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INTRODUCTION 
 

Ischemic brain injury is the second most common cause 

of mortality and the third cause of disability in humans 

[1], resulting in neurological and cognitive deficits, and 

eventually in dementia of Alzheimer’s disease type  

[2, 3]. The incidence of dementia following the first 

ischemic stroke is estimated in 10% of survivors and 

following recurrent stroke in 33-41% [4]. In long-term, 

25 years follow-up of stroke-related dementias, the 

incidence of dementia was estimated at 48% [5]. 

Neurological deficits following ischemic stroke in 

survivors tend to progress to a different extent. On the 

other hand, cognitive functions gradually deteriorate 

leading to dementia of Alzheimer’s disease type. 

Presumably, in the global stroke population, the 

ischemia-reperfusion episodes will soon become the 

leading cause of death [1, 6] and of the Alzheimer’s 

disease type dementia [2, 3]. 

 

Recent research has shown that the ischemic brain injury 

could induce the neuropathology of Alzheimer’s disease 

type, possibly facilitating the development of dementia, 

due to amyloidogenesis - processing of the amyloid 

protein precursor into amyloid [7–9], as well as to the 

changes in the structure of the tau protein [10–13]. It has 
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ABSTRACT 
 

The present study was designed to follow neuroinflammation after ischemic brain injury in the long-term 
survival rat model. Immunohistochemistry was performed 2 years after 10 min global brain ischemia due to 
cardiac arrest. For the visualization of the cellular inflammatory reaction microglial marker Iba1 and astrocyte 
marker GFAP were used. In post-ischemic animals our study revealed significant activation of astrocytes in all 
tested brain regions (hippocampal CA1 and CA3 areas and dentate gyrus, motor and somatosensory cortex, 
striatum and thalamus), while microglial activation was only found in CA1 and CA3 areas, and the motor cortex. 
In the specifically sensitive brain areas microglia and astrocytes showed simultaneously significant activation, 
while in the resistant brain areas only astrocytes were activated. Thus, there was clear evidence of less 
intensive neuroinflammation in brain areas resistant to ischemia. Such neuroinflammatory processes are 
backed by microglia and astrocytes activity even up to 2 years after ischemia-reperfusion brain injury. Our 
study thus revealed a chronic effect of global cerebral ischemia on the neuroinflammatory reaction in the rat 
brain even 2 years after the insult. 
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been documented that in the human brain, following 

total and focal ischemia-reperfusion episode, an 

accumulation of amyloid in the intra- and extracellular 

spaces occurs [14–17]. It has been shown that both 

diffuse and senile amyloid plaques form mainly in the 

cortex and hippocampus [14–17]. 

 

Following brain ischemia-reperfusion injury in the rat 

accumulation of amyloid has also been reported in the 

hippocampus and cortex, as well as in the white matter 

[18–20]. In the same animal model, amyloid deposition 

was observed in neuronal as well as in neuroglial cells 

[18–20]. The accumulation of diffuse amyloid plaques in 

response to ischemia-reperfusion brain injury in rats was 

not transient, since it has been documented that these 

plaques transform into senile amyloid plaques during 

one year after ischemic episode [21]. 

 

Post-ischemic accumulation of tau protein in neuronal 

and neuroglial cells was found in the hippocampus and 

cortex [10, 11, 13]. It has been shown that the 

dysfunctional tau protein may inhibit the transport of 

amyloid protein precursor into the cells. In animals and 

humans dysfunctional tau protein could form paired 

helical filaments leading to the development of 

neurofibrillary tangle-like or typical tangle structures 

[22–24]. 

 

Elevated amyloid levels in the post-ischemic animal 

brain increases the inflammatory response, infarct 

volume and may affect neurological outcomes [25–28]. 

The elevated level of soluble β-amyloid peptide 

predisposes neurons to both hyperactivity and 

excitotoxicity [29], that can be associated with an 

increased microglial response [30, 31]. Neuroinflammation 

modulates the processing of the amyloid protein 

precursor into amyloid by upregulating the amyloid 

protein precursor and β-secretase, thereby establishing a 

specific vicious circle [32–34]. Mice overexpressing the 

extremely aggregation-prone tau protein show 

activation of microglia in the brain, all leading to 

extensive neuronal death [35]. Another study shows that 

the reactive microglia causes tau protein pathology, 

contributing to the spread of dysfunctional tau protein in 

the brain, thus creating the self-perpetuating vicious 
cycle [36]. Several studies suggested that the resident 

inflammatory cells, microglia, are the first to respond to 

ischemia-reperfusion injury in the brain [25, 26, 37, 38] 

and that through cross-talk with astrocytes they expand 

neuroinflammation. The neuroinflammatory response 

following stroke in mice is closely related to the 

progress and prognosis of stroke in patients [39]. 

However, the exact effect of microglia on the 

developing neuroinflammation and its involvement in 

ischemic-reperfusion brain injury in humans and 

animals has not been investigated for the long run. With 

the onset of ischemic brain injury astrocytes 

aggressively participate in the generation of 

proinflammatory factors [40]. Depending on the phase 

of post-ischemic brain pathology, astrocytes can also 

show anti-inflammatory properties such as in the case of 

glial scar formation [41]. Notably, no studies have 

examined the mutual response of microglia and 

astrocytes in different brain regions under post-ischemic 

conditions, particularly upon survival time of up to 2 

years, and of its translational value. Therefore, the 

purpose of this study was to determine if post-ischemic 

activity of microglia and astrocytes, 2 years after the 

insult, shows regional differences and whether these can 

be associated with previously described neuronal and 

functional changes. 

 

RESULTS 
 

Neuroinflammatory response in the rat brain two 

years after ischemia 
 

Two years post-ischemia, in 26 months old rat brain, we 

found in the hippocampal CA1 (Figure 1) and CA3 

(Figure 2) areas, dentate gyrus (DG) (Figure 3), primary 

motor cortex (pMO) (Figure 4), primary sensory cortex 

(pSS) (Figure 5), and in striatum-caudoputamen (STR-

CP) (Figure 6), as well as in the dorso-lateral nucleus of 

thalamus (LD) (Figure 7) a significant increase of 

astrocytes (GFAP-positive cells) activity in post-

ischemic animals vs. sham controls. On the other hand, 

the study also showed significant microglial activation 

and infiltration in the rat hippocampal CA1 and CA3 

regions and motor cortex (Figures 1, 2, 4). Microglia 

(Iba1-positive cells) of the ramified type was widespread 

in CA1 and CA3 areas and motor cortex as opposed to 

its rare appearances in sham controls (Figures 1, 2, 4). 

 

In hippocampal CA1 and CA3 areas as well as in the 

motor cortex, GFAP and Iba1 staining was most 

prominent and significant (Figures 1, 2, 4). Qualitatively 

weaker signal from NeuN (Figures 1, 2, 4) indicated 

brain post-ischemic tissue damage in these areas. In 

terms of Iba1 marker, no statistical significance has been 

observed between the control and the post-ischemic 

dentate gyrus (Figure 3B, 3C), primary sensory cortex 

(Figure 5B, 5D), striatum-caudoputamen (Figure 6B, 

6C), and dorso-lateral nucleus of thalamus (Figure 7B, 

7C), however the strong GFAP staining indicated a 

significant increase of astrocytes activity in these brain 

regions. 

 

The lack of colocalization of NeuN and DAPI signals in 

the striatum-caudoputamen indicated the presence of 

non-neuronal cells within the observed brain region. 

This DAPI signal may come from macrovacuoles  

that contribute to the sponge-like appearance of 
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caudoputamen (Figure 6B). This indicates that during 

neuroinflammation after the induced ischemia 

macrovacuoles and caudoputamen fissures retain blood 

cells such as leukocytes, possibly also thrombocytes, 

which infiltrate the brain through the damaged blood-

brain barrier [42]. 

 

Neurodegeneration response in the rat brain two 

years after ischemia 

 

The differences in sensitivity to ischemia among seven 

different brain regions was studied by following the 

presence of Fluoro-Jade C-labeled neurons that undergo 

apoptosis in post-ischemic and control brains 2 years 

after the insult. A trend in increased coefficient of 

colocalization of Fluoro Jade C and NeuN signals in 

post-ischemic dentate gyrus, CA3 region, and pSS  

was found indicating an enhanced number of neurons 

still entering apoptotic death even 2 years after the 

ischemic episode (Figure 8). However, although 

neurodegeneration was found in all analyzed brain 

regions, a significant difference in coefficient of 

colocalization has not been observed (Figure 8). 

 

DISCUSSION 
 

We are the first to present the heterogeneity in the 

distribution of microglial and astrocytes activity in seven 

different brain structures after a 10 min ischemia in the 

long-term survival rat model. We observed two new 

microglial and astrocyte activation patterns: in the first 

one activation was coincidental and statistically 

 

 
 

Figure 1. Confocal images of microglia and astrocytes in the post-ischemic CA1 region of the rat brain. Fourfold 
immunofluorescence labeling microglia with Iba1 (green), astrocytes with GFAP (red), neurons with NeuN (yellow), and nuclei with DAPI 
(blue). SO - stratum oriens, SP – stratum pyramidale, SR – stratum radiatum, SLM – stratum lacunosum moleculare. The scale bar represents 
50 µm. (A) Ctrl – control brain, (B) Isch – post-ischemic brain, (C) Quantification of the mean pixel intensities for Iba1 and GFAP signals of 
post-ischemic vs. control animals with 2 years survival. Values are presented as mean ± SEM. *** p<0.001. nCtrl = 16, nIsch = 17, n = number of 
analyzed cross sections. (D) Schematic representation of the rat hippocampus level with CA1 region indicated. 
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significant in both cell types, and in the second pattern, 

activation was statistically significant only for 

astrocytes. We have thus demonstrated that in the 

sensitive areas associated with cerebral ischemia i.e. in 

the hippocampal CA1 and CA3 areas and in the motor 

cortex, the co-activation of both microglia and astrocytes 

was statistically significant. On the other hand, in the 

resistant brain areas, i.e. in the dentate gyrus, sensory 

cortex, striatum, and dorso-lateral nucleus of the 

thalamus, a statistically significant activation was 

observed only for astrocytes. In general, our study has 

shed more light on the diversity of microglia and 

astrocytes in the brain neurodegeneration phenomena 

after ischemia, with the simultaneous pathology shown 

in previous studies of amyloid and tau protein [18, 19, 

43]. Differences in activation correlate with behavioral 

deficits associated with ischemia since these depend on 

the integrity of the hippocampus as well as of the motor 

cortex [27, 28, 44–48]. 

 

Brain ischemia causes the activation of microglia and 

astrocytes, which triggers the production and secretion of 

inflammatory mediators, i.e. cytokines [49–51]. By way 

of these inflammatory cytokines activated microglia and 

astrocytes affected post-ischemic brain pathogenesis, 

resulting in increased hyper-phosphorylation of tau 

protein, amyloid production, transcription and translation 

of amyloid protein precursor and tau protein in neurons, 

 

 
 

Figure 2. Confocal images of microglia and astrocytes in the post-ischemic CA3 region of the rat brain. Fourfold 
immunofluorescence labeling microglia with Iba1 (green), astrocytes with GFAP (red), neurons with NeuN (yellow), and nuclei with DAPI 
(blue). SO – stratum oriens, SP – stratum pyramidale, SL – stratum lacunosum. The scale bar represents 50 µm. (A) Ctrl – control brain, (B) 
Isch – post-ischemic brain, (C) Quantification of the mean pixel intensities for Iba1 and GFAP signals of post-ischemic vs. control animals with 
2 years survival. Values are presented as mean ± SEM. *** p<0.001. nCtrl = 18, nIsch = 18, n = number of analyzed cross sections. (D) Schematic 
representation of the rat hippocampus level with CA3 region indicated. 
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amyloid-associated pathology, decreased amyloid 

clearance and activation of kinases CSK-3b and CDK5 

[7, 8, 10, 13, 22–24, 52–64]. CDK5 is a kinase associated 

with hyperphosphorylation of the tau protein [24]. 

Hyperphosphorylated tau protein after ischemia 

aggregates into paired helical filaments [23] that 

eventually form neurofibrillary tangles [22, 24]. During 

pathological conditions astrocytes begin to express β-

secretase, thus obtaining the ability to produce amyloid 

[32–34]. Neuroinflammation mediates the synergy 

between brain ischemia and amyloid, causing synaptic 

depression [65]. It is suggested that the elevated level of 

soluble β-amyloid peptide predisposes neurons to both 

hyperactivity and excitotoxicity [29], which is associated 

with an increase in focal microglial response [30, 31]. 

The neuroinflammation seen in post-ischemic brain 

injury presumably appears to play a leading role in 

increasing the amyloid burden and tau protein 

dysfunction, suggesting that this dual role may be the 

leading link between these seemingly different features 

of Alzheimer’s disease pathology [53]. On the  

other hand, mice overexpressing mutant tau protein with 

high aggregation ability demonstrated stimulated 

hyperactivation of microglia, as well as an extensive  

loss of neurons that could be dampened by 

immunosuppression [35]. Activation of microglia 

contributes to the spread of dysfunctional tau protein in 

the hippocampus and the motor cortex. It has been 

mechanistically assumed that microglia phagocytes the 

tau protein and releases it together with exosomes, thus 

 

 
 

Figure 3. Confocal images of microglia and astrocytes in the post-ischemic dentate gyrus (DG) of the rat brain. Fourfold 
immunofluorescence labeling microglia with Iba1 (green), astrocytes with GFAP (red), neurons with NeuN (yellow), and nuclei with DAPI 
(blue). The scale bar represents 50 µm. (A) Ctrl – control brain, (B) Isch – post-ischemic brain, (C) Quantification of the mean pixel intensities 
for Iba1 and GFAP signals of post-ischemic vs. control animals with 2 years survival. Values are presented as mean ± SEM. *** p<0.001. nCtrl = 
20, nIsch = 20, n = number of analyzed cross sections. (D) Schematic representation of the rat hippocampus level with DG region indicated. 
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contributing to the spread of the dysfunctional tau protein 

[36]. The continuous release of proinflammatory 

cytokines and neurotoxins from astrocytes and microglia 

serves to exacerbate the inflammation of the nervous 

system and contribute to neurodegeneration, leading to 

further activation of microglia and astrocytes [66]. 

 

Chronic opening of the blood-brain barrier has been 

shown in our model of ischemic rats with long-term 

survival also confirming that the hippocampus is most 

susceptible to neuroinflammation and accumulation of 

the β-amyloid peptide [19, 26, 67]. It has been shown 

that the blood-brain barrier is disrupted during the brain 

ischemia-reperfusion injury, in which neurovascular 

inflammation, characterized by an up-regulation of 

inflammatory mediators and proteases originating from 

endothelial and immune cells, plays a significant role 

[68]. Blood-brain barrier breach may also be strongly 

associated with the activation of microglia [68]. It has 

been shown that after an ischemic stroke, the blood-

brain barrier integrity was influenced by microglia via 

an up-regulation of pro-inflammatory cytokines

 

 
 

Figure 4. Confocal images of microglia and astrocytes in the post-ischemic primary motor cortex (pMO) of the rat brain. Triple 
immunofluorescence labeling microglia with Iba1 (green), astrocytes with GFAP (red), and neurons with NeuN (blue). The scale bar 
represents 50 µm. (A) Ctrl – control brain, (B) Isch – post-ischemic brain, (C) Quantification of the mean pixel intensities for Iba1 and GFAP 
signals of post-ischemic vs. control animals with 2 years survival. Values are presented as mean ± SEM. ** p<0.01, *** p<0.001. nCtrl = 10, nIsch 

= 13, n = number of analyzed cross sections. (D) Schematic representation of the rat striatal level with pMO region indicated. 
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including IL-1b, TNF-a, and IL-6 [68]. It has also been 

reported that under stroke conditions, brain vessels 

become permissive to blood serum components, which 

leak into the parenchyma and thus promote microglial 

recruitment [69]. Post-ischemic blood-brain barrier 

disruption may occur by several mechanisms, including 

the physical alterations of astrocyte-endothelial 

junctions [41]. Digestion of blood-brain barrier matrix 

proteins by astrocyte matrix metalloprotease 2 and other 

matrix metalloproteases contributes to the physical 

disruption of the blood-brain barrier [41]. Thus, 

functional integrity of astrocytes proves to be essential 

for maintaining the blood-brain barrier integrity 

following the ischemia-reperfusion episode, particularly 

by reestablishing the astrocytic water channels, AQP4, 

which are essential for blood-brain barrier repair during 

post-stroke recovery [41]. Post-ischemic hippocampal 

and motor cortex neurons have shown the largest loss 

[19, 43], which correlates here with a significant 

inflammatory response of microglia and astrocytes in 

 

 
 

Figure 5. Confocal images of microglia and astrocytes in the post-ischemic primary somatosensory cortex (pSS) of the rat 
brain. Triple immunofluorescence labeling microglia with Iba1 (green), astrocytes with GFAP (red), and neurons with NeuN (blue). The scale 
bar represents 50 µm. (A) Ctrl – control brain, (B) Isch – post-ischemic brain, (C) Inset indicating an astrocyte interaction with neurons (8x), 
(D) Quantification of the mean pixel intensities for Iba1 and GFAP signals of post-ischemic vs. control animals with 2 years survival. Values are 
presented as mean ± SEM. * p<0.05. nCtrl = 11, nIsch = 11, n = number of analyzed cross sections. (E) Schematic representation of the rat 
striatal level with pSS region indicated. 



 

www.aging-us.com 12258 AGING 

the same brain structures. Our previous study provides 

evidence of the role of neuroinflammation in post-

ischemic cognitive impairments that are correlated with 

the atrophy of the hippocampus [26, 43, 70]. Microglia 

and astrocytes are strongly associated with 

inflammatory changes in the hippocampus and likely 

contribute to its neurodegeneration and related 

deterioration of cognitive functions [27, 28, 31]. In fact, 

some studies suggest that changes in the hippocampus 

may lead to persistent deterioration of memory in 

humans and animals, considered as the usual 

consequence of brain ischemia [44, 48, 71, 72]. In 

studies analyzing the post-mortem volume of the 

hippocampus in patients with dementia after ischemia, a 

decrease in the volume of CA1 and CA3 areas of the 

hippocampus was demonstrated by approximately 20% 

in each of the analyzed regions [71, 72]. Some studies, 

including ours, have shown that the appearance of 

characteristic features of neurodegeneration, amyloid, 

and tau protein dysfunction together with inflammatory 

changes, closely correlated with slow cognitive 

impairment and dementia after brain ischemia [28, 44]. 

 

The neuronal overproduction of the β-amyloid peptide, 

after cerebral ischemia, stimulates astrocytes to release 

complement C3, which binds to C3a receptors  

on neurons and microglia and causes impaired 

phagocytosis of microglia [73]. On the other hand, the

 

 
 

Figure 6. Confocal images of microglia and astrocytes in the post-ischemic striatum-caudoputamen (STR- CP) of the rat brain. 
Fourfold immunofluorescence labeling microglia with Iba1 (green), astrocytes with GFAP (red), neurons with NeuN (yellow), and nuclei with 
DAPI (blue). The scale bar represents 50 µm. (A) Ctrl – control brain, (B) Isch – post-ischemic brain, (C) Quantification of the mean pixel 
intensities for Iba1 and GFAP signals of post-ischemic vs. control animals with 2 years survival. Values are presented as mean ± SEM. *** 
p<0.001. nCtrl = 16, nIsch = 16, n = number of analyzed cross sections. (D) Schematic representation at rat striatal level with STR-CP region 
indicated. 



 

www.aging-us.com 12259 AGING 

cross-talk of astrocytes with microglia through the 

activation of complement affects the amyloid pathology 

[74]. During the development of inflammatory changes 

after cerebral ischemia, astrocytes either release 

inflammatory mediators [51], or communicate directly 

with microglia and/or neurons to modulate the 

inflammatory response. In focal cerebral ischemia, 

astrocytes and microglia show proliferative changes in 

the penumbra [75], indicating that both types of 

neuroglial cells are activated. Activated microglia has a 

huge impact on astrogliosis after brain damage, by 

affecting the development of the glial scar [76]. The 

glial scar acts as a barrier that prevents axonal ingrowth 

and reinervation, thus hindering regeneration [50]. It is 

thus possible that in the ischemic hippocampus, 

microglia contributes to the pathological changes not 

only through its direct action, but also indirectly by 

affecting astrocytes [77]. In fact, it was confirmed that 

the neurotoxicity of reactive astrocytes was induced by 

active microglia [77]. Astrocytes and microglia also 

cooperate in the phagocytosis of ectopic neurons [78]. 

In chronic, incomplete brain ischemia in rats, neurons 

with microglia and astrocytes work together creating 

ectopic and apoptotic neurons, as well as residual 

neurons. Astrocytes processes can then penetrate into 

the bodies of ectopic neurons, creating triads with 

 

 
 

Figure 7. Confocal images of microglia and astrocytes in the post-ischemic dorso-lateral nucleus of thalami (LD) of the rat 
brain. Fourfold immunofluorescence labeling microglia with Iba1 (green), astrocytes with GFAP (red), neurons with NeuN (yellow), and 
nuclei with DAPI (blue). The scale bar represents 50 µm. (A) Ctrl – control brain, (B) Isch – post-ischemic brain, (C) Quantification of the mean 
pixel intensities for Iba1 and GFAP signals of post-ischemic vs. control animals with 2 years survival. Values are presented as mean ± SEM. *** 
p<0.001. nCtrl = 18, nIsch = 18, n = number of analyzed cross sections. (D) Schematic representation of the rat hippocampus level with LD region 
indicated. 
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activated microglia [78]. The formation of triads 

intensifies ischemic processes and leads to severe 

neurodegeneration. Throughout the progress of the 

pathological processes, astrocytes on the other hand, 

may also affect microglia by inhibiting its activity. 

 

Our present study demonstrates that the 

neuroinflammatory response in the ischemic CA1 and 

CA3 areas and motor cortex clearly confirms a chronic 

character with powerful destructive influence. These 

findings reveal that the active post-ischemic neuroglial 

response in the hippocampus and the motor cortex lasts 

much longer than initially thought [79, 80] coinciding 

with the development of severe and progressive 

neurodegeneration and dementia after ischemia [28, 44, 

46–48]. 

 

On the other hand, our study also shows that in 

ischemic areas of the brain, such as the dentate gyrus of 

the hippocampus, the sensory cortex, the striatum and 

the dorso-lateral nucleus of the thalamus, astrocytes 

alone may also play a role in the progression of cerebral 

ischemia. Previous studies in this brain ischemia model 

have shown activation of astrocytes with overexpressed 

cytokines IL-1β or IL-6 [51]. In the above tested 

structures under inflammatory changes, the effect of 

microglia and astrocytes on ischemic pathology is 

probably limited. We have in fact, shown a smaller 

effect of neuroinflammatory changes in resistant areas 

of the brain to ischemia. 

 

Previous studies have been focused on the relationship 

between ischemic neurons and amyloid and tau protein 

pathology [7, 8, 10, 13, 18–24, 54–64] while neuroglial 

pathology has often been neglected. With the emerging 

new evidence, including the results of our study, it 

becomes evident that microglia and astrocytes are not 

only witnesses, but active and important participants in 

neurodegeneration in the post-ischemic brain, as well as 

in Alzheimer’s disease. Thus, we can foresee that the 

understanding of the relationship between neurons and 

neuroglial cells after brain ischemia will become more 

important in the future. 

 

CONCLUSIONS 
 

Our study, revealed the role of neuroinflammation in 

neurodegeneration throughout the post-ischemic brain. 

The role is quite complex and goes beyond the scope of 

only one research article. These findings show that the 

effect of brain ischemia on the activity of microglia and

 

 
 

Figure 8. Post-ischemic neurodegeneration of neurons in seven investigated regions of the rat brain upon 2 years of survival. 
Neurons were immuno-labeled with NeuN, as a neuronal marker, and with Fluoro Jade C, as a marker of deteriorating neurons. The graph 
shows the quantitative analysis of the coefficient of colocalisation of the two markers in control (Ctrl) and ischemic (Isch) sections in various 
brain regions studied. DG - dentate gyrus, CA1 and CA3 regions of the hippocampus, LD - dorso-lateral nucleus of thalami, STR-CP - striatum-
caudoputamen, pMO - primary motor cortex, pSS - primary somatosensory cortex. Data are presented as mean ± SEM. 

https://www.sciencedirect.com/topics/neuroscience/microglia
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astrocytes is significantly different among the brain 

structures studied. This partly explains why in rats the 

extent to which neurodegeneration occurs in the brain 

after ischemia varies greatly depending on the area and 

does not develop at the same time [7–10, 13, 81–83]. 

 

Currently, the full temporal and spatial dynamics of the 

inflammatory response after ischemia is unknown. One 

way to broaden the scope of research is to move away 

from the biochemical theory of post-ischemic 

neurodegeneration towards cellular theory instead. We 

hope that the new experimental approaches, such as the 

study of gene expression changes in neuroglial cells in 

our model, will provide new knowledge about the 

complex spatial and temporal nature of the 

neuroinflammatory response after brain injury as a result 

of ischemia and reperfusion. Finally, the development of 

novel cell imaging tools in vivo can facilitate the 

development of new strategies for the treatment of stroke 

patients. 

 

MATERIALS AND METHODS 
 

Animals 
 

Two-month-old, female rats (Wistar, 160–180 g, n=16) 

were used for the study. Groups of four animals per 

cage, were housed in an air-conditioned room, at the 

temperature of 22 ± 2 °C, with 55 ± 5% humidity, and 

with lights 12 h/day (07.00 - 19.00). The animals were 

given commercial food and tap water ad libitum. All 

experimental procedures were performed during the 

light phase, between 9:00 and 15:00 under identical 

conditions. Animals used for procedures were treated in 

strict accordance with the European Communities 

Council Directive (86/609/EEC and 2010/63/EU) and 

with the approval of the local Ethical Committee. All 

efforts were made to minimize animal suffering and to 

reduce the number of animals used, in accordance with 

principles of good laboratory practice. 

 

Brain ischemia model in rats with long-term survival 

 

Our animal model of global cerebral ischemia clinically 

represents reversible cardiac arrest. Global cerebral 

ischemia was performed by cardiac arrest of 10 min 

duration [13, 84]. The animals were allowed to survive 2 

years post-ischemia. Sham-operated rats were exposed to 

the same procedures as ischemic animals but without 

induced cardiac arrest and thus served as controls. 

 

Immunocytochemistry 

 

Immunocytochemistry was performed 2 years after the 

ischemic insult on 6 ischemic and 6 control rats. There 

was no mortality within 2 years after successful 

resuscitation (n = 6), but during cardiac arrest it reached 

40% (n = 4/10). During brain autopsy of rats that died 

during cardiac arrest, no macroscopic lesions were 

observed. After transcardiac perfusion with 4 % 

paraformaldehyde the brains of resuscitated or sham 

controlled animals were postfixed in the same solution 

and cryoprotected in 30% sucrose. After freezing at -

80oC brains were cut on a cryostat in 30 μm-thick coronal 

slices. Microglial cells were labeled with anti-Iba1 

(1:250, Abcam), astrocytes with anti-GFAP (1:300, 

Daco), and neurons with anti-NeuN (1:100, Milipore) 

primary antibodies and visualized with the use of Alexa 

Fluor 488-conjugated donkey polyclonal anti-goat 

antibodies, Alexa Fluor 555-conjugated donkey 

polyclonal anti-rabbit, and Cy5 633-conjugated donkey 

polyclonal anti-mouse secondary antibodies, respectively 

(all 1:200, Molecular Probes). The slides were then 

washed with PBS and stained with the nuclear marker 

4,6-diamidino-2-phenylindole (DAPI, 1:200, Molecular 

Probes). In parallel, double staining with anti-NeuN 

(1:100, Milipore) and Fluoro Jade C (1:100, Millipore) 

was used for visualization of neurodegenerated neurons. 

After washing the slides were dried and coverslipped 

using mounting medium (Mowiol, Sigma Aldrich). As a 

negative control primary antibodies were omitted. 

Studies of immunohistochemical reactions of different 

sections from all experimental and control groups were 

processed in parallel. 

 

Image acquisition 
 

Immunostained sections were imaged by a confocal 

laser scanning microscope (LSM 510, Carl Zeiss 

GmbH) with an argon laser (488 nm) utilized for the 

excitation of Alexa Fluor 488 and Fluoro Jade C, and 

helium-neon lasers (543 nm and 633 nm), for the 

excitation of Alexa Fluor 555 and Cy5, respectively. 

Objectives used were Plan - Neofluar 20x/0.5. Laser 

intensities, pinhole, scan speed, digital gain and offset 

were maintained constant throughout imaging. 

 

Image analysis and quantification 
 

Following acquisition with Zeiss LSM 510 confocal, 

images were processed using the Zeiss LSM 510 Basic 

software package v. 3.2. In order to investigate the 

activity of astrocytes and microglia within the specific 

brain regions, mean signal intensity of the Iba1 and the 

GFAP signal pixels were calculated for each image after 

thresholding for background fluorescence (six 

animals/group, 4–5 images/animal, in total 24-30 

images/group). The number of analyzed brain slices was 

n=16-20 per group (control and ischemia). 

 

In addition, we quantified by pixel analysis the 

colocalization of the green (Fluoro Jade C) over red 
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(NeuN) signal. This was performed with confocal 

images taken from brain slices with the objective 

magnification of 20x, n=20 for each group (control or 

ischemia). 

 

Statistics 

 

Experimental values were statistically compared with 

the Student’s t-test using Sigma Plot 11.0 software 

package (Systat Software, Inc.). 
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