table 4: Summary of the demonstrations of the C1C2.

Both the C1C2 and repeated K-fold cross-validation performed well at finding the true Δ (even when independent variables are highly correlated and 
when n <p).
The C1C2 and repeated K-fold cross-validation produced reasonable estimates of λ.
Prior information about the number of important independent variables improves model choice but can reduce the accuracy of generalization error 
estimates.
Correlated independent variables and using the genetic algorithm worsened the model choice significantly, but not the generalization error 
estimates.
The C1C2 compares favourably with repeated K-fold cross-validation for assessing the generalization error.

n denotes the number of observations in a dataset, p the number of variables, Δ represents a given subset of the p variables, and λ the ridge 
regression parameter.
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To choose a model in a Bayesian setting, the posterior
odds, given by:

are formed for all models , and  is picked to

maximize equation (7). If all models in  are given
equal prior probabilities, the problem of choosing the

model  is reduced to calculating the integrals,

P(D| ). It can be shown [39,40] that the Bayesian

Information Criterion (BIC) approximates the logarithm
of this integral with an O(1) error term, that is:

where

In the latter expression,  is the maximum likelihood

estimate, dfm is the number of free parameters in model

 (note that this in general is not equal to the number

of parameters in the model), and n is the number of
observations [17]. Thus, BIC is an approximation to the
Bayes solution, but valid outside the Bayesian context.
This is true because the leading terms in the approxima-
tion do not depend on the prior densities of the model

parameters, θm. BIC is, as opposed to nonparametric

approaches such as cross-validation, model based and
therefore relies on the assumptions made in the mode-
ling. BIC is derived under the assumption that the data
comes from a distribution in the exponential family (see
[41] for more about the assumptions behind BIC and a
comparison with Akaike's Information Criterion).

Ridge regression

The ordinary least squares (OLS) estimator of the regres-

sion coefficients β in the standard linear model is efficient
(i.e. has the minimum possible variance) within the class
of linear and unbiased estimators. However, when the
independent variables are correlated, the variance of the

OLS estimator is generally high. In these situations, ridge
regression [42] can yield improved parameter estimates
by minimizing a penalized residual sum of squares, given

by: RSS (λ) = (y - Xβ)T (y - Xβ) + λβT β. Finding the mini-

mum of this expression gives the ridge solution:  =

(XT X + λI)-1 XT y, where I is the p × p identity matrix. The
solution thus adds a positive constant to the diagonal of
XT X before inversion; this makes the problem nonsingu-
lar, even if XT X is not of full rank. While this introduces
bias into the coefficient estimates, variance is often greatly
reduced.

Note that  is a linear function in y, thus it is straight-

forward to define the effective degrees of freedom of the

ridge regression fit, (df(λ)) as:

df (λ) = tr [X(XT X + λI)-1XT] [16]. The degrees of freedom
of the fit are needed for carrying out model selection
according to, for instance, BIC. Linearity in y also enables
easy implementation (no quadratic programming
required as, for instance, is necessary with the lasso).

Genetic algorithm (GA)

A GA (see [43] for more details) is a stochastic search tech-
nique for finding exact or approximate solutions to opti-
mization and search problems. A typical genetic
algorithm is defined by a genetic representation of a given
solution (normally termed a chromosome in the GA con-

text). That is, a vector,  specifies the numerical repre-

sentation of the ith chromosome at generation t, and an

objective function (or fitness function), f( )→/

&#x211D;/evaluates the fitness of a chromosome. The GA
is initiated by setting up a random population that con-
tains a number of trial chromosomes. New solutions are
generated by mutation or recombination of existing solu-
tions and are selected for the next generation with a prob-

ability given by: . The process is

continued through a number of generations until an opti-
mal or acceptable solution has been found. Genetic algo-
rithms of this type can be shown to converge with a

probability of one to the global optimal solution as t → ∞.

Brute force search
A brute force search systematically tests an exhaustive list
of all possible candidates for the solution to a given search
or optimization problem and checks whether each candi-
date satisfies the problem's statement.
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Availability and requirements
• Project name: P

• Project homepage: http://www.genettasoft.com/p/P.zip

• Operating systems: Platform independent (interpreted
language)

• Programming language: Java

• Requirements: Java 5 or higher. A modified version of
the JGAP package http://jgap.sourceforge.net/ for genetic
algorithms. The modifications are distributed under the
LGPL license and are available at http://www.genetta
soft.com/p/JGAPm.zip. log4j, available from http://log
ging.apache.org/log4j/.

• Licence: GSPL (see http://www.genettasoft.com/gspl/
gspl1_1.pdf)

• Restrictions to use for commercial purposes: licence
needed
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