
Vol.:(0123456789)1 3

Basic Research in Cardiology          (2022) 117:38  
https://doi.org/10.1007/s00395-022-00945-4

REVIEW

Myeloid leukocytes’ diverse effects on cardiovascular and systemic 
inflammation in chronic kidney disease

Alexander Hof1,3 · Simon Geißen1,3 · Kezia Singgih1 · Martin Mollenhauer1,3 · Holger Winkels1,3 · Thomas Benzing2,3 · 
Stephan Baldus1,3 · Friedrich Felix Hoyer1,3

Received: 31 January 2022 / Revised: 24 June 2022 / Accepted: 11 July 2022 
© The Author(s) 2022

Abstract
Chronic kidney disease’s prevalence rises globally. Whereas dialysis treatment replaces the kidney’s filtering function and 
prolongs life, dreaded consequences in remote organs develop inevitably over time. Even milder reductions in kidney func-
tion not requiring replacement therapy associate with bacterial infections, cardiovascular and heart valve disease, which 
markedly limit prognosis in these patients. The array of complications is diverse and engages a wide gamut of cellular and 
molecular mechanisms. The innate immune system is profoundly and systemically altered in chronic kidney disease and, as 
a unifying element, partakes in many of the disease’s complications. As such, a derailed immune system fuels cardiovascu-
lar disease progression but also elevates the propensity for serious bacterial infections. Recent data further point towards a 
role in developing calcific aortic valve stenosis. Here, we delineate the current state of knowledge on how chronic kidney 
disease affects innate immunity in cardiovascular organs and on a systemic level. We review the role of circulating myeloid 
cells, monocytes and neutrophils, resident macrophages, dendritic cells, ligands, and cellular pathways that are activated 
or suppressed when renal function is chronically impaired. Finally, we discuss myeloid cells’ varying responses to uremia 
from a systems immunology perspective.
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Clinical relevance of chronic kidney disease 
for cardiovascular disease

Chronic kidney disease (CKD) is defined as abnormalities of 
kidney structure or function, present for more than 3 months, 
particularly in patients with impaired glomerular filtra-
tion rate (GFR < 60 ml/min/1.73m2) [63, 145]. CKD is an 
increasingly prevalent condition and affects approximately 

15% of the adult population worldwide [14, 42, 114, 129, 
132]. The international Kidney Disease: Improving Global 
Outcome organization categorizes disease severity based on 
cause, GFR and level of albuminuria. Three stages, based on 
the degree of albuminuria, and five stages, dependent on the 
GFR, are distinguished [62, 63]. CKD’s early to intermedi-
ate stages dominate the prevalence statistics [49]. Causes for 
CKD are manifold, yet traditional cardiovascular risk factors 
such as male sex, age, hypertension, hyperlipoproteinemia 
and diabetes also propel CKD progression. Further, genetic 
and epigenetic mechanisms impact CKD development [145].

The Global Burden of Disease Study estimates that CKD 
caused at least 1.2 million deaths in 2017 [32]. Concomi-
tant cardiovascular disease and an elevated susceptibility for 
infections fuel mortality’s sharp increase. Indeed, mortality 
rises significantly and in a stage-dependent manner when 
CKD is present. In a meta-analysis including > 14 million 
participants from 14 different studies, all-cause mortality 
risk was unrelated to a GFR between 75 and 105 ml/min 
but associated to lower GFR with an adjusted hazard ratio at 
GFR 60, 45, and 15 ml/min of 1.18 (95% confidence interval 
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CI 1.05–1.32), 1.57 (CI 1.39–1.78) and 3.14 (CI 2.39–4.13), 
respectively, as compared to normal kidney function (GFR 
95 ml/min) [14]. Similar results were seen in an integrated 
system of health care analysis including data from 1.120.295 
adults (Fig. 1) [42]. In this study, the adjusted hazard ratio 
for death was 1.2 (CI 1.1–1.2) with a GFR of 45–59 ml/
min, 1.8 (CI 1.7–1.9) with a GFR of 30–44 ml/min, 3.2 (CI 
3.1–3.4) with a GFR of 15–29 ml/min and 5.9 (CI 5.4–6.5) 
with a GFR of less than 15 ml/min. Accordingly, the same 
cohorts displayed inversely increased, adjusted hazard ratios 
for cardiovascular events with 1.4 (CI 1.4–1.5), 2.0 (CI 
1.9–2.1), 2.8 (CI 2.6–2.9) and 3.4 (CI 3.1–3.8), respectively 
[42].

CKD severity correlates with the increase in cardiovascu-
lar risk [70]. In the National Health and Nutritional Exami-
nation Survey (NHANES), cardiovascular disease burden 
was investigated in 1428 CKD stage I-IV patients between 
2001 and 2010. In this cohort, the prevalence of cardio-
vascular co-morbidities rose markedly, with 19.6% having 
coronary artery disease, 10.3% having a stroke, 9.7% con-
gestive heart failure, and an overall risk for cardiovascular 
disease of 28.4% [70]. Other investigations also showed an 
increase in overall risk for cardiovascular disease of 40% in 
CKD patients and, as expected, cardiovascular disease was 
most pervasive in CKD stage IV [13]. Renal replacement 
therapy associates with a tremendously risen (~ 30-fold) 
mortality risk [70]. Consequently, cardiovascular mortality 
is about 57% higher when CKD is present [13, 22, 42, 104]. 
Importantly, patients suffering from CKD are more likely 
to die from cardiovascular co-morbidities than from end-
stage renal failure, even after adjustment for cardiovascular 
risk factors [18, 42, 61]. Whereas CKD and cardiovascular 
disease share multiple risk factors, statin therapy fails to 
curb cardiovascular events in end-stage renal failure [143]. 
Although pharmacotherapies that alter intrarenal hemo-
dynamics (e.g. renin–angiotensin–aldosterone pathway 

modulators and SGLT2 inhibitors) can preserve kidney func-
tion by reducing intraglomerular pressure and novel antifi-
brotic agents have the potential to retard disease progression, 
no specific treatments are yet available mitigating CKD’s 
risk on the vasculature. Moreover, atypical symptoms or the 
lack of cardinal clinical signs in CKD may further delay 
timely treatment [111].

Aside from vascular disease, numerous studies associ-
ate hemodialysis treatment in end-stage renal disease with 
accelerated aortic valve calcification and stenosis devel-
opment. More than half of patients on renal replacement 
therapy display aortic valve pathologies, as assessed by 
computed tomography scans in a study with 151 patients 
[10]. Evidence emerges that aortic valve remodeling may 
already occur in the early stages of kidney failure in a GFR-
dependent manner [10, 46, 133]. Mortality rises markedly in 
patients with aortic valve stenosis that undergo aortic valve 
replacement surgery, when CKD is present. In a multi-center 
study including data from the German Aortic Valve Registry, 
CKD’s impact on mortality risk was investigated in nearly 
30,000 patients from 88 centers undergoing surgical aortic 
valve replacement or transcatheter aortic valve implantation 
(TAVI). One-year mortality hazard ratios increased gradu-
ally with declining renal function after transcatheter aortic 
valve implantation, ranging from 1.22 in CKD stage III to 
3.95 in CKD stage V, compared to patients in CKD’s early 
stages [83]. In summary, CKD is an independent risk factor 
for cardiovascular and valvular disease.

End-stage renal failure engenders a susceptible environ-
ment for infections; bloodstream infections and pneumonia 
are the second most common cause of death in patients with 
CKD. Accordingly, mortality risk due to infections rises tre-
mendously, up to 50-fold, in end-stage renal failure [116]. 
In analogy to cardiovascular disease, even mild to moderate 
stages of kidney disease raise infection rates and subsequent 
mortality [56, 142].

Fig. 1   CKD elevates all-cause 
and cardiovascular mortal-
ity. The adjusted hazard ratios 
(HI) for all-cause mortality 
(black line) and cardiovascular 
mortality (blue line) increase 
in a GFR-dependent manner 
in patients with CKD. Data for 
this graph are adopted from Go 
et al., NEJM 2004 [42]
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In a cohort of 25.675 patients, the risk for bloodstream 
infections increased GFR-dependently with hazard ratios 
of 1.24 (1.01–1.52), 1.59 (1.24–2.04) and 3.54 (2.69–4.69) 
when compared to individuals with a GFR above 60 ml/
min for CKD stage IIIa, IIIb, and IV, respectively. In turn, 
community-onset bloodstream infections elevate the risk 
of death within 30 days in patients with CKD stage IV or 
below (hazard ratio, 4.10; 2.06–8.14) [58]. Whereas CKD’s 
advanced stages correlate with the risk of infection, distinct 
co-morbidities may impact the threshold for infections in 
the early stages [93].

Together, abundant clinical studies provide evidence for 
CKD’s perilous role in cardiovascular disease development. 
CKD is accompanied by a malfunction of the immune sys-
tem affecting leukocyte interactions and activity on a cellular 
and subcellular level. We will review how a dysfunctional 
immune system accelerates vascular and valvular disease 
progression in CKD. Systemic effects on the contrary inter-
fere with anti-bacterial defense mechanisms. Tissue and cell 
type may decisively determine these diverse effects on the 
immune system. Here, we provide a summary of the immune 
system’s facets in CKD’s two most important complications.

Chronic kidney disease impacts myeloid cell 
behavior in atherosclerosis

Uremic toxins alter myeloid cells in chronic kidney 
disease

The innate immune system comprises different cell types. 
Major circulating contenders include neutrophilic granulo-
cytes with a short life span of approximately one day. Blood 
monocytes are less frequent in mice and humans but exhibit 
a longer life span ranging from days to a few weeks [89]. 
The use of elaborate mouse models has greatly contrib-
uted to the refined understanding of myeloid cell biology 
in steady-state and disease in the last two decades: blood 
myeloid cell levels fluctuate in a circadian pattern and are 
replenished by bone marrow supply at all times [89]. Tissue-
resident macrophages, which populate various tissues prena-
tally–independent of definitive hematopoiesis–are myeloid 
cells [25, 36]. They are more long-living than their circu-
lating comrades, and proliferation significantly maintains 
population size in the steady-state in various organs. Bone 
marrow-derived, circulating monocytes infiltrate tissues and 
give rise to macrophages ubiquitously in an acute or chronic 
injury [89]. Whereas monocyte recruitment feeds the inflam-
matory myeloid cell pool in atherosclerosis in the early 
stages, macrophage (i.e., foam cell) proliferation prevails 
and expands the vascular population in advanced stages [89]. 
Neutrophils engender atherosclerotic plaque instability by 
employing eroding enzymes or worsen the ischemic injury 

by forming extracellular traps (NETs) [52]. CKD amplifies 
existing, harmful pathways evoked by risk factors such as 
diabetes and hypercholesterolemia or–worst case–activates 
orthogonal mechanisms accelerating atherosclerosis (Suppl. 
Table 1). Phenotypically, excessive calcification is a typical 
feature of atherosclerotic lesions in CKD [7].

Monocytes isolated from uremic patients exhibit various 
signs of activation. They display increased adhesiveness, 
which fosters extravasation through the endothelial barrier, 
and an augmented migratory capacity [8]. While this study 
only included 28 patients, other studies corroborate CKD’s 
significant effects on monocytes in humans. For instance, 
CKD goes along with elevated numbers of CD14+ CD16+ 
monocytes, also known as the intermediate monocytic phe-
notype in humans, associated with endothelial injury and 
future cardiovascular events [90, 107, 110]. For an over-
view of human monocyte subtypes, see Fig. 2. A subtype 
of intermediate monocytes displaying high levels of the 
human leukocyte antigen (HLA) -DR enriches in patients 
with CKD stage I to V and correlates with renal function, 
i.e. GFR, as shown in a study involving 187 patients. Like-
wise, granulocytic neutrophils inversely correlate with 
renal function [90]. Ex-vivo, a uremic environment nudges 
monocytes from healthy donors towards a more inflamma-
tory state and induces surface CD14 and CD16 expression 
[9]. While ex-vivo and in-vitro studies must be interpreted 
cautiously as cells’ transcriptional program adapts promptly 
to an altered exterior and the study’s sample size was small, 
these findings suggest an immediate immune-altering effect 
initiated by the uremic milieu. In this context, expression 
of the C–C chemokine receptor-2 (CCR2), which mediates 
monocyte recruitment and homing, rises in patients under-
going hemodialysis [96]. In this study, which included 83 
patients, CCR2 levels correlate with markers of atheroscle-
rosis, such as the carotid intima-media thickness. Uremia 
may also drive monocytic CX3CR1 expression–the frac-
talkine receptor facilitates adhesion to the endothelium–with 
consequences for monocyte homing, as demonstrated in a 
small study examining blood monocytes from patients 
receiving renal hemodialysis [21, 118]. Other studies found 
augmented toll-like receptor (TLR) -2 and -4 expression 
on blood monocytes in patients with CKD, rendering them 
more sensitive to consecutive inflammatory stimuli [45, 66]. 
Uremic signaling, however, is not restricted to a single route. 
Various pathways may be activated and mediate uremia’s 
effects, such as the inflammatory Wnt/β-catenin cascade in 
patients with CKD stage IV and V [2]. Post-translational 
protein modifications, such as acetylation of the Y-box bind-
ing protein-1 in monocytes, may further amplify inflamma-
tion, when hemodialysis is required [26]. There is ample 
evidence that CKD impacts myeloid cell behavior, however, 
some of these studies’ small sample sizes should be consid-
ered for interpretation and generalizability.
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Fig. 2   Human and murine monocyte subsets. A Human monocytes 
can be categorized by surface expression of CD14 and CD16 into 
classical, intermediate and non-classical monocytes [60, 90, 147, 
154]. Classical monocytes do not express CD16. They are the most 
frequent subtype, mediate antimicrobial defense and display a high 
capacity of adhesion, migration and phagocytosis [60, 90]. Interme-
diate monocytes make up only ~  5% of the population  [112]. They 
express CD16 and are involved in regulation of apoptosis, antigen 
presentation and T-cell activation  [60]. Non-classical monocytes 
express higher levels of CD16 than intermediate monocytes, do not 
extravasate but patrol the vessels  [127]. They are involved in Fc-
Receptor-mediated phagocytosis, anti-viral response and T-cell acti-
vation [60, 90, 112, 127, 147, 154]. In mice, equivalent monocyte 

subsets are identified by surface expression of Ly6C (usually by flow 
cytometry), whereas all monocytes express CD11b (an integrin) 
and CD115 (the macrophage colony-stimulating factor-1 receptor). 
Ly6Chigh monocytes are considered equivalent to classical monocytes 
and Ly6Clow monocytes to the non-classical subset [16, 86]. B CD14 
is a co-receptor for toll-like receptor-4 (TLR-4) and myeloid differen-
tiation factor-2 (MD-2). CD14 facilitates sensing of lipopolysaccha-
ride, pathogen-associated molecular patterns (PAMPs) and opsonized 
particles. The cellular response is generally pro-inflammatory [149]. 
CD16 (Fcγ-receptor III) mediates antibody-dependent cytotoxic 
effects, clearance of opsonized pathogens and fosters calcium mobili-
zation, ROS-release and phagocytosis [151]
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Considering the plethora of pathways involved, the 
question arises of what stimuli initiate inflammation in 
uremia. In CKD, extensive mineral remodeling involves 
osteoblasts and osteocytes, the primary source of fibro-
blast growth factor-23 (FGF-23). The 32-kDa hormone 
level rises in CKD’s early to advanced stages. Indeed, 
FGF-23 drives macrophage proliferation via FGF receptor-
1c and instigates tumor necrosis factor (TNF)-α generation 
in-vitro, linking bone remodeling to myeloid cell inflam-
mation in CKD [67, 84]. Next to FGF-23, much effort has 
been spent to elucidate the role of another large group 
of potential mediators: so-called uremic toxins are small 
molecules that evade hemodialysis by binding larger-sized 
plasma albumin. Dozens of uremic retention solutes have 
been categorized to date, indoxyl sulfate and p-cresyl 
sulfate are among the best-studied (Table 1). Effects are 
not confined to white blood cells, as uremic toxins also 
hamper the endothelium, vascular smooth muscle cells, 
and others. But the evidence for wide-ranged, immune-
stimulatory effects is vast:

For instance, guanidino compounds induce TNF-α secre-
tion and CD14 expression in monocytes in-vitro. Athero-
genic homocysteine activates the NF-ĸB pathway in THP-
1-derived macrophages in cell culture experiments [41, 117]. 
A very robust study conducted by Nakano and colleagues 
demonstrated that organic anion transporting polypeptides 
facilitate indoxyl sulfate uptake into macrophages. Consecu-
tive NOTCH signaling triggers the release of pro-inflamma-
tory interleukin (IL)-1β, an effect attenuated by delta-like 
ligand 4 inhibition in-vitro [92]. The use of nanoparticle-
mediated silencing of the organic anion transport poly-
peptide in mice demonstrates the pathway’s relevance also 
in-vivo.

Another study confirms uremic toxins’ inflammatory 
effects in the vasculature ex-vivo. A brief exposure of rats 
to indoxyl sulfate or p-cresyl sulfate for four days led to pro-
found inflammatory and pro-coagulatory signatures in aortic 
tissue, as assessed by an unbiased quantitative proteomics 
approach followed by gene ontology analyses. Acute-phase 
signaling pathways dominated in the analyses [99]. The 
underlying cell types driving inflammation in this setting 
remain elusive.

Finally, accumulation of p-cresyl sulfate and advanced 
glycation end-products ramp up reactive oxygen species 
generation in monocytes, as shown in ex-vivo and in-vitro 
experiments [40, 119]. Similar observations were made in 
neutrophils. When isolated from patients with CKD and 
subsequently challenged with PMA (phorbol-12-myristate-
13-acetate), reactive oxygen species release amplified, an 
effect mainly conveyed by uremic toxins. Thus, neutrophil 
priming is central to low-grade inflammation and oxidative 
stress surplus in CKD, which occurs before renal replace-
ment therapy is required [17, 122].

The question arises by which subcellular mechanisms 
uremic toxins trigger the litany of inflammatory responses 
[38]. While uremic toxins indirectly promote inflammatory 
gene transcription, e.g. via NOTCH signaling, binding to 
post-translationally modified proteins likely contributes to 
systemic inflammation. Further mechanisms probably exist 
but remain to be discovered [28, 85, 92].

Compromised gut integrity amplifies cardiovascular 
inflammation in CKD

While the role of uremic retention solutes has garnered 
much attention, it recently emerged that compromised 
remote tissues in CKD impact inflammation and myeloid 
cell function. For instance, an impaired gut barrier func-
tion has been described, which is accompanied by pro-
found changes in the intestinal microbial flora composition 
[134, 146]. The mechanisms perturbing the intestine’s bar-
rier function remain incompletely understood [113]. Next 
to metabolic acidosis, volume overload with consecutive 
wall congestion conceivably contributes to the gut’s leaki-
ness in CKD, as described for heart failure [43]. Distinct 
strains’ high pathogenicity–so-called pathobionts–such as 
Bacteroides, Paraprevotella spp., or Helicobacter hepat-
icus pose a particular threat [4]. Overgrowth of poten-
tially pathogenic bacterial species is frequent in patients 
undergoing hemodialysis, and the disrupted commensal 
bacterial flora generates surplus trimethylamine-N-oxide 
(TMAO) [125, 150]. The microbiota metabolite not only 
correlates with cardiovascular risk. TMAO signals via 
macrophage CD36-dependent MAPK/JNK-pathway and 
promotes atherosclerosis in mice [33]. The leaky and 
permeable gut barrier facilitates bacteria translocation 
to extra-intestinal sites such as mesenteric lymph nodes, 
spleen and liver, and blood levels of bacterial DNA associ-
ate with serum levels of C-reactive protein (CRP) and IL-6 
[141, 146]. Following translocation, bacteremia and endo-
toxemia may instigate systemic inflammation, yet, clear 
evidence that bacterial elements in CKD augment myeloid 
cell-driven vascular inflammation is still missing. In the 
steady-state, microbiota-derived peptidoglycan primes 
bone marrow neutrophils via the pattern recognition recep-
tor nucleotide-binding, oligomerization protein-1 (Nod1) 
and augments systemic immunity [15]. While desirable for 
host defense, this priming may conceivably be harmful for 
the inflamed vasculature. Whether this mechanism, how-
ever, is compromised in CKD remains unclear. Further-
more, the ramification may not be entirely inflammatory, 
as prolonged toll-like receptor activation can contribute to 
immunosuppression [4].



	 Basic Research in Cardiology          (2022) 117:38 

1 3

   38   Page 6 of 19

Table 1   Effect of uremic toxins on different myeloid cell types
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Myeloid cells’ catalyzing role in CKD‑driven vascular 
inflammation

In light of atherosclerosis’ chronic inflammatory nature 
and myeloid cells’ aberrant features in CKD, a multitude 
of studies examined their contribution to vascular disease 
progression in experimental CKD. For an overview, please 
see Fig.  3. As described for traditional cardiovascular 
risk factors, CKD may trigger endothelial signaling cues 
guiding monocytic leukocyte influx into the arterial wall. 
For example, levels of circulating VCAM-1 and ICAM-1 
increase in patients receiving hemodialysis, as demonstrated 
in a study involving 106 patients [101]. The surge’s cause is 
not entirely clear but likely reflects the enhanced vascular 

inflammation. In-vitro, indoxyl sulfate signals via the c-Jun 
N-terminal kinase pathway inducing expression of E-selectin 
in endothelial cells [57]. Therefore, CKD-mediated signs 
of vascular activation are partly redundant (Suppl. Table 1) 
[11, 57, 101]. The uremic milieu further impairs the glyco-
calix’ integrity, the physiologic layer of proteoglycans and 
glycoproteins covering the endothelium’s luminal surface, 
as serum markers reflecting glycocalix injury rise in patients 
with CKD. The altered glycocalix composition may in turn 
facilitate monocyte extravasation [75, 108]. In response to 
macrophage- and granulocyte–macrophage-colony stimulat-
ing factor (M-CSF; GM-CSF) secreted by the endothelium 
and other vessel wall cell types, monocytes differentiate into 
macrophages [39]. Increased M-CSF levels in hemodialysis 

Table 1   (continued)
Indoxyl sulfate is transferred to the intracellular space of macrophages by the organic anion transporting polypeptide (OATPP) and induces pro-
inflammatory cell activation by inducing the NFκB-pathway. Consecutively, Interleukin- 1β, Interleukin-6, Tumor Necrosis Factor-α (TNF-α) 
and reactive oxygen species (ROS) are released. Cyclooxygenase-2 (COX2), the inducible Nitric-Oxide-Synthase (iNOS) and pro-coagulatory 
factors are upregulated. Monocytes are activated by indoxyl sulfate via the aryl hydrocarbon receptor, which propels proinflammatory cytokine 
release, while dendritic cell proliferation and signaling is suppressed by indoxyl sulfate. As for macrophages, the NFκB-pathway is also induced 
in endothelial cells and adhesion molecules like E-selectin are upregulated, facilitating diapedesis. P-cresylsulfate induces ROS-production and 
pro-inflammatory expression patterns in monocytes. In dendritic cells, it reduces phagocytic activity and antigen presentation. Guanidino com-
pounds such as creatinine or guanidine and advanced glycation end products increase ROS and TNF-α production as well as CD14 expression in 
monocytes. Homocysteine and fibroblast growth factor (FGF)-23 affect macrophages and dendritic cells by induction of pro-inflammatory sign-
aling and proliferation. Interestingly, for FGF-23 these mechanisms are independent of its co-factor klotho

Fig. 3   Remote organ complications in chronic kidney disease. Myriad 
remote organ pathologies accompany CKD and increase the suscep-
tibility to infections, the incidence of aortic valve calcification, and 
atherosclerosis  [10, 56, 70]. Alterations at the site of lesion forma-
tion include augmented ROS production of neutrophils, an increase 
of intermediate monocytes with enhanced adhesiveness and migra-
tory capacity, and elevated TLR-2 and -4 expression  [17, 45, 66, 

90]. The WNT/β-catenin pathway is involved  [2]. CKD lowers the 
expression of monocytic calcium-sensing receptors, which may accel-
erate the vessel wall’s calcification [82]. Under uremic conditions, 
macrophages’ and foam cells’ proliferation rates increase [94]. Like-
wise, pro-inflammatory cytokine secretion amplifies [11, 101]. The 
endothelium cranks up expression of adhesion molecules such as 
E-selectin, VCAM and ICAM in response to uremia [11, 57, 101.
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patients may fuel macrophage development once monocytes 
infiltrate the nascent lesion [94]. However, the source for 
M-CSF’s surplus in this setting requires further investiga-
tions and experimental evidence for this mechanism is still 
missing [94]. While GM-CSF treatment exacerbates athero-
sclerosis in non-uremic mice, it remains unclear whether 
GM-CSF promotes vascular inflammation in CKD. GM-
CSF’s role in CKD has been investigated in the context of 
vaccination, which we discuss below [47].

A perturbed equilibrium generates an excess of reactive 
oxygen species in CKD, which impacts atherosclerosis and 
the underlying myeloid cell population. CKD’s enabling 
effects on reactive oxygen molecules enhances low-density 
lipoprotein oxidation, consecutively, lesional macrophages’ 
inflammatory profile amplifies [27, 39, 48]. Urea dissocia-
tion creates reactive isocyanic acid which non-enzymatically 
and irreversibly binds protein amino-groups, especially 
lysine residues. This process–termed carbamylation–pro-
motes molecular ageing and associates with atherosclerosis 
[44, 135]. The heme enzyme myeloperoxidase (MPO) aug-
ments carbamylation through the oxidation of thiocyanate. 
Myeloperoxidase also converts low-density lipoprotein into 
a more atherogenic form, as shown in elaborate experiments 
in-vitro [105]. In a CKD mouse model using atherosclerosis-
prone LDL receptor-deficient mice, lesional macrophages 
enrich myeloperoxidase and the enzyme’s activity heightens, 
suggesting a disease-promoting role via carbamylation [68, 
153]. Future experiments using–currently unavailable–MPO 
reporter or conditional knockout mouse models will allow 
to obtain more insights into MPO’s role in CKD-driven 
vascular inflammation. Finally, the increase in myeloper-
oxidase and distinct uremic metabolites such as asymmetric 
dimethylarginine diminish nitric oxide (NO) bioavailability 
with consequences for the endothelium’s function in patients 
with CKD [19, 78].

Additional myeloid lineage cells may promote athero-
genesis in CKD. Mast cells increasingly accumulate in the 
shoulder and basis of atherosclerotic plaques when CKD 
is present but do not associate with calcification [139]. In 
a small case–control study examining human aortic tissue 
samples of 10 individuals, dendritic cells enriched in the 
tunica intima, the innermost vascular layer, in patients with 
CKD [54]. Yet, a detailed understanding of dendritic and 
Mast cells’ relevance in CKD-driven atherosclerosis is lack-
ing. Activation of CD4 and CD8 T-lymphocytes conceivably 
plays a role, as demonstrated for vascular inflammation with-
out concomitant CKD. It should be noted that non-inflam-
matory factors such as phosphate and calcium deposition 
may promote atherosclerosis progression in CKD, emphasiz-
ing the processes’ multitude.

Numerous clinical studies provide compelling findings 
for augmented vascular inflammation in CKD. Coronary 
vessels exhibit a greater extent of plaque formation with an 

increased local inflammatory milieu in CKD [91, 115]. Urea 
plasma levels and glomerular filtration rates are independ-
ent predictors of arterial wall inflammation [8]. Elevated 
serum levels of CRP, IL-6, TNF-α, and monocyte chemot-
actic protein-1 accompany heightened atherosclerotic plaque 
inflammation in patients with end-stage renal failure [11, 
101]. The neutrophil-to-lymphocyte ratio correlates with 
the cardiovascular risk profile in patients with CKD [97]. A 
subset of low-density granulocytes associates with vascular 
calcification in patients receiving peritoneal dialysis [109]. 
While these clinical studies did not exclusively focus on 
myeloid cells, they feed the assumption for inflammation’s 
causative role in CKD-accelerated atherosclerosis.

Chronic kidney disease impacts aortic valve 
remodeling and inflammation

Tricuspid aortic valves consist of three annulus-attached, 
semilunar cusps. Human aortic leaflets are thin (~ 180 µm 
in diameter) yet no simple structures. Five connective tis-
sue layers build the leaflets’ backbone, which is interspersed 
with mesenchyme-originating interstitial cells. Endothelium 
covers and protects the leaflets’ surface [87]. Recent findings 
further indicate the existence of a valve-resident leukocyte 
population, as CD45-positive leukocytes prenatally popu-
late the endocardial cushion of developing valves as early 
as embryonic day 14.5 in mice [5]. CCR2-expressing mac-
rophages are present shortly after birth. Mapping valve leu-
kocyte fate revealed an increasing accumulation of CD45-
positive cells in intact murine valve tissue over time [5]. At 
the age of 16 months, approximately 11% of the examined 
murine valvular cells were leukocytes. CD45-positive cells 
predominantly accumulate at the cusps’ distal tips but also 
adjacent to the ventricular layer in young and adult mice. 
Lineage tracing experiments suggest that myeloid origin i.e. 
macrophages and dendritic cells dominates the heart valve 
leukocyte population [55].

Aortic valves are subjected to a humongous workload; 
they open and close ~ 86.000 times per day and ~ 2.5 billion 
times by the age of 80 years (based on an average heart 
rate of 60 beats per minute). Hence, the decades-prevailing 
view that passive mechanisms, i.e., continuous exposure to 
physical force and ectopic mineral deposition ultimately 
evoke valve degeneration. More recent insights shifted this 
paradigm suggesting leaflet remodeling and calcification 
involves activation of resident interstitial, endothelial and 
inflammatory cells [77, 124, 144]. Attempts to reseed valvu-
lar matrices with interstitial and endothelial cells may reflect 
this redirected perception [51, 74]. That inflammatory mech-
anisms impact cusp remodeling is now increasingly appre-
ciated: TLR-3 signaling induces an osteogenic response in 
valvular interstitial cells in-vitro. Likewise, myeloid cell 
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supernatant promotes osteogenic differentiation of inter-
stitial cells in-vitro [73]. Disruption of anti-inflammatory 
IL-1-receptor signaling fuels inflammation–especially in 
the leaflet’s lamina spongiosa–and triggers subendothelial 
macrophage accumulation in mice. IL-1β, the prototypi-
cal inflammatory, macrophage-derived cytokine, amplifies 
remodeling via myofibroblast activation [123]. The TNF-α 
related ligand TRAIL may foster human valve calcifica-
tion [29]. NOTCH1 signalling’s role for congenital valve 
anomalies and calcification is well-established [30]. That 
NOTCH1 haploinsufficiency alters macrophage major his-
tocompatibility complex (MHC) II expression levels in aor-
tic valves implies that inflammation potentially contributes 
to NOTCH1’s striking phenotype [106]. Examining aortic 
valves obtained from 285 patients undergoing surgical valve 
replacement revealed the presence of chronic inflammatory 
infiltrates in 28% of the cases. Intriguingly, inflammatory 
infiltrates correlated with the remodeling process and the 
peak transvalvular gradient [20].

CKD propels premature valve calcification and steno-
sis. The process is multilayered; plenty mechanisms are 
suspected partaking in uremia-induced valve remodeling: 
endothelial dysfunction due to CKD fluid overload-related 
heightened shear stress, lipid infiltration (though statin ther-
apy is ineffective), reactive oxygen species surplus, bone 
metabolism dysregulation, calcium-phosphate imbalance 
and ectopic calcification, to name a few [128]. Data on how 
CKD shapes the inflammatory environment within the valve 
on the contrary are relatively scarce compared to vascular 
pathologies; and whether the same pathways are involved 
as to when CKD is not compromised is largely unknown. In 
a recent histologic study examining human stenotic aortic 
valve specimens, macrophages especially clustered in areas 
of valve calcification. While 8.3% of these patients received 
hemodialysis treatment, information whether early stages 
of CKD were present in the other individuals is missing, 
thus CKD’s influence was likely underestimated [95]. On 
a systems level, inflammation in CKD associates with the 
development of aortic valve stenosis. As such, CRP levels 
strongly correlate with valve calcification, as shown in a 
study involving 137 patients treated with continuous ambu-
latory peritoneal dialysis [140]. In a study involving 55 
patients receiving hemodialysis treatment, aortic stenosis 
occurred in 14 individuals and significantly correlated with 
heightened CRP levels [120]. Likewise, IL-6 levels associ-
ate with the risk for valvular calcification, as demonstrated 
in a cross-sectional study involving 135 patients with CKD 
and 58 control individuals [72]. Another recent, interest-
ing observation at the hub of inflammation and calcification 
may become especially relevant for valvular pathologies. 
CKD associates with significantly reduced expression lev-
els of G-protein-coupled calcium-sensing receptors on iso-
lated monocytes. In-vitro, the decrease in calcium-sensing 

receptor expression impaired monocytes’ ability to inhibit 
vascular calcification [82]. In summary, evidence emerges 
that inflammation impacts valve remodeling in CKD, yet a 
detailed understanding of myeloid cells’ contributions to this 
disorder is still lacking.

Chronic kidney disease impairs myeloid 
cells’ responses to infection

The organism’s susceptibility for bacterial infections rises 
dramatically whenever kidney function fails–especially 
when renal insufficiency mandates replacement therapy. 
Infectious disease claims the second most casualties in CKD 
[101, 126]. In light of the unbridled, disease-promoting 
inflammation within the cardiovascular system, the damp-
ened immune responses to bacterial intruders appear para-
doxical at first sight. Today it is clear that innate immunity’s 
lowered anti-bacterial defense capabilities are significantly 
relayed by dysfunctional myeloid cells in CKD. The body of 
evidence for myeloid-mediated immunosuppression in CKD 
is substantial and involves polymorphonuclear leukocytes, 
i.e., neutrophilic granulocytes, monocytes and monocyte-
derived dendritic cells.

Next to stationary or tissue-inhabiting cells, neutrophils 
rapidly root out and combat bacterial invaders. Equipped 
with various tools in their quiver, neutrophils initiate a pow-
erful emergency response to prokaryotic infiltrators: Degran-
ulation, extracellular traps (NETs), and phagocytosis may be 
employed to this end; all of which may be corrupted in CKD 
(Fig. 4) [52]. In-vitro, uremic plasma accelerates neutrophil 
apoptosis, diminishes superoxide production, and impairs 
phagocytosis of bacteria [12]. Impaired phagocytosis corre-
lates inversely with the severity of uremia, and hemodialysis 
temporarily ameliorates phagocytic activity [79]. Follow-
ing phagocytosis of bacteria, oxygen-dependent mechanisms 
create potent microbicidal reactive oxygen species. For 
instance, membrane-bound NADPH-oxidase releases super-
oxide anions into the phagosome, which subsequently dis-
mutate into hydrogen peroxide aiding to neutralize engulfed 
microorganisms. Uremic toxins significantly interfere with 
the enzyme’s activity [65]. When isolated blood leukocytes 
were incubated with uremic retentions solutes, 39 out of 
the 48 examined molecules markedly diminished NADPH-
oxidase activity in-vitro [121]. Likewise, uremic p-cresol 
suppresses NADPH-oxidase and myeloperoxidase activity at 
concentrations found in CKD [131]. Others showed that ure-
mic guanidino compounds decreased superoxide formation 
via inhibition of glycolysis and consecutive energy depletion 
in neutrophils [50]. Thus, interference with reactive oxygen 
species generation represents a central element in CKD-
mediated immunosuppression. Migration along a molecular 
gradient i.e. chemotaxis directs proper recruitment to the 
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injured site. Leptin, known for its involvement in metabolism 
and obesity, increases in patients with CKD but significantly 
impairs neutrophil chemotaxis in-vitro, likely by reducing 
the cells’ sensitivity to chemoattractants [100]. In a small 
study involving 59 patients, GM-CSF treatment diminished 
apoptosis of neutrophils obtained from CKD patients. The 
authors speculate that GM-CSF in CKD may have therapeu-
tic potential to augment immunity against infections [152].

Beside neutrophilic granulocytes, monocytes display 
immunosuppressive features when kidney function fails. 
CKD impedes monocytes’ phagocytic capacity [88]. Mono-
cytes from patients undergoing hemodialysis exhibit reduced 
FITC-Dextran particle uptake compared to controls [76]. 
When renal replacement therapy is required, human CD14+ 
monocytes reduce surface expression of co-stimulatory 
CD86 (B7-2), likely impacting lymphocyte interaction [37]. 
The attenuated immune response may be persistent. Lipopol-
ysaccharide (LPS)-induced expression of lymphocyte co-
stimulating CD40, CD80, and CD86 remains mitigated when 
CD14+ monocytes from CKD patients are consecutively 
cultivated under non-uremic condition and LPS effects on 
co-stimulatory molecule expression remain absent in uremic 
media [76]. Uremia may significantly impact leukocytes’ 
response to viral infections with consequences for bacterial 
encounters. Monocytes obtained from patients undergoing 
hemodialysis may be more susceptible for herpes simplex 
virus type-2 infection. The compromised renal function goes 
along with a curbed cytokine production such as TNF-α, 
Interferon-α, and IL-12 in response to LPS in-vitro. Proper 

viral inhibition was only observed in monocytes obtained 
from healthy controls [6].

Monocytes contribute to the supply of the heterogenous 
population of antigen-presenting dendritic cells. Dendritic 
cells decrease numerically in peripheral blood in patients 
with CKD and display reduced surface major histocompat-
ibility complex expression [103, 137]. Both myeloid, i.e., 
monocyte-derived and plasmacytoid dendritic cell levels 
diminish, respectively, by 29 and 43%, as analyzed by flow 
cytometry in a study involving 245 patients with CKD stage 
III [103]. And when renal function is replaced by hemodi-
alysis, dendritic cell levels are even 50% lower compared to 
healthy controls [136]. Ex-vivo, robust evidence suggests a 
prior uremic environment hampers monocyte to dendritic 
cell maturation and reduces characteristic dendritic cell sur-
face markers and co-stimulatory molecules such as CD83, 
CD86, and CCR7 [35, 76, 138] (Fig. 5). Another small study 
on the contrary showed accelerated dendritic cell matura-
tion of isolated monocytes from CKD patients [23]. Differ-
ent experimental settings and varying types and amounts 
of uremic toxins may explain these diverging results. Like-
wise, CKD’s manifold effects on cytokine generation are 
incompletely understood. Incubation with indoxyl sulfate 
decreases pro-inflammatory cytokine secretion by dendritic 
cells [35]. Contingent on the experimental setting and ure-
mic toxin under study, IL-12 release, for instance, may be 
augmented, unchanged, or even reduced [35, 76, 138]. IL-12 
signaling, which promotes natural killer cell and T-cell 
activation, may in the aggregate be corrupted under uremic 

Fig. 4   Chronic kidney disease 
impairs anti-bacterial host 
defense. Uremic toxins (UT, 
small yellow circles) increase 
the host’s susceptibility for 
infection via compromising 
proper myeloid cell function 
[56]. Uremic toxins promote 
neutrophil apoptosis and impair 
the cells’ phagocytic and oxida-
tive capacity [12, 52]. Likewise, 
monocytes’ phagocytic activity 
is mitigated. Reduced co-
stimulatory CD80/86 signaling 
hinders intact T-cell activa-
tion [76]. Under uremic condi-
tions, dendritic cells decrease 
in numbers and display reduced 
phagocytosis and antigen pres-
entation [136, 138]
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conditions in-vivo. This may conceivably relay the improper 
response to vaccination, which is a common phenomenon 
in CKD [69]. In this context, patients who did not properly 
responded to vaccination in a small study with 20 patients 
displayed a less mature dendritic cell phenotype with con-
sequences for autologous T-cell proliferation. Interestingly, 
GM-CSF treatment reinstates immunity and renders primary 
non-responding CKD patients responsive to hepatitis B vac-
cination in distinct settings [59, 136].

Finally, CKD impairs myeloid dendritic cells’ endo-
cytotic activity [76]. In light of cholesterol crystals’ 

inflammatory potency, it is particularly noteworthy that 
uremia may mitigate sterile inflammation, as uric acid 
crystal-induced, inflammasome-mediated gout flares atten-
uate when CKD progresses [3, 4, 24]. Taken together, vari-
ous myeloid cells are compromised in CKD and account 
for the dysfunctional immune response in non-sterile but 
also sterile inflammation. CKD’s engendered multi-facet-
ted immune turbulences, however, remain incompletely 
understood. We will contrast inflammatory and immuno-
suppressive mechanisms below.

Fig. 5   Uremia impairs neutrophil and myeloid dendritic cell function. 
Reduced neutrophilic CD62L expression impairs rolling and diapede-
sis, as assessed in hemodialysis patients [12, 64]. Activation of the 
Fas/APO-1 pathway induces pro-apoptotic signaling via Bax/Bcl-2 
system and p53 in neutrophils isolated from uremic patients [80]. 
The formation of extracellular traps increases but neutrophils’ phago-
cytic capacity decreases in CKD [64]. Uremic toxins inhibit myeloid 
dendritic cell maturation, reduce expression of characteristic surface 

markers, and impair endocytic activity [138]. Dendritic cell numbers 
decrease in CKD patients’ peripheral blood [136]. CKD’ s impact on 
dendritic cells’ capability to secrete Interleukin-12 remains incom-
pletely understood, as the cytokine release is increased or impaired 
depending on the setting [35, 76, 138]. Uremic toxin-induced IL-12 
secretion, however, alters activation of natural killer  (NK) cells and 
Th-1 lymphocytes and subsequent IFN-γ and TNF-α release [76]
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Synopsis

Whereas myeloid leukocytes' inflammatory effects pro-
mote cardiovascular disease progression, concurrent 
impaired innate immunity facilitates serious infections in 
CKD. This conundrum has not been solved, perhaps as 
most research focused unilaterally on one or the other 
entity.

Macrophages and monocytes: engines 
for inflammation in CKD?

Unsurprisingly, much evidence suggests CKD-driven 
vascular inflammation employs monocytes and resident 
macrophages on a cellular level. Likewise, first data point 
towards a promoting role of macrophages in heart valve 
disease [30, 106]. An unambiguous involvement of tissue-
resident macrophages in impaired immune defense on the 
contrary is less clear. Understanding how macrophages 
residing in tissues other than the vasculature or valve 
respond to uremia may help understand these discrepan-
cies. Conceivably, remote tissue dysfunction in uremia 
involves tissue-resident macrophages in light of the pro-
found inflammatory response in vascular tissue. Proven 
inter-population heterogeneity, tissue-specific transcrip-
tional profiles, and the dictating role of macrophages’ 
microenvironment to injury may yet significantly deter-
mine CKD’s effect on remote tissues [31, 53, 71].

Whereas little data imply macrophages mediate 
the heightened susceptibility to infection, monocytes’ 
responses to CKD are more diverse. Studies focusing 
on inflammation observed heightened levels of distinct, 
CD14+ monocyte populations and augmented expression 
of pattern-recognition receptors [45, 66, 90, 107, 110]. 
CD14 binds lipopolysaccharide (LPS) complexes, TLRs 
sense microbial ligands and TLR-4 is the prototypical LPS 
responder [98, 102, 148]. While monocytes’ enhanced 
inflammatory status is consistent with augmented endothe-
lial adhesiveness and generally atherogenic features, these 
findings seem less compatible with immunosuppression 
in CKD. In contrast, decreased phagocytic activity and 
reduced expression of surface co-stimulatory molecules 
may contribute to impaired immunity. Various questions 
arise: do monocytes exhibit both features simultaneously 
or do distinct monocytic subsets exist? Are inflammatory 
or immunosuppressive characteristics a function of CKD’s 
stage? Do distinct ligands i.e. uremic toxins preferentially 
nudge monocytes towards either response and does uremic 
toxin composition change over time? Because monocytes 
circulate, a tissue-specific effect as observed for mac-
rophages in other settings appears unlikely. As monocytes’ 

disease-promoting and inflammatory role in the cardio-
vascular system are significant, the lowered threshold for 
infections may conceivably be more relevantly relayed by 
other immune cells.

Neutrophils and dendritic cells: mediators 
of immunosuppression?

Neutrophil activation contributes to low-grade systemic 
inflammation in CKD and thus fosters vascular disease. 
Neutrophils’ impact on valvular inflammation and degen-
eration remains unclear. However, granulocyte subsets may 
accelerate cardiovascular calcification, which may also be 
relevant in valve disease. Studies indicate that neutrophils 
partake in systemic inflammation via augmented reactive 
oxygen production [17]. Enhanced superoxide release in ure-
mic neutrophils can be elicited by the Protein-C kinase ago-
nist PMA whereas use of zymosan–a molecule neutrophils 
avidly phagocytose– reduces superoxide release [122]. That 
uremic neutrophils display a reduced NADPH-oxidase activ-
ity following bacterial uptake is in line with this observation 
[65]. Therefore, the mechanism of activation may crucially 
regulate neutrophils response in the uremic microenviron-
ment. The way neutrophils react to external stimuli may 
further be determined by priming. In this regard, inappro-
priate priming may cause an elevated baseline activity but 
mitigated emergency response required to repel prokaryotes 
[17, 122]. Further, uremic toxins may differentially influ-
ence neutrophil granulocytes, e.g., p-cresol does not affect 
leukocytes’ baseline oxidative burst activity as opposed to 
p-cresyl sulfate [119]. Overall, the current body of evidence 
indicates profound granulocyte dysfunction in CKD, but 
neutrophils’ diverse facets in this disorder remain inscruta-
ble. Little is known about dendritic cells’ contribution to the 
state of immunosuppression in CKD. Uremic toxin mediated 
inhibition of cell maturation, decrease in numbers, reduced 
stimulation of the adapted immune system and presenta-
tion of antigens suggest that the aggregate response impairs 
immunity in CKD [35, 76, 137, 138].

Conclusion

Macrophages, monocytes, neutrophils, and myeloid den-
dritic cells are decisively impacted by impaired renal 
function. Whereas effects on monocytes and vascular 
macrophages are predominantly pro-inflammatory and pro-
calcific, neutrophils and myeloid dendritic cells may rel-
evantly contribute to the state of immunosuppression. A sole 
dichotomous view based on cell type does not seem suitable 
in light of the disease’s complexity on many levels and miss-
ing knowledge such as CKD’s role in myeloid dendritic cell 
behavior in cardiovascular tissues. However, myeloid leuko-
cytes’ array of different responses may in aggregate explain 
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the concomitant existence of augmented baseline inflamma-
tion and impaired host defense. Whether the same cell type 
acts inflammatory while displaying reduced anti-bacterial 
defense capabilities is unclear. Inadequate priming of poly-
morphonuclear granulocytes in CKD may be one instance, 
in which a single cell type contributes to heightened inflam-
mation while also displaying compromised anti-bacterial 
immunity. Subset heterogeneity i.e. cells of the same popu-
lation exert diverging functions may be another explana-
tion for the Janus-faced myeloid cell response in CKD. That 
CKD’s complications are mediated via different intracellular 
signaling pathways is conceivable, however, has not been 
systematically investigated to date.

Future perspectives

The field of systems immunology is evolving and may help 
decipher CKD’s complex impact on the innate immune sys-
tem. To better understand this convoluted situation, future 
studies should not exclusively focus on a single cell type, but 
instead assess differences in myeloid leukocyte responses, 
examine subset alterations and systemic interdependencies. 
Further, a more thorough and comparative analysis of the 
uremic microenvironment may help decipher uremic tox-
ins’ pleiotropic effects. Profiling of uremic retention solutes 
have led to a comprehensive catalog of molecules, yet inter-
molecule differences remain largely obscure [130]. Recently 
developed sequencing technologies will allow the commu-
nity to obtain unprecedented insights into leukocyte subsets 
in CKD, and on a systems level will allow us to identify 
populations that either further inflammation or impair immu-
nity. Targeting select tissues or cell types remains challeng-
ing but feasible. For instance, RNAi-mediated disruption of 
hepatic transthyretin production appears promising in hered-
itary amyloidosis [1]. Likewise, employing siRNA target-
ing PCSK9 proved useful against hypercholesterolemia [34]. 
While similar approaches to interfere with myeloid cells are 
technically more difficult, distinct nanoparticles are suitable 
vehicles to modulate gene expression in e.g. monocytes [81]. 
Silencing genes in myeloid cells that promote calcifying 
processes thus seems feasible to mitigate CKD’s systemic 
complications. However, a more refined understanding is 
a prerequisite to developing therapies that may intervene 
contingent on CKD’s stage and type of complication–tak-
ing leukocyte subtype and organ compartment into account.
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