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Abstract

Complex diseases like cancer are regulated by large, interconnected networks with many pathways affecting cell
proliferation, invasion, and drug resistance. However, current cancer therapy predominantly relies on the
reductionist approach of one gene-one disease. Combinations of drugs may overcome drug resistance by
limiting mutations and induction of escape pathways, but given the enormous number of possible drug
combinations, strategies to reduce the search space and prioritize experiments are needed. In this review, we
focus on the use of computational modeling, bioinformatics and high-throughput experimental methods for
discovery of drug combinations. We highlight cutting-edge systems approaches, including large-scale modeling
of cell signaling networks, network motif analysis, statistical association-based models, identifying correlations in
gene signatures, functional genomics, and high-throughput combination screens. We also present a list of
publicly available data and resources to aid in discovery of drug combinations. Integration of these systems
approaches will enable faster discovery and translation of clinically relevant drug combinations.
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Introduction

Despite increasing investments in pharmaceutical re-
search and development, the rate of introduction of suc-
cessfully translated drugs has decreased [1]. Reasons for
increased attrition rates in drug development include
toxicity and inadequate efficacy due to individual vari-
ation in therapeutic response and development of drug
resistance [2]. This increased attrition rate has coincided
with increased interest in seeking highly specific ligands
affecting single targets for treatment of disease [3].
Pharmaceutical research has increasingly relied on re-
ductionist approaches, even though systemic diseases
such as cancer and heart disease are managed by large,
interconnected networks with many pathways affecting
pathological signaling [4,5]. The redundancy and feed-
back in these networks allows for robustness of phenotype
and maintenance of homeostasis [6,7]. This network com-
plexity has hindered development of new therapies and
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indicates a need for more integrative systems approaches to
make better predictions of drug responses [8,9].

The failure of single targets to successfully translate
into clinical practice and the problem of development of
drug resistance with single target cancer therapies has in-
creased interest in discovery of effective drug combina-
tions. Administering drug combinations has been effective
in overcoming resistance to anti-microbial therapies for
treatment of infectious diseases such as HIV and tubercu-
losis [10]. In cancer, drug resistance can occur through
mutation of the drug target [11], amplification of an alter-
nate pathway [12], or intrinsic resistance of a subset of the
cancer cells [13]. Combinations of drugs could potentially
overcome these resistance strategies by limiting the poten-
tial of escape mutations and pathways [14].

While combination therapies may dramatically improve
efficacy of cancer therapies, the discovery of effective com-
binations is a challenging endeavor. With over 1,500 FDA
approved compounds, experimentally testing every pos-
sible combination of these drugs would be unfeasible, even
with high-throughput experimental methods [15]. There-
fore, new systems approaches are needed to reduce the
search space and prioritize combinations for experimental
testing (Figure 1) [16].

© 2015 Ryall and Tan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:AikChoon.Tan@UCDenver.edu
http://creativecommons.org/licenses/by/4.0

Ryall and Tan Journal of Cheminformatics (2015) 7:7 Page 2 of 15

esources
|
Logic-based Statistical Signature-based Functional
Modeling Association- Computational Genetic
Normalized Hill  based Methods Screens  pigh-
Differeptial 9 Mass-sctoi/ Network-based Throughput
Equation Kinetic Computational DT'UQ )
Modeling Methods Combination
Screens

L | A
T T T

Computational Bioinformatics Experimental
Modeling Approaches Approaches

Figure 1 Diagram depicting estimated ratio of computational and experimental requirements for various methods in this review.
For example, mass-action/kinetic modeling has higher experimental requirements than logic-based and normalized-Hill-based modeling due to
its need for many abundance and rate parameters. Unbiased high-throughput screening of drug combinations has the highest experimental
requirement. Many of the systems biology methods in this review aim to use publicly available data and computational approaches to reduce

the need for exhaustive screens and prioritize combinations for experimental validation.

Review

Here, we review computational and experimental methods
for accelerating the discovery of effective drug combina-
tions for complex diseases, with special focus on cancer.
In addition, we include a list of publicly available re-
sources as a reference for future drug combination
studies (Table 1).

Quantifying synergistic drug combinations

When presenting the results of drug combination studies,
it is important to have a standard to statistically define
synergistic drug pairs. Two commonly used methods for
quantifying synergy between drug combinations are Loewe
additivity and Bliss independence. Loewe additivity is
based on the assumption that the two inhibitors act
through a similar mechanism while Bliss independence as-
sumes independent mechanisms [17].

Loewe additivity

Using Loewe additivity, the concentration of two inhibi-
tors (A and B) which alone results in X% inhibition of
the target ([Ialxw> [/glx%) can be used to calculate the
theoretical concentrations of each inhibitor needed to
achieve the same X% inhibition when combined ([Ca]x,
[Crlx)-

CA]X% + CB]X%

' Ualxw, — UBlxy

(1)

The Loewe additivity applies the isobologram analysis
to evaluate the combination effects of two drugs at a
given effect. For example, in a Cartesian coordinate plot
where x and y-axes represent concentrations of drugs A
and B to achieve a defined effect X% (e.g., X =50% for
half maximal inhibitory concentration (ICsp) of [Ix]s09%
and [Ip]50%), respectively. The coordinates ([/a]50%,0) and

(0, [g]s0%) represent the concentration for drugs A and
B, respectively. The line of additivity is constructed by
connecting these two points for a 50% effect isobolo-
gram plot. The concentrations of the two drugs used in
combination to provide the same effect X% (e.g. X =
50%) will be denoted by point ([Cals0%,[Csls0%) and are
placed in the same plot. Synergy, additivity, or antagonism
will be determined when this point ([Ca]500,[Cgls0%) is lo-
cated below, on, or above the line, respectively. More
generally, linear, concave, and convex isoboles represent
non-interacting, synergy, and antagonistic drug combin-
ation, respectively (Figure 2A).

This approach led to the development of the combin-
ation index (CI) popularized by Chou and Talalay [18].
Here, the CI provides a quantitative measure of the ex-
tent of drug interaction at a given effect. It measures the
combination concentrations of drugs A and B to pro-
duce a effect X%, [Ca] and [Cg], normalized by their
corresponding concentrations that produces the same ef-
fect as a single agent, [I5] and [Ig], respectively. CI value
is calculated by:

cr=1Cal

[14]

[C]

2
(73] @)
where CI value <1, =1, and >1 represent synergy, addi-
tivity, and antagonism, respectively.

Bliss independence

Bliss independence is based on probability theory and
assumes the two inhibitors are working through inde-
pendent mechanisms [15]. The inhibitors do not inter-
fere with each other, but contribute to a common result.
Unlike Loewe additivity, calculating Bliss independence
does not require determination of dose-response curves
for the individual compounds to determine the theoretical
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Application Resource Description URL
Drug data PubChem Database of biological activities of millions http://pubchem.ncbi.nim.nih.gov/
of small molecules.
DrugBank Database of target, chemical, pharmacological, www.drugbank.ca/
and interaction data for 7739 drugs.
STITCH Chemical-protein interaction database containing http://stitch.embl.de/
300,000 small molecules and 2.6 million
proteins from 1133 organisms.
SIDER Database of adverse drug reactions from http://sideeffects.embl.de/

Comparative Toxicogenomics

Database (CTD)

PharmGKB

Drug Gene Interaction
Database (DGldb)

marketed medicines.

Manually curated database of over a million interactions
between chemicals and genes and over 1.6 million
associations between chemicals and diseases and over
15 million associations between genes and diseases.

Database of drug information including dosing guidelines,
drug labels, signaling pathway diagrams, drug-gene
associations, and drug-phenotype relationships.

Database and web tool for mining over 14,000
drug-gene relationships.

http://ctdbase.org

www.pharmgkb.org

http://dgidb.genome.wustl.edu/

Drug combinations

Drug Combination
Database (DCDB)

Data from 1363 drug combinations.

www.cls.zjuedu.cn/dcdb/

Protein-protein
interactions

BioGrid

STRING

Database of over 720,000 protein and genetic interactions
from model organisms and humans from over
41,000 publications.

Database of known and predicted protein interactions,
including both direct and functional associations.

It currently covers 5,214,234 proteins from

1133 organisms.

http://thebiogrid.org/

http://string-db.org/

Gene expression
data

Connectivity Map (CMap)

Gene Expression
Omnibus (GEO)

Gene expression profiles from 1309 FDA
approved small molecules tested in 5
human cell lines.

Public repository of gene expression data.

www.broadinstitute.org/cmap/

http://www.ncbi.nlm.nih.gov/geo/

Kinase inhibitors

K-Map

Web tool that identifies kinase inhibitors
for a set of query kinases.

http://tanlab.ucdenver.edu/kMap/

Pathways

Reactome

KEGG Pathways

Pathway database with visual representation
for 21 organisms, which includes over
1500 human pathways.

Large collection of manually drawn pathway
maps of molecular interaction networks for
various biological processes.

www.reactome.org

www.genome.jp/kegg/pathway.html

Network
visualization

Cytoscape

Open source software platform for network
analysis and visualization.

Www.Cytoscape.org

Computational
modeling

Netflux

CellNOpt

BioModels Database

Modeling and simulation tool for construction of
normalized-Hill models of signaling networks
from user defined species interactions.

Free software for creating logic-based models
of signaling networks.

Repository of computational models of biological
processes. Includes both peer-reviewed models
and models produced automatically using pathway
resources like KEGG.

http://code.google.com/p/netflux/

www.cellnopt.org

www.ebi.ac.uk/biomodels-main/

Experimental
resources

Cancer Cell Line
Encyclopedia

Detailed genetic characterization
of ~1000 cancer cell lines.

www.broadinstitute.org/ccle/home

www.cancerrxgene.org
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http://www.ncbi.nlm.nih.gov/geo/
http://tanlab.ucdenver.edu/kMap/
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(Continued)

Genomics of Drug Sensitivity  Drug sensitivity data from hundreds of

in Cancer (GDSC)

genetically characterized cancer cell

lines perturbed with a wide
variety of anti-cancer agents Part of an ongoing
project to discover therapeutic biomarkers.

NCI-60 DTP Drug screen data from

a diverse panel of 60 http://dtp.nci.nih.gov/index.html

human cancer cell lines with extensive

molecular profiling.

Cancer Therapeutics

Response Portal
354 different small mol
Each compound select
part of cell wiring and
array of cell processes.

Drug sensitivity data of 242 genetically
characterized cancer cell lines treated with

www.broadinstitute.org/ctrp

ecule probes and drugs.
ively targets a distinct
collectively affect a vast

results, making it easier to compute [19]. Bliss independ-
ence models the combined effect (Et) as the product of
the individual effects with drugs A (Es) and B (Eg). The
predicted combined effect (E1) is computed by:

E T = E A X EB (3)
where each effect (E) is expressed as fractional activity
compared to control between 0 (100% inhibition) and 1
(0% inhibition). For example, if drug A and drug B each
result in 40% tumor growth compared to control, then

the predicted tumor growth when combined would be
(0.4)*(0.4)*(100%) = 16% of control according to Bliss In-
dependence. The predicted combined inhibition level
would therefore be 100%-16% = 84% inhibition of tumor
growth. If the actual tumor growth when drug A and B
are combined is less than 16% of control (greater than
84% growth inhibition), then the compounds would be
synergistic by Bliss Independence. If the tumor growth
level is greater than 16% of control (less than 84%
growth inhibition), then the compounds would be de-
fined as antagonistic (Figure 2B).
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Figure 2 Examples of Loewe Additivity and Bliss Independence in defining drug interactions. A) Additivity, synergy and antagonism of
drug combination as defined by Loewe Additivity. Let x and y-axes represent concentrations of drugs A and B to achieve a defined effect X% (eg, X=
50% for half maximal inhibitory concentration (ICsq) of [/alses and [llsose), respectively. The coordinates ([/alspss0) and (0, [glspe) represent the concentration
for drugs A and B, respectively. The line of additivity is constructed by connecting these two points for a 50% effect isobologram plot. The concentrations

and antagonism of drug combination as defined by Bliss Independence. For example, if two non-interacting drugs (A and B) each result in 40% tumor
growth compared to control (Ex =04, £ = 04), then the predicted tumor growth when combined would be £ = (04 x 04) =0.16, (16% of control). If the
observed combined (A + B, red bar) tumor growth is similar to, less than, or greater than 16% of control, then the combination would be deemed as
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These two methods produce different results, and it is
uncertain which method performs better with uncertainty
of mechanism and noisy data [17,20]. Drugs inhibiting
parts of the same linear pathway may act according to
Loewe additivity [17]. Drugs nonexclusively affecting par-
allel pathways may act according to Bliss independence.
Experimental characterization of drug combinations typic-
ally involves generating dose response curves with the in-
hibitors separately and combined. The experimental dose
response curve data can then be compared to the predic-
tions of Loewe additivity or Bliss independence to deter-
mine if the drugs are acting synergistically.

Computational models of signaling networks
Given the complexity of the signaling networks control-
ling systemic diseases such as cancer, computational
models of cell signaling pathways are important tools for
increasing understanding of pathological signaling and
prioritizing targets to test experimentally [21]. Models
can be used to quantify systems properties that are often
not apparent in individual experiments. Through model
simulations, one can predict the relative importance of
various proteins in the network, the presence of signal
amplification, and the role of feedback and cross-talk
[22]. These features will be important in the prediction
of viable drug combinations. While model predictions
require experimental validation, they are useful tools for
prioritizing targets for experimental planning.

Mass action and enzyme kinetics-based models

Three predominant signaling network modeling ap-
proaches are mass action and enzyme kinetics-based,
logic-based, and statistical association-based models.
Mass action models are biochemically detailed kinetic
models that typically represent interactions between mo-
lecular species in the signaling network as ordinary dif-
ferential equations (ODEs) and require selection of
parameter values for concentrations of species in the net-
work and rate constants controlling protein-protein asso-
ciations [23]. Many of these parameters may be unavailable
in the literature and can either be measured experimentally
or fit to the data by minimizing an objective function such
as the sum of squared error.

When training parameters to data, it is important to
determine the importance of parameter selection on
model predictions. For example, Chen et al. measured
parameter sensitivity for several independent fits and
saw that the rank order of the most sensitive parameters
was nearly the same across the fits for a given output,
therefore parameter uncertainty did not affect major
model predictions [24]. In another approach, Iadevaia
et al. developed a mass-action model of the IGF-1 sig-
naling network in a breast cancer cell line with 161 un-
known parameters and fit the model to the time courses
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of six proteins measured with reverse-phase protein
array [25]. Given the uncertainty in parameter estima-
tion with so many unknown parameters, they identified
ten sets of parameters using particle swarm optimization
that equally fit the experimental data. Model predictions
were averaged from three randomly sampled sets of the
ten parameter sets. The trained model was then used to
identify beneficial drug combinations in a breast cancer
cell line.

Mass-action network models have been used to pre-
dict new beneficial drug combinations for cancer. As an
example, Faratian et al. used a mass-action model of
heregulin-induced HER2/3 signaling through MAPK and
PI3K to study the role of PIK3CA activation in Receptor
Tyrosine Kinase (RTK) inhibitor resistance [26]. Model
results demonstrated that the ratio of PTEN to activated
PIK3CA predicted resistance to RTK inhibitors. This
finding could therefore be used to predict patient re-
sponse to anti-HER2 therapies based on clinical measure-
ments of PTEN. It predicts that PIK3CA inhibition should
be paired with RTK inhibitors in patients with tumors
with low PTEN, a negative regulator of PI3K signaling.
Another group developed a mass action kinetics model of
PI3K signaling by ERBB receptors including ligand bind-
ing, dimerization, internalization, recycling, and degrad-
ation [27]. Sensitivity analysis of this model predicted an
important role of ERBB3 in AKT activation, which was
then validated in mice xenografts. Sensitivity analysis
could be used in future work to find drug combinations
that may work synergistically with ERBB3 inhibition.

Logic-based models

A limitation of mass-action modeling approaches is the
amount of data required to generate specific values for
the abundance and rate constant parameters, which can
be prohibitive for large scale network reconstructions
(Figure 1) [28]. Logic-based models use network top-
ology without the need for specific parameter values.
Network interactions are modeled with OR, AND, and
NOT Boolean logic gates. Each species in the network
takes a value of O (inactive) or 1 (active) based on the
state of its effectors [29]. As an example, Sahin et al. de-
veloped a Boolean model of ERBB signaling of G1/S cell
cycle transition [30]. The group used computational
knockouts of network proteins, validation experiments
with RNAi, and model revision based on proteomic data,
to predict the effects of combined inhibition of ERBB2
and ¢-MYC or EGFR. A combination therapy targeting
¢-MYC and ERBB2 was predicted to improve treatment
for breast cancer that is de novo resistant to ERBB2 in-
hibition. Another group developed a Boolean logic
model of apoptosis signaling in Leukemic T-Cell large
granular lymphocytes [31]. The authors used the model
to determine species that controlled apoptosis and
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experimentally validated two of these species, sphingosine
kinase 1 and NF«B. Given the limitations in representing
species as either on or off, this modeling approach has
been extended to accommodate intermediate activity
states using fuzzy logic [32].

Normalized hill differential equation modeling approach
While logic-based modeling approaches benefit from
simple construction using network topology, results can
be difficult to interpret due to assignment of discrete
values to continuous variable such as concentration of
active species, sensitivity to temporal node-updating
schemes, and incompatibility with many systems analysis
tools such as quantitative sensitivity analysis [33]. To ad-
dress the limitations of mass-action and logic-based
models, Kraeutler et al. developed the normalized Hill
differential equation modeling approach, which uses
logic-based differential equations to represent activation
or inhibition by molecular species in the network [33].
Cross-talk is represented with AND and OR gates and
species activation is continuous over time and in units
of fractional activation instead of concentration. There-
fore protein abundance parameters are not required like
with mass-action models. Interactions between species
in the network are modeled with normalized Hill equa-
tions with 3 parameters: reaction weight, half maximal
effective concentration (ECs), and Hill coefficient.
While these parameters can be fit to data, using default
values generated highly similar quantitative predictions
as a previously constructed detailed biochemical model
of the same pathway which used 88 parameters from lit-
erature [33,34]. Therefore, this approach allows for
straightforward model construction of a known network
topology even if kinetic and abundance parameters are
unknown, like with logic-based modeling, while also
allowing for prediction of dynamics and systems analysis
tools such as quantitative sensitivity analysis.

The normalized-Hill modeling approach is a valuable
tool for model construction of larger networks with more
unknown parameters. As an example, Ryall et al. used this
approach to model the cardiac hypertrophy signaling net-
work, which contained 106 species and 193 reactions [35].
Since cardiac myocytes have minimal capacity for prolifer-
ation, many of these pathways also regulate proliferation
in cancer cells [36]. Quantitative systems analysis revealed
the most prevalent species involved in growth of cardiac
myocytes, prioritizing future experimental targets [35].
While Ras, the largest signaling hub, was the highest in-
fluencer on cell size, the correlation between the num-
ber of connections a species has and its influence was
low. Moreover, highly influential species were at many
levels in the network, not just close to the output level.
These findings demonstrate the need for model recon-
structions to predict important drug targets in cell
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signaling networks. Highly influential species are not
obvious from intuition alone or data from gain or loss
of function studies of single genes [37].

Ryall et al’s analysis of the hypertrophy signaling net-
work also looked at the presence of different signaling
motifs such as bi-fan and feed-forward loops. Motifs can
affect network properties such as signal filtering, acceler-
ation, pulse generation, ultra-sensitivity, stability, and ro-
bustness [38-40]. Yin et al. modeled three-node enzymatic
networks with many different topologies to study the ef-
fect of topology on drug combinations [41]. Model simula-
tions were conducted to identify motifs that could result
in synergy. Most of the combinations were not dependent
on parameter selection, demonstrating that network top-
ology can be used to predict synergistic combinations.
Moreover, synergistic drug combinations were found in
both parallel and series drug combinations. In a similar
study, Zhang et al. made reduced models of the conver-
gence of two signaling pathways on a target and observed
synergy in only a subset of the motifs [42]. Synergy had a
greater likelihood in motifs with negative feedback be-
tween the target and an upstream effector or mutual
inhibition between parallel signaling pathways. These
findings suggest that searching for synergistic motifs
within a cancer signaling network topology can be a
useful strategy in prioritizing drug combinations to test
experimentally. Networks exported into Cytoscape [43], a
open source software platform for network visualization,
can use the Netmatch plug-in [44] to quickly search for
motifs of interest.

Statistical association-based modeling approach

Network modeling approaches are useful when network
topology is known, but these approaches can be biased
towards established pathways and may miss novel inter-
actions. Statistical association-based models do not de-
pend on prior knowledge of pathways and instead use
correlations and patterns in experimental data to predict
network structure. As an example, Ryall et al. used data
of correlations among cell shape features and expression
of 12 genes relevant to cardiac hypertrophy to identify a
network map linking input modules to output modules
[45]. Drug combinations could then be prioritized by
selecting targets that enabled adaptive module signaling
and prevented maladaptive module signaling. Molinelli
et al. developed a network inference algorithm based on
Belief Propagation [46] to construct networks from
phenotypic screen data [47]. They applied their method
to screen data from a melanoma cell line and identified
both new and established pathway interactions and then
used the network to predict efficacious drug targets. An-
other useful approach for network inference is Bayesian
network computational methods [48].
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Signature-based approaches for predicting drug
combinations

Many effective drug combinations have been discovered
using correlations in gene expression signatures. One
useful tool for this is the Connectivity Map (CMap)
database [49]. The first-generation CMap contained gene
expression profiles from three cancer cell lines perturbed
by 164 distinct small-molecule compounds. The second
generation of CMap (CMap 2.0) includes gene expres-
sion profiles from 1,309 small molecules including FDA
approved drugs tested in five human cancer cell lines
[49,50]. This method assumes gene expression changes
can be used as a “universal language” to connect distinct
biological states (e.g. diseases), allowing for the success-
ful repurposing of compounds [51,52]. In short, drugs
known to be effective in one disease can serve as candi-
dates for use in other diseases marked by similar gene
expression changes. Users query the database to com-
pute similarity metrics between a test gene expression
signature and each reference set. Similarity metrics are
scaled between -1 and +1, where a positive score indicates
positive correlation and a negative score indicates negative
correlation. An advantage of this approach is the ability to
query CMap with publicly available gene expression data
from sources such as Gene Expression Omnibus (GEO)
[53], therefore facilitating rapid drug combinations predic-
tion for experimental validation [54].

As an example, Riedel et al. applied CMap to predict
drugs that would prevent resistance to chemotherapy
agents in lung cancer cell lines [55]. Genes with the
highest changes after treatment with docetaxel were ana-
lyzed using CMap to identify drugs with negative con-
nectivity scores, indicating these drugs had antagonistic
effects on the genes associated with docetaxel resistance.
PI3K inhibitor LY294002, which was highly ranked among
these antagonistic compounds, was tested in vitro with do-
cetaxel and found to synergistically increase cytotoxicity.
Wei et al. used a similar approach to predict drugs to
overcome resistance to glucocorticoid treatment in acute
lymphoblastic leukemia [52]. Microarrays of pre-treated
cell lines either sensitive or resistant to glucocorticoid
in vitro were used to define a sensitive/resistant gene sig-
nature. Using CMap, mTOR inhibitor rapamycin was
found to induce a highly similar signature, leading to
the hypothesis that mTOR inhibition could induce
glucocorticoid sensitivity. Follow-up experiments sup-
ported this hypothesis and showed that rapamycin con-
ferred sensitivity through down-regulation of MCLI1.
Therefore, CMap is a useful tool for using gene signa-
tures to predict drug combinations that may overcome
drug resistance.

Inspired by the CMap concept, Kim et al. recently de-
veloped K-Map (Kinase Inhibitor Connectivity Map) that
systematically connects a set of query kinases to kinase
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inhibitors based on quantitative profiles of the kinase in-
hibitor activities [56]. Instead of gene expression signa-
tures, Kim et al. used the kinase activity profiles as the
“language” for connecting kinases and small molecules
in K-Map to reveal the complex interactions of kinases
and inhibitors. By querying K-Map with the essential ki-
nases mediating resistance to EGFR-inhibitor gefitinib in
an EGFR mutant non-small cell lung cancer (NSCLC)
cell line, bosutinib was predicted to be a more effective
drug for killing EGFR mutant cancer cells. Follow up
in vitro experiments confirmed that bosutinib alone is a
more effective agent than gefitinib, and that the combin-
ation of bosutinib and gefitinib had synergistic effects in
EGFR mutant NSCLC cells [57]. This demonstrates the
utility of K-Map in connecting kinases with kinase inhib-
itors and suggesting candidates for drug combinations.

Network-based approaches for predicting drug
combinations

Other computational approaches have been developed
to predict drug combinations using data from high-
throughput screens and drug databases. Pal and Berlow
developed an algorithm based on set theory that uses
tumor drug sensitivities and kinase inhibition profiles for
a set of individual drugs to predict the tumor sensitivity
to new drugs or drug combinations [58]. The algorithm
applies the following rules to generate circuit representa-
tions of tumor pathways: 1) drugs that inhibit a superset
of an effective set of inhibited kinases will also be suc-
cessful in inhibiting tumor growth and 2) drugs inhibit-
ing subsets of ineffective sets of inhibited kinases will
also be unsuccessful. These circuits reveal a set of ki-
nases that are most predictive of drug sensitivity and de-
pict combinations of kinases that need to be inhibited to
prevent tumor growth. This analysis is helpful for identify-
ing drug combinations that inhibit a minimal set of ki-
nases with as few off target effects as possible to minimize
negative side effects. This approach was validated using
data from four canine cancer cell lines given 60 different
drugs at four different concentrations to generate ICsq
values [59]. Tang et al. expanded on this algorithm to im-
prove the computational cost and accuracy with drug
screen data with little overlap between drug target profiles
[60]. While this approach requires a lot of experimental
data from drug screens to be useful (Figure 1), techno-
logical advancements are enabling larger drug screens at
lower costs.

Given the high cost of exhaustive drug screens, Gujral
et al. exploited the polypharmacology of kinase inhibitors
by developing an approach to select the most predictive
kinase targets from a smaller scale drug screen of multi-
target drugs [61]. They performed a phenotypic screen to
identify kinases regulating cell migration using an optimal
set of 32 kinase inhibitors. Elastic net regularization was
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then used to deconvolute the polypharmacology of the
kinase inhibitors, identifying kinases with the greatest
explanatory power for the phenotype. Elastic net
regularization regresses an output variable against a set
of predictor variables (kinase activity) and invokes a
penalty on the number of variables in order to eliminate
kinases with insignificant contributions. This is a useful
approach for reducing experimental time and cost by
extracting more information from a smaller set of com-
pounds in drug screens.

Huang et al. used drug genomic profiles from the Con-
nectivity Map database to construct a drug functional
network and then grouped drugs into modules with
similar transcriptional responses [62]. They then built
disease-signaling networks highlighting defective signal-
ing modules based on patient genomic profiles and pro-
tein interaction data. The DrugComboRanker algorithm
ranked potential drug combinations by selecting drugs
with high overlap in the disease network, affecting mul-
tiple key signaling modules. In a similar approach, Pang
et al. developed an algorithm to identify combination
therapies by building a network of drug-target interactions
from the DrugBank database [63]. Given an input disease
gene set, the algorithm selected drugs that maximized on
target effects and minimized off target effects. This algo-
rithm also identifies drug combinations of more than two
drugs, which would be unfeasible to predict using a high-
throughput screen. These approaches allow researchers to
take advantage of publicly available drug data to prioritize
combinations for experimental validation.

Moreover, Liu et al. have developed a database of both
successful and unsuccessful drug combinations (DCDB)
[64]. The current version of the database contains 1,363
drug combinations involving 904 individual drugs and
805 targets. The database provides information about
the potential mechanism, drug interactions, indication,
published study, development status, and targets. The abil-
ity to analyze patterns in successful and unsuccessful com-
binations with this database will be useful for systems
analysis of drug combinations and rational experimental
design. As an example, Xu et al. constructed a network of
successful drug interactions using data from the Drug
Combination Database [65]. Analysis revealed that drugs
with similar therapeutic effects tended to cluster together
in the network and targets of hub drugs were often mem-
brane or membrane-associated proteins. They used these
observations to develop a statistical approach to predict
new drug combinations.

Cheng et al. constructed a global human kinome inter-
action map by integrating kinase-substrate interactions,
kinase-drug interactions, protein-protein interactions, and
atomic resolution three-dimensional structural protein-
protein interactions [66]. Their analysis of the topological
features of these networks revealed an enrichment of hubs
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as drug targets. While targeting hubs can be beneficial due
to cascading effects, their analysis revealed that targeting
hubs also increases risk of adverse drug reactions and drug
resistance through feedback and crosstalk.

Network based approaches have also been used to
study drug-drug interactions. As an example, Cheng and
Zhao developed a comprehensive drug-drug interaction
network incorporating 6946 interactions of 721 ap-
proved drugs using data from DrugBank [66]. They then
calculated drug-drug pair similarities using four features:
phenotypic similarity, therapeutic similarity, chemical
structure similarity, and genomic similarity. They applied
five machine learning-based models to the dataset to pre-
dict drug-drug interaction, with the overall hypothesis that
drugs with similar chemical structure, target proteins, ad-
verse drug reactions, and therapeutic purposes have high
probability of drug-drug interaction. They tested the
model on antipsychotic drug-drug interactions and found
literature support for predictions of drug-drug interactions
involving weight gain and P450 inhibition. This approach
demonstrates the power of harnessing network-based
drug-drug interactions to reveal new information on ad-
verse drug effects and provide additional filtering rules for
drug combination studies.

Integrating functional genomics and computational
methods for identifying drug combinations
Large scale knockdown screens using RNA interference
(RNAI) can also be used to identify potential drug com-
binations [67]. RNAi screens can identify genes that lead
to sensitivity or resistance to a drug of interest. As an
example, an RNAi screen conducted by Berns et al.
showed that knockdown of PTEN decreased sensitivity
to trastuzumab in BT-474 breast cancer cells [68].
Follow-up studies showed that assessment of both the
loss of PTEN expression and activating mutations in
PIK3CA could predict the risk for HER2 amplified
tumor progression. Drugs reducing PI3K signaling may
therefore increase response to trastuzumab. In another
study, Prahallad et al. used an RNAi screen to identify
kinases whose knockdown synergized with BRAF
(V600E) inhibition in colon tumors [69]. Follow-up ex-
periments demonstrated synergy between cetuximab
(EGFR inhibitor) and vemurafenib (BRAF inhibitor).
The rational combination of cetuximab and vemurafe-
nib is currently being evaluated in clinical trials.
Pritchard et al. used RNAi signatures of eight cell
death genes to determine the mechanism of drug com-
bination effects in lymphoma cells [70]. Single drugs
were classified based on their similarity to the RNAi sig-
natures of well-characterized compounds with known
mechanisms. They then generated signatures for drug
combinations to see if the signature was more similar to
results from one of the drugs alone, an average of the
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two, or a unique signature. Results showed that the
combination signature was usually a weighted compos-
ite of single drug effects where one drug potentiated the
mechanism of the other or the two drugs produced an
additive effect. Interestingly, they observed that apply-
ing larger pools of drugs to tumors reduced the genetic
heterogeneity, which could be prohibitive in selection of
personalized drug treatments for patients based on
biomarkers.

Spreafico et al. identified non-canonical Wnt pathway
mediated resistance to MEK1/2 inhibitor Selumetinib in
colorectal cancer cells by integrating gene set enrich-
ment analysis and synthetic lethality screens [71]. Using
cyclosporine A (CsA) as a drug to inhibit non-canonical
Wnt pathway, they validated that the combination of Selu-
metinib and CsA has synergistic anti-proliferative effects
both in vitro and in vivo patient-derived xenografts. This
rational combination is now being translated into a Phase
I clinical study (ClinicalTrials.gov ID: NCT02188264).
This illustrates the utility of integrating functional genom-
ics screens with bioinformatics to identify and translate
drug combinations into clinical study.

High-throughput drug combination screens

While the number of FDA approved drugs makes ex-
haustive drug screens unfeasible (Figure 1), there have
been efforts to reduce the search space in an unbiased
manner. Tan et al. used pools of ten drugs in 384-well
plates to study all possible pairs of 1,000 compounds in
the minimum number of wells possible in order to find
drugs combinations that synergistically prevent HIV rep-
lication [72]. Synergistic wells from the primary screen
are then deconvolved into possible synergistic pairs for a
secondary screen. Results revealed an enrichment of
anti-inflammatory drugs in the synergistic pairs.

Roller et al. conducted a functional chemical genetic
screen of 300 drug combinations in nine melanoma cell
lines and identified pairs of compounds that synergistic
increase cytotoxicity [73]. Interestingly, the synergistic
cytotoxicities identified did not correlate with the known
oncogene RAS and RAF mutational status of the melan-
oma cell lines. From this screen, they identified sorafenib
(a multi-kinase inhibitor) and diclofenac (a non-steroidal
anti-inflammatory drug) to be the most robust drug
combination that has synergistic effects across the mel-
anoma cell lines. By using this functional chemical gen-
etic screen, the authors uncovered novel interactions
between signaling inhibitors that would not be predicted
based on current understanding of the signaling networks.
Their results suggest that the underlying signaling net-
works controlling drug responses can vary substantially
based on unidentified elements of cell genotype. In an-
other study, Griner et al. conducted a large scale screen of
multiple concentrations of 500 compounds with ibrutinib
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in activated B-cell-like diffuse large lymphoma cells [74].
They discovered many compounds that interacted favor-
ably with ibrutinib, including inhibitors of PI3K signaling,
the Bcl2-family, and the B-cell receptor pathway.

One of the major ongoing initiatives at the Develop-
mental Therapeutics Program of the National Cancer
Institute, U.S. National Institute of Health, is the large-
scale high-throughput drug combination screening of
100 FDA approved drugs. The first set of screening re-
sults generated 5,000 possible drug combinations in the
NCI-60 cancer cell lines panel [75]. The goal of this pro-
ject is to identify novel drug combinations that are more
active than the single agents alone. As all the drugs
tested have been FDA approved, any drug combinations
identified from this screen may rapidly translate into the
clinic. As the NCI-60 cell lines panel have been fully
characterized by various “omics” technologies, the re-
lease of this drug combination matrix to the public
could facilitate the development of novel computational
methods to integrate, predict, and mine the interactions
between molecular markers and drug combinations.

While substantial intratumoral heterogeneity has been
detected in cancer patients using next generation se-
quencing technologies [76], current drug combination
prediction methods have primarily focused on targeting
the predominant tumor subpopulation. To study the ef-
fect of different tumor subpopulations on treatment effi-
cacy, Zhao et al. developed a multi-objective linear
optimization algorithm to select optimal drug combina-
tions for heterogeneous tumors by maximizing efficacy
and minimizing toxicity [77]. Their goal was to determine
the best drug combinations to minimize all subpopula-
tions. They experimentally validated the algorithm’s pre-
diction of two-drug combinations with three-component
heterogeneous tumors created using RNA interference
[78]. They then expanded the model to simulate more
complex tumors and greater numbers of drugs [77]. Their
results revealed that intratumor heterogeneity influences
the prediction of effective drug combinations. Different
predictions are made depending on if all tumor subpopula-
tions are considered or just the predominant subpopula-
tion. This approach represents a step forward of predicting
drug combinations to tackle tumor heterogeneity in the
era of precision oncology.

Perspective

Given the experimental costs of exhaustively testing
drug combinations, computational models of signaling
networks will be especially useful in pre-clinical screen-
ing of combinations of compounds. Model simulations
reveal non-intuitive effects of drug combinations [17].
Due to the size and complexity of cancer signaling, mod-
eling strategies accommodating reconstruction of larger
networks while still being compatible with quantitative
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systems analysis tools will be especially useful [79]. Global  approaches based on a priori selection of important path-
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Table 2 Summaries of reviewed systems approaches for identifying drug combinations

Disease models Method Key findings Validation Reference

Computational models of cell signaling networks

Breast cancer Mass-action model Combined inhibition of MEK and PI3K optimally in vitro [25]
decreased cell viability.
Ovarian cancer Mass-action model the ratio of PTEN to activated PI3K predicts RTK in vitro [26]
inhibitor resistance
Ovarian cancer Mass-action model ErbB3 inhibition inhibits the ErbB-PI3K network in vivo (rodent) 271
more potently than current therapies.
Breast cancer Logic-based Combined inhibition of c-MYC and ERBB2 improved in vitro [30]
treatment for trastuzumab resistant breast cancer.
T cell large granular Logic-based Sphingosine kinase 1 and NFKB are essential for survival in vitro [31]
lymphocyte leukemia of leukemic T cell large granular lymphocytes.
Colorectal cancer Fuzzy Logic MK2 and MEK are co-regulators of ERK and in vitro [32]
EGF induced IKK inhibition.
Cardiac hypertrophy Normalized-Hill model Ras had the greatest influence on hypertrophy and in vitro [35]
correlation between node degree and influence is low.
Various 3-node enzymatic Identified consistent synergistic and antagonistic motifs. in silico [41]
models
Various 4-node enzymatic Synergy is more prevalent in motifs with negative feedback in silico [42]
models between the target and an upstream effector or mutual
inhibition between parallel pathways.
Cardiac hypertrophy Statistical association Maladaptive and adaptive hypertrophy features were in in vitro [45]
model separate modules in the simplified hypertrophy network

map generated by k-means clustering of ligands and
phenotypic outputs.

Melanoma Statistical association PLK1 inhibition increases cytotoxicity of RAF inhibitor resistant in vitro [47]
model melanoma cells.

Various Statistical association Reconstructed classic T cell signaling network using in vitro [48]
model multiparameter single-cell data and Bayesian network inference.

Signature-based approaches

Lung cancer CMap PI3K inhibition enhanced docetaxel-induced cytotoxicity in vitro [55]
Lymphoblastic CMap mTor inhibition induced glucocorticoid sensitivity in vitro [52]
Leukemia by decreasing MCL1

Lung cancer K-Map The combination of bosutinib and gefitinib has synergistic in vitro [57]

effects in EGFR mutant non-small cell lung cancer

Network-based approaches

Osteosarcoma Target Inhibition Developed an algorithm using a training set of drug sensitivities in vitro [58,59]
Map (TIM) with known targets to predict responses to new drugs
and combinations.
Breast and pancreatic ~ TIMMA Target Inhibition inference using Maximization and Minimization in vitro [60]
cancer Averaging (TIMMA). Improved computational cost and accuracy

of the above TIM approach. Predicted kinase pairs that could
be inhibited to prevent cancer survival.

Various Elastic Net Performed phenotypic screen using an optimal set of 32 in vitro [61]
Regularization kinase inhibitors. They used an elastic net regulatization
algorithm to deconvolute the polypharmacology and
identify key kinases regulating cell migration.

Lung and DrugComboRanker Created drug and disease functional networks based on Literature support [62]
breast cancer genomic profiles and interactome data. Drug combinations

are predicted by identifying drugs whose targets are

enriched in the disease network.

Various Mixed integer linear Built a network of drug-target interactions from DrugBank. Literature support [63]
programming Given an input gene set, the algorithm selects drug combinations
that maximize on target effects and minimize off target effects
Various Systems analysis of Drugs with similar therapeutic effects cluster together in a Literature support [65]
Drug Combinations network of successful drug combinations produced using

the Drug Combination Database [59]. Network observations



Ryall and Tan Journal of Cheminformatics (2015) 7:7

Page 12 of 15

Table 2 Summaries of reviewed systems approaches for identifying drug combinations (Continued)

were used to develop a statistical approach
for predicting drug combinations (DCPred)

Drug-drug interactions  Drug-drug interaction

network

Applied five machine learning models to a data set
of drug-drug pair similarities including 721 approved

Literature support [66]

drugs to predict drug-drug interactions.

Integration of functional genomics
and computational methods

Breast cancer RNAI screen

PTEN downregulation with active PI3K signaling

in vitro [68]

induce trastuzumab resistance

Colorectal cancer RNAI screen

Lymphoma 8-gene RNAI signature

EGFR inhibition synergizes with BRAF(V600E) inhibition

Drug combination signatures were usually a weighted

in vivo (rodent) [69]

in vitro [70]

composite of single drug effects

Colorectal cancer RNAI screen

The combination of Selumetinib (MEK1/2 inhibitor) and

in vivo (rodent) [71]

CsA (Wnt inhibitor) has synergistic anti-proliferative effects

High-throughput drug combination screens

HIV Pooled screen Used pools of 10 drugs in 384-well plates to study all in vitro [72]
possibly pairs of 1000 compounds in the minimum
number of wells possible
Melanoma Drug combination Sorafenib (a multi-kinase inhibitor) and diclofenac in vitro [73]
screen (NSAID) had synergistic effects across all nine
tested melanoma cell lines.
Lymphoma Drug combination Screen of 500 compounds with ibrutinib revealed in vitro [74]
screen favorable combinations with inhibitors of PI3K signaling,
the Bcl2 family, and B-cell receptor pathway
Various cancers Drug combination Screen of 5,000 combinations of FDA-approved in vitro [75]

screen

RNAi-modeled tumor
heterogeneity

Lymphoma

Intatumor heterogeneity influences the prediction
of effective drug combinations.

drugs in the NCI-60 cancer cell line panel.

in vivo (rodent) [77,78]

minimal biochemical data from literature enables a global
view of quantitative functional relationships between every
node in a network [33]. This method was used to identify
the most important nodes in a integrative network model
of cardiac hypertrophy with 106 nodes and 193 reactions
and default parameter values [35]. Many of these cardiac
hypertrophy signaling pathways also play important roles
in tumor growth. While model predictions need to be ex-
perimentally validated, models can substantially improve
hypothesis generation and experimental planning.

In addition to larger network reconstructions, future
modeling efforts will benefit from tighter integration of
high-throughput sequencing, proteomics, and phenotypic
screen data (Figure 3A). This will enable tuning of a model
to an individual patient’s tumor, which would be beneficial
for use in personalized medicine. Comprehensive double
knockdown model simulations would enable personalized
prediction of drug combinations for patients. The ability
to readily adapt models to different situations is important
in cancer research since the molecular networks are not
fixed within a particular cancer type [79]. Patients that
share the same mutation and tumor type can have differ-
ent responses to a drug [80]. Genetic background, cell
lineage, and exogenous signals can influence the network

behavior [79]. Efficacy data identified from in vitro and
in vivo experiments would then be used for model refine-
ment so more informed predictions of drug combinations
can be made in future studies.

Predicted drug combinations should be validated in
cancer cell lines and in relevant in vivo human disease
models such as patient-derived tumor xenografts [81].
These models, however, typically overestimate the clin-
ical benefit due to factors such as tumor heterogeneity,
differences in tumor microenvironment, and inaccurate
estimates of drug exposure [82]. Therefore, it is import-
ant to have a high threshold when choosing effective
combinations, ignoring modest inhibitions of tumor
growth in favor of combinations promoting cancer cell
death and tumor regression.

Another opportunity for improved design of combin-
ation therapies is through quantitative systems pharmacol-
ogy approaches integrating cell signaling network models
with pharmacokinetic-pharmacodynamic (PK/PD) models
[83]. Quantitative systems pharmacology uses multi-scale
data to better understand and ultimately predict how
drugs affect cellular networks and human pathophysiology
[84]. Mechanistic models of cell signaling networks are
linked to PK/PD models of physiological processes at the
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level of tissues and organisms. These models will enable
patient-specific prediction of therapeutic and toxic drug
responses and drug resistance mechanisms, improve
translation of in vitro discoveries to patients, and enhance
discovery of pharmacodynamic biomarkers.

Additionally, future work will benefit from parallel inte-
gration of computational modeling, preclinical testing,
and clinical trials, where data from each approach can be
used for refinement of the other. Computational models
tuned to specific cancer cell lines using bioinformatics and
experimental data could be perturbed to make predictions
of effective drug combinations to validate in preclinical
models (Figure 3A). For clinical application, similarity
scores between patients and previously modeled cell lines
could be calculated using statistical clustering (Figure 3B).
Drug combinations predicted using the most similar
model could then be applied in the clinic.

Conclusion

It is becoming increasingly apparent that drug combina-
tions will be essential for improving therapies for complex
diseases such as cancer [19]. The signaling pathways
controlling these systemic diseases are highly intercon-
nected, with cross-talk, redundancy, and feedback, mak-
ing single-target therapies much less effective [85].
While combination therapies have the potential to pre-
vent the development of resistance seen in many single
drug therapies, it is prohibitively expensive to experimen-
tally test every potential combination, especially when
considering combinations of more than two drugs. Here,
we highlighted a variety of systems biology applications
for advancing the prediction of effective drug combina-
tions, as summarized in Table 2. These methods include
computational modeling, gene signature analysis, func-
tional genomics, and high-throughput drug combination
screening. Utilization and integration of these systems
biology approaches hold great promise in speeding up the
development of clinically relevant drug combinations.
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