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Noise-induced barren plateaus in variational
quantum algorithms
Samson Wang 1,2✉, Enrico Fontana1,3,4, M. Cerezo 1,5✉, Kunal Sharma1,6,7, Akira Sone 1,5,8,

Lukasz Cincio1 & Patrick J. Coles 1✉

Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy

Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise on

NISQ devices places fundamental limitations on VQA performance. We rigorously prove a

serious limitation for noisy VQAs, in that the noise causes the training landscape to have a

barren plateau (i.e., vanishing gradient). Specifically, for the local Pauli noise considered, we

prove that the gradient vanishes exponentially in the number of qubits n if the depth of the

ansatz grows linearly with n. These noise-induced barren plateaus (NIBPs) are conceptually

different from noise-free barren plateaus, which are linked to random parameter initialization.

Our result is formulated for a generic ansatz that includes as special cases the Quantum

Alternating Operator Ansatz and the Unitary Coupled Cluster Ansatz, among others. For the

former, our numerical heuristics demonstrate the NIBP phenomenon for a realistic hardware

noise model.
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One of the great unanswered technological questions is
whether Noisy Intermediate Scale Quantum (NISQ)
computers will yield a quantum advantage for tasks of

practical interest1. At the heart of this discussion are Variational
Quantum Algorithms (VQAs), which are believed to be the best
hope for near-term quantum advantage2–4. Such algorithms
leverage classical optimizers to train the parameters in a quantum
circuit, while employing a quantum device to efficiently estimate
an application-specific cost function or its gradient. By keeping
the quantum circuit depth relatively short, VQAs mitigate
hardware noise and may enable near-term applications including
electronic structure5–8, dynamics9–12, optimization13–16, linear
systems17,18, metrology19,20, factoring21, compiling22–24, and
others25–30.

The main open question for VQAs is their scalability to large
problem sizes. While performing numerical heuristics for small or
intermediate problem sizes is the norm for VQAs, deriving
analytical scaling results is rare for this field. Noteworthy
exceptions are some recent studies of the scaling of the gradient in
VQAs with the number of qubits n31–39. For example, it was
proven that the gradient vanishes exponentially in n for randomly
initialized, deep Hardware Efficient ansatzes31,32 and dissipative
quantum neural networks33, and also for shallow depth with
global cost functions34. This vanishing gradient phenomenon is
now referred to as barren plateaus in the training landscape.
Barren plateaus imply that in order to resolve gradients to a fixed
precision, on average, an exponential number of shots need to be
invested. This places an exponential resource burden on the
training process of VQAs. Further, such effects are not avoided by
adopting optimizers that use information about higher order
derivatives38 or gradient-free methods39. Fortunately, investiga-
tions into barren plateaus have spawned several promising stra-
tegies to avoid them, including local cost functions34,40,
parameter correlation37, pre-training41, and layer-by-layer
training42,43. Such strategies give hope that perhaps VQAs may
avoid the exponential scaling that otherwise would result from
the exponential precision requirements of navigating through a
barren plateau.

However, these works do not consider quantum hardware
noise, and very little is known about the scalability of VQAs in
the presence of noise. One of the main selling points of VQAs is
noise mitigation, and indeed VQAs have shown evidence of
optimal parameter resilience to noise in the sense that the global
minimum of the landscape may be unaffected by noise6,23. While
some analysis has been done44–46, an important open question,
which has not yet been addressed, is how noise affects the
asymptotic scaling of VQAs. More specifically, one can ask how
noise affects the training process. If the effect of noise on train-
ability is not severe, and the optimal parameters can be found,
then VQAs may be useful even in the presence of high deco-
herence in one of two ways. First, the end goal of certain algo-
rithms such as the Quantum Approximate Optimization
Algorithm (QAOA)47 is to extract an optimized set of para-
meters, rather than the optimal cost value. Second, error miti-
gation can be used in conjunction with VQAs that display
optimal parameter resilience. Intuitively, incoherent noise is
expected to reduce the magnitude of the gradient and hence
hinder trainability, and preliminary numerical evidence of this
has been seen48,49, although the scaling of this effect has not been
studied.

In this work, we analytically study the scaling of gradient for
VQAs as a function of n, the circuit depth L, and a noise para-
meter q < 1. We consider a general class of local noise models that
includes depolarizing noise and certain kinds of Pauli noise.
Furthermore, we investigate a general, abstract ansatz that allows
us to encompass many of the important ansatzes in the literature,

hence allowing us to make a general statement about VQAs. This
includes the Quantum Alternating Operator Ansatz (QAOA)
which is used for solving combinatorial optimization
problems13–16 and the Unitary Coupled Cluster (UCC) Ansatz
which is used in the Variational Quantum Eigensolver (VQE) to
solve chemistry problems50–52. This is also applicable for the
Hardware Efficient Ansatz and the Hamiltonian Variational
Ansatz (HVA) which are employed for various applications53–57.
Our results also generalize to settings that allow for multiple input
states or training data, as in machine learning applications, often
called quantum neural networks58–62.

Our main result (Theorem 1) is an upper bound on the
magnitude of the gradient that decays exponentially with L,
namely as 2−κ with κ ¼ �Llog 2ðqÞ. Hence, we find that the
gradient vanishes exponentially in the circuit depth. Moreover, it
is typical to consider L scaling as poly(n) (e.g., in the UCC
Ansatz52), for which our main result implies an exponential decay
of the gradient in n. We refer to this as a Noise-Induced Barren
Plateau (NIBP). We remark that NIBPs can be viewed as con-
comitant to the cost landscape concentrating around the value of
the cost for the maximally mixed state, and we make this precise
in Lemma 1. See Fig. 1 for a schematic diagram of the NIBP
phenomenon.

To be clear, any variational algorithm with a NIBP will have
exponential scaling. In this sense, NIBPs destroy quantum
speedup, as the standard goal of quantum algorithms is to avoid
the typical exponential scaling of classical algorithms. NIBPs are
conceptually distinct from the noise-free barren plateaus of
refs. 31–36. Indeed, strategies to avoid noise-free barren
plateaus34,37,40–43 do not appear to solve the NIBPs issue.

The obvious strategy to address NIBPs is to reduce circuit
complexity, or more precisely, to reduce the circuit depth. Hence,
our work provides quantitative guidance for how small L needs to
be to potentially avoid NIBPs.

In what follows, we present our general framework followed by
our main result. We also present two extensions of our main
result, one involving correlated ansatz parameters and one
allowing for measurement noise. The latter indicates that global
cost functions exacerbate the NIBP issue. In addition, we provide
numerical heuristics that illustrate our main result for MaxCut
optimization with the QAOA, and an implementation of the
HVA on superconducting hardware, both showing that NIBPs
significantly impact this application.

Results
General framework. In this work we analyze a general class of
parameterized ansatzes U(θ) that can be expressed as a product of
L unitaries sequentially applied by layers

UðθÞ ¼ ULðθLÞ � � �U2ðθ2Þ � U1ðθ1Þ : ð1Þ
Here θ ¼ fθlgLl¼1 is a set of vectors of continuous parameters that
are optimized to minimize a cost function C that can be expressed
as the expectation value of an operator O:

C ¼ Tr½OUðθÞρUyðθÞ� : ð2Þ
As shown in Fig. 2, ρ is an n-qubit input state. Without loss of
generality we assume that each Ul(θl) is given by

UlðθlÞ ¼
Y
m

e�iθlmHlmWlm ; ð3Þ

where Hlm are Hermitian operators, θl = {θlm} are continuous
parameters, and Wlm denote unparametrized gates. We expand
Hlm and O in the Pauli basis as

Hlm ¼ ηlm � σn ¼ ∑
i
ηilmσ

i
n ; O ¼ ω � σn ¼ ∑

i
ωiσ in ; ð4Þ
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where σ in 2 f1;X;Y ;Zg�n are Pauli strings, and ηlm and ω are
real-valued vectors that specify the terms present in the expan-
sion. Defining Nlm ¼ jηlmj and NO ¼ jωj as the number of non-
zero elements, i.e., the number of terms in the summations in Eq.
(4), we say that Hlm and O admit an efficient Pauli decomposition
if Nlm;NO 2 OðpolyðnÞÞ, respectively.

We now briefly discuss how the QAOA, UCC, and Hardware
Efficient ansatzes fit into this general framework. We refer the
reader to the Methods for additional details. In QAOA one
sequentially alternates the action of two unitaries as

Uðγ; βÞ ¼ e�iβpHM e�iγpHP � � � e�iβ1HMe�iγ1HP ; ð5Þ

where HP and HM are the so-called problem and mixer
Hamiltonian, respectively. We define NP (NM) as the number of
terms in the Pauli decomposition of HP (HM). On the other hand,
Hardware Efficient ansatzes naturally fit into Eqs. (1)–(3) as they
are usually composed of fixed gates (e.g, controlled NOTs), and
parametrized gates (e.g., single qubit rotations). Finally, as
detailed in the Methods, the UCC ansatz can be expressed as

UðθÞ ¼
Y
lm

UlmðθlmÞ ¼
Y
lm

e
iθlm ∑

i
μilmσ

i
n
; ð6Þ

where μilm 2 f0; ±1g, and where θlm are the coupled cluster
amplitudes. Moreover, we denote bNlm ¼ jμlmj as the number of
non-zero elements in ∑iμ

i
lmσ

i
n.

As shown in Fig. 2, we consider a noise model where local Pauli
noise channels N j act on each qubit j before and after each
unitary Ul(θl). The action of N j on a local Pauli operator
σ∈ {X, Y, Z} can be expressed as

N jðσÞ ¼ qσσ ; ð7Þ
where −1 < qX, qY, qZ < 1. Here, we characterize the noise strength
with a single parameter q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxfjqX j; jqY j; jqZjg
p

. Let U l denote
the channel that implements the unitary Ul(θl) and let N ¼
N 1 � � � � �N n denote the n-qubit noise channel. Then, the
noisy cost function is given by

eC ¼ Tr O N � UL � � � � �N � U1 �N
� �ðρÞ� �

: ð8Þ

General analytical results. There are some VQAs, such as the
VQE5 for chemistry and other physical systems, where it is
important to accurately characterize the value of the cost function
itself. We provide an important result below in Lemma 1 that
quantitatively bounds the cost function itself, and we envision
that this bound will be especially useful in the context of VQE. On
the other hand, there are other VQAs, such as those for
optimization13–16, compiling22–24, and linear systems17,18, where
the key goal is to learn the optimal parameters and the precise

Fig. 1 Schematic diagram of the Noise-Induced Barren Plateau (NIBP) phenomenon. For various applications such as chemistry and optimization,
increasing the problem size often requires one to increase the depth L of the variational ansatz. We show that, in the presence of local noise, the gradient
vanishes exponentially in L and hence exponentially in the number of qubits n when L scales linearly in n. This can be seen in the plots on the right, which
show the cost function landscapes for a simple variational problem with local noise.

Fig. 2 Setting for our analysis. An n-qubit input state ρ is sent through a
variational ansatz U(θ) composed of L unitary layers Ul(θl) sequentially
acting according to Eq. (1). Here, U l denotes the quantum channel that
implements the unitary Ul(θl). The parameters in the ansatz θ ¼ fθlgLl¼1 are
trained to minimize a cost function that is expressed as the expectation
value of an operator O as in Eq. (2). We consider a noise model where local
Pauli noise channels N j act on each qubit j before and after each unitary.
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value of the cost function is either not important or can be
computed classically after learning the parameters. In this case,
one is primarily concerned with trainability, and hence the gra-
dient is a key quantity of interest. These applications motivate our
main result in Theorem 1, which bounds the magnitude of the
gradient. We remark that trainability is of course also important
for VQE, and hence Theorem 1 is also of interest for this
application.

With this motivation in mind, we now present our main
results. We first present our bound on the cost function, since one
can view this as a phenomenon that naturally accompanies our
main theorem. Namely, in the following lemma, we show that the
noisy cost function concentrates around the corresponding value
for the maximally mixed state.

Lemma 1. (Concentration of the cost function). Consider an L-
layered ansatz of the form in Eq. (1). Suppose that local Pauli
noise of the form of Eq. (7) with noise strength q acts before and
after each layer as in Fig. 2. Then, for a cost function eC of the
form in Eq. (8), the following bound holds

eC � 1
2n

Tr½O�
����

���� ⩽ GðnÞ ρ� 1
2n

����
����
1

; ð9Þ

where

GðnÞ ¼ NO k ωk1 q2Lþ2 : ð10Þ
Here ∥⋅∥∞ is the infinity norm, ∥⋅∥1 is the trace norm, ω is
defined in Eq. (4), and NO ¼ jωj is the number of non-zero
elements in the Pauli decomposition of O.

This lemma implies the cost landscape exponentially concen-
trates on the value Tr½O�=2n for large n, whenever the number of
layers L scales linearly with the number of qubits. While this
lemma has important applications on its own, particularly for
VQE, it also provides intuition for the NIBP phenomenon, which
we now state.

Let ∂lmeC ¼ ∂eC=∂θlm denote the partial derivative of the noisy
cost function with respect to the m-th parameter that appears in
the l-th layer of the ansatz, as in Eq. (3). For our main technical
result, we upper bound j∂lmeCj as a function of L and n.

Theorem 1. (Upper bound on the partial derivative). Consider an
L-layered ansatz as defined in Eq. (1). Let θlm denote the trainable
parameter corresponding to the Hamiltonian Hlm in the unitary
UlðθlÞ appearing in the ansatz. Suppose that local Pauli noise of
the form in Eq. (7) with noise parameter q acts before and after
each layer as in Fig. 2. Then the following bound holds for the
partial derivative of the noisy cost function

j∂lmeCj⩽ FðnÞ; ð11Þ
where

FðnÞ ¼
ffiffiffiffiffiffiffiffiffiffi
8ln 2

p
NO kHlmk1 kωk1n1=2qLþ1 ; ð12Þ

and ω is defined in Eq. (4), with number of non-zero elements
NO.

Let us now consider the asymptotic scaling of the function F(n)
in Eq. (12). Under standard assumptions such as that O in Eq. (4)
admits an efficient Pauli decomposition and that Hlm has
bounded eigenvalues, we now state that F(n) decays exponentially
in n, if L grows linearly in n.

Corollary 1. (Noise-induced barren plateaus). Let Nlm;NO 2
OðpolyðnÞÞ and let ηilm;ω

j 2 OðpolyðnÞÞ for all i, j. Then the upper
bound F(n) in Eq. (12) vanishes exponentially in n as

FðnÞ 2 Oð2�αnÞ ; ð13Þ

for some positive constant α if we have

L 2 ΩðnÞ : ð14Þ
The asymptotic scaling in Eq. (13) is independent of l and m,

i.e., the scaling is blind to the layer, or the parameter within the
layer, for which the derivative is taken. This corollary implies that
when Eq. (14) holds, i.e. L grows at least linearly in n, the partial
derivative j∂lmeCj exponentially vanishes in n across the entire cost
landscape. In other words, one observes a Noise-Induced Barren
Plateau (NIBP). We note that Eq. (14) is satisfied for all q < 1.
That is, NIBPs occur regardless of the noise strength, it only
changes the severity of the exponential scaling.

In addition, Corollary 1 implies that NIBPs are conceptually
different from noise-free barren plateaus. First, NIBPs are
independent of the parameter initialization strategy or the locality
of the cost function. Second, NIBPs exhibit exponential decay of
the gradient itself; not just of the variance of the gradient, which is
the hallmark of noise-free barren plateaus. Noise-free barren
plateaus allow the global minimum to sit inside deep, narrow
valley in the landscape34, whereas NIBPs flatten the entire
landscape.

One of the strategies to avoid the noise-free barren plateaus is
to correlate parameters, i.e., to make a subset of the parameters
equal to each other37. We generalize Theorem 1 in the following
remark to accommodate such a setting, consequently showing
that such correlated or degenerate parameters do not help in
avoiding NIBPs. In this setting, the result we obtain in Eq. (16)
below is essentially identical to that in Eq. (12) except with an
additional factor quantifying the amount of degeneracy.

Remark 1. (Degenerate parameters). Consider the ansatz defined
in Eqs. (1) and (3). Suppose there is a subset Gst of the set {θlm} in
this ansatz such that Gst consists of g parameters that are
degenerate:

Gst ¼ θlm j θlm ¼ θst
	 


: ð15Þ
Here, θst denotes the parameter in Gst for which Nlm kηlmk1
takes the largest value in the set. (θst can also be thought of as a
reference parameter to which all other parameters are set equal in
value.) Then the partial derivative of the noisy cost with respect to
θst is bounded as

j∂steCj⩽ ffiffiffiffiffiffiffiffiffiffi
8ln 2

p
gNO kHlmk1 kωk1n1=2qLþ1; ð16Þ

at all points in the cost landscape.
Remark 1 is especially important in the context of the QAOA

and the UCC ansatz, as discussed below. We note that, in the
general case, a unitary of the form of Eq. (3) cannot be
implemented as a single gate on a physical device. In practice one
needs to compile the unitary into a sequence of native gates.
Moreover, Hamiltonians with non-commuting terms are usually
approximated with techniques such as Trotterization. This
compilation overhead potentially leads to a sequence of gates
that grows with n. Remark 1 enables us to account for such
scenarios, and we elaborate on its relevance to specific
applications in the next subsection.

In reality, noise on quantum hardware can be non-local. For
instance in certain systems one can have cross-talk errors or
coherent errors. We address such extensions to our noise model
in the following remark.

Remark 2. (Extensions to the noise model). Consider a mod-
ification to each layer of noise N in Eq. (8) to include additional
k-local Pauli noise and correlated coherent (unitary) noise across
multiple qubits. Under such extensions to the noise model, we
obtain the same scaling results as those obtained in Lemma 1 and
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Theorem 1. We discuss this in more detail in Supplementary
Note 5.

Finally, we present an extension of our main result to the case
of measurement noise. Consider a model of measurement noise
where each local measurement independently has some bit-flip
probability given by (1− qM)/2, which we assume to be
symmetric with respect to the 0 and 1 outcomes. This leads to
an additional reduction of our bounds on the cost function and its
gradient that depends on the locality of the observable O.

Proposition 1. (Measurement noise). Consider expanding the
observable O as a sum of Pauli strings, as in Eq. (4). Let w denote
the minimum weight of these strings, where the weight is defined
as the number of non-identity elements for a given string. In
addition to the noise process considered in Fig. 2, suppose there is
also measurement noise consisting of a tensor product of local
bit-flip channels with bit-flip probability (1− qM)/2. Then we
have

eC � 1
2n

Tr½O�
����

���� ⩽ qwM GðnÞ ρ� 1
2n

����
����
1

ð17Þ

and

j∂lmeCj ⩽ qwMFðnÞ ð18Þ
where G(n) and F(n) are defined in Lemma 1 and Theorem 1,
respectively.

Proposition 1 goes beyond the noise model considered in
Theorem 1. It shows that in the presence of measurement noise
there is an additional contribution from the locality of the
measurement operator. It is interesting to draw a parallel between
Proposition 1 and noise-free barren plateaus, which have been
shown to be cost-function dependent and in particular depend on
the locality of the observable O34. The bounds in Proposition
1 similarly depend on the locality of O. For example, when w= n,
i.e., global observables, the factor qwM will hasten the exponential
decay. On the other hand, when w= 1, i.e., local observables, the
scaling is unaltered by measurement noise. In this sense, a global
observable exacerbates the NIBP issue by making the decay more
rapid with n.

Application-specific analytical results. Here we investigate the
implications of our results from the previous subsection for two
applications: optimization and chemistry. In particular, we derive
explicit conditions for NIBPs for these applications. These con-
ditions are derived in the setting where Trotterization is used, but
other compilation strategies incur similar asymptotic behavior.
We begin with the QAOA for optimization and then discuss the
UCC ansatz for chemistry. Finally, we make a remark about the
Hamiltonian Variational Ansatz (HVA), as well as remark that
our results also apply to a generalized cost function that can
employ training data.

Corollary 2. (Example: QAOA). Consider the QAOA with 2p
trainable parameters, as defined in Eq. (5). Suppose that the
implementation of unitaries corresponding to the problem
Hamiltonian HP and the mixer Hamiltonian HM require kP- and
kM-depth circuits, respectively. If local Pauli noise of the form in
Eq. (7) with noise parameter q acts before and after each layer of
native gates, then we have

j∂βl eCj ⩽
ffiffiffiffiffiffiffiffiffiffi
8ln 2

p
gl;PNP kHPk1 kωk1n1=2qðkPþkM Þpþ1; ð19Þ

j∂γl eCj ⩽
ffiffiffiffiffiffiffiffiffiffi
8ln 2

p
gl;MNP kHMk1 kωk1 n1=2qðkPþkM Þpþ1; ð20Þ

for any choice of parameters βl, γl, and where O=HP in Eq. (2).
Here gl,P and gl,M are the respective number of native gates
parameterized by βl and γl according to the compilation.

Corollary 2 follows from Remark 1 and it has interesting
implications for the trainability of the QAOA. From Eqs. (19) and
(20), NIBPs are guaranteed if pkP scales linearly in n. This can
manifest itself in a number of ways, which we explain below.

First, we look at the depth kP required to implement one
application of the problem unitary. Graph problems containing
vertices of extensive degree such as the Sherrington-Kirkpatrick
model inherently require Ω(n) depth circuits to implement55. On
the other hand, generic problems mapped to hardware topologies
also have the potential to incur Ω(n) depth or greater in
compilation cost. For instance, implementation of MaxCut and k-
SAT using SWAP networks on circuits with 1-D connectivity
requires depth Ω(n) and Ω(nk−1) respectively15,63. Such map-
pings with the aforementioned compilation overhead for k⩾ 2 are
guaranteed to encounter NIBPs even for a fixed number of
rounds p.

Second, it appears that p values that grow at least lightly with n
may be needed for quantum advantage in certain optimization
problems (for example64–67). In addition, there are problems
employing the QAOA that explicitly require p scaling as
poly(n)21,68. Thus, without even considering the compilation
overhead for the problem unitary, these QAOA problems may
run into NIBPs particularly when aiming for quantum advantage.
Moreover, weak growth of p with n combined with compilation
overhead could still result in an NIBP.

Finally, we note that above we have assumed the contribution
of kP dominates that of kM. However, it is possible that for choice
of more exotic mixers16, kM also needs to be carefully considered
to avoid NIBPs.

Corollary 3. (Example: UCC). Let H denote a molecular
Hamiltonian of a system of Me electrons. Consider the UCC
ansatz as defined in Eq. (6). If local Pauli noise of the form in Eq.
(7) with noise parameter q acts before and after every Ulm(θlm) in
Eq. (6), then we have

j∂θlmeCj⩽
ffiffiffiffiffiffiffiffiffiffi
8ln 2

p bNlmNH kωk1 n1=2qLþ1; ð21Þ

for any coupled cluster amplitude θlm, and where O=H in Eq.
(2).

Corollary 3 allows us to make general statements about the
trainability of UCC ansatz. We present the details for the
standard UCC ansatz with single and double excitations from
occupied to virtual orbitals50,69 (see Methods for more details).
Let Mo denote the total number of spin orbitals. Then at least
n=Mo qubits are required to simulate such a system and the
number of variational parameters grows as Ωðn2M2

e Þ63,70. To
implement the UCC ansatz on a quantum computer, the
excitation operators are first mapped to Pauli operators using
Jordan-Wigner or Bravyi-Kitaev mappings71,72. Then, using first-
order Trotterization and employing SWAP networks63, the UCC
ansatz can be implemented in Ω(n2Me) depth, while assuming
1-D connectivity of qubits63. Hence for the UCC ansatz,
approximated by single- and double-excitation operators, the
upper bound in Eq. (21) (asymptotically) vanishes exponentially
in n.

To target strongly correlated states for molecular Hamilto-
nians, one can employ a UCC ansatz that includes additional,
generalized excitations56,73. A Ω(n3) depth circuit is required to
implement the first-order Trotterized form of this ansatz63.
Hence NIBPs become more prominent for generalized UCC
ansatzes. Finally, we remark that a sparse version of the UCC
ansatz can be implemented in Ω(n) depth63. NIBPs still would
occur for such ansatzes.

Additionally, we can make the following remark about the
Hamiltonian Variational Ansatz (HVA). As argued in56,74,75, the
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HVA has the potential to be an effective ansatz for quantum
many-body problems.

Remark 3. (Example: HVA). The HVA can be thought of as a
generalization of the QAOA to more than two non-commuting
Hamiltonians. It is remarked in ref. 57 that for problems of
interest the number of rounds p scales linearly in n. Thus, con-
sidering this growth of p and also the potential growth of the
compiled unitaries with n, the HVA has the potential to
encounter NIBPs, by the same arguments made above for the
QAOA (e.g., Corollary 2).

Remark 4. (Quantum Machine Learning). Our results can be
extended to generalized cost functions of the form Ctrain ¼
∑iTr½OiUðθÞρiUyðθÞ� where {Oi} is a set of operators each of the
form (4) and {ρi} is a set of states. This can encapsulate certain
quantum machine learning settings58–62 that employ training
data {ρi}. As an example of an instance where NIBPs can occur, in
one study62 an ansatz model has been proposed that requires at
least linear circuit depth in n.

Numerical simulations of the QAOA. To illustrate the NIBP
phenomenon beyond the conditions assumed in our analytical
results, we numerically implement the QAOA to solve MaxCut
combinatorial optimization problems. We employ a realistic noise
model obtained from gate-set tomography on the IBM Ourense
superconducting qubit device. In the Methods we provide addi-
tional details on the noise model and the optimization method
employed.

Let us first recall that a MaxCut problem is specified by a graph
G= (V, E) of nodes V and edges E. The goal is to partition the
nodes of G into two sets which maximize the number of edges
connecting nodes between sets. Here, the QAOA problem
Hamiltonian is given by

HP ¼ � 1
2
∑
ij2E

Cijð1� ZiZjÞ ; ð22Þ

where Zi are local Pauli operators on qubit (node) i, Cij= 1 if the
nodes are connected and Cij= 0 otherwise.

We analyze performance in two settings. First, we fix the
problem size at n= 5 nodes (qubits) and vary the number of
rounds p (Fig. 3). Second, we fix the number of rounds of QAOA
at p= 4 and vary the problem size by increasing the number of
nodes (Fig. 4).

In order to quantify performance for a given n and p, we
randomly generate 100 graphs according to the Erdős-Rényi
model76, such that each graph G is chosen uniformly at random
from the set of all graphs of n nodes. For each graph we run 10
instances of the parameter optimization, and we select the run
that achieves the smallest energy. At each optimization step the
cost is estimated with 1000 shots. Performance is quantified by
the average approximation ratio when training the QAOA in the
presence and absence of noise. The approximation ratio is defined
as the lowest energy obtained via optimizing divided by the exact
ground state energy of HP.

In our first setting we observe in Fig. 3a that when training in
the absence of noise, the approximation ratio increases with p.
However, when training in the presence of noise the performance
decreases for p > 2. This result is in accordance with Lemma 1, as
the cost function value concentrates around Tr½HP�=2n as p
increases. This concentration phenomenon can also be seen
clearly in Fig. 3b, where in fact we see evidence of exponential
decay of cost value with p.

Fig. 3 QAOA heuristics in the presence of realistic hardware noise:
increasing number of rounds for fixed problem size. a The approximation
ratio averaged over 100 random graphs of 5 nodes is plotted versus number
of rounds p. The black, green, and red curves respectively correspond to
noise-free training, noisy training with noise-free final cost evaluation, and
noisy training with noisy final cost evaluation. The performance of noise-
free training increases with p, similar to the results in Ref. 15. The green
curve shows that the training process itself is hindered by noise, with the
performance decreasing steadily with p for p > 4. The dotted blue lines
correspond to known lower and upper bounds on classical performance in
polynomial time: respectively the performance guarantee of the Goemans-
Williamson algorithm77 and the boundary of known NP-hardness78,79. b
The deviation of the cost from Tr½HP�=2n (averaged over graphs and
parameter values) is plotted versus p. As p increases, this deviation decays
approximately exponentially with p (linear on the log scale). c The absolute
value of the largest partial derivative, averaged over graphs and parameter
values, is plotted versus p. The partial derivatives decay approximately
exponentially with p, showing evidence of Noise-Induced Barren Plateaus
(NIBPs).

Fig. 4 QAOA heuristics in the presence of realistic hardware noise:
increasing problem size for a fixed number of rounds. The approximation
ratio averaged over 60 random graphs of increasing number of nodes n and
fixed number of rounds p= 4 is plotted. The black, green, and red curves
respectively correspond to noise-free training, noisy training with noise-free
final cost evaluation, and noisy training with noisy final cost evaluation. a
For a problem size of 8 nodes or larger, the noisily-trained approximation
ratio falls below the performance guarantee of the classical Goemans-
Williamson algorithm. b The depth of the circuit (red curve) scales linearly
with the number of qubits, confirming we are in a regime where we would
expect to observe Noise-Induced Barren Plateaus.
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In addition, we can see the effect of NIBPs as Fig. 3a also
depicts the value of the approximation ratio computed without
noise by utilizing the parameters obtained via noisy training. Note
that evaluating the cost in a noise-free setting has practical
meaning, since the classicality of the Hamiltonian allows one to
compute the cost on a (noise-free) classical computer, after
training the parameters. For p > 4 this approximation ratio
decreases, meaning that as p becomes larger it becomes
increasingly hard to find a minimizing direction to navigate
through the cost function landscape. Moreover, the effect of
NIPBs is evident in Fig. 3c where we depict the average absolute
value of the largest cost function partial derivative (i.e.,
maxlm j∂lmeCj). This plot shows an exponential decay of the
partial derivative with p in accordance with Theorem 1.

Finally, in Fig. 3a we contextualize our results with previously
known two-sided bounds on classical polynomial-time perfor-
mance. The lower bound corresponds to the performance
guarantee of the classical Goemans-Williamson algorithm77,
whilst the upper bound is at the value 16/17 which is the
approximation ratio beyond which Max-Cut is known to be NP-
hard78,79.

In our second setting we find complementary results. In Fig. 4a
we observe that at a problem size of 8 qubits or larger, 4 rounds of
QAOA trained on the noisy circuit falls short of the performance
guarantees of the classical Goemans-Williamson algorithm. As we
increase the number of qubits, we also observe this increases the
depth of the circuit linearly (Fig. 4b), thus confirming we are in a
regime of NIBPs.

Our numerical results show that training the QAOA in the
presence of a realistic noise model significantly affects the
performance. The concentration of cost and the NIBP phenom-
enon are both also clearly visible in our data. Even though we
observe performance for n= 5 and p= 4 that is NP-hard to
achieve classically, any possible advantage would be lost for large
problem sizes or circuit depth due to bad scaling. Hence, noise
appears to be a crucial factor to account for when attempting to
understand the performance of the QAOA.

Implementation of the HVA on superconducting hardware.
We further demonstrate the NIBP phenomenon in a realistic
hardware setting by implementing the Hamiltonian Variational
Ansatz (HVA) on the IBM Quantum ibmq_montreal 27-qubit
superconducting device. At time of writing this holds the record
for the largest quantum volume measured on an IBM Quantum
device, which was demonstrated on a line of 6 qubits80.

We implement the HVA for the Transverse Field Ising Model
as considered in ref. 57, with a local measurement O= Z0Z1 on
the first two qubits of the Ising chain. We assign the number of
layers L of the ansatz to increase linearly with the number of
qubits n according to the relationship L= n− 1. In order to
minimize SWAP gates used in transpilation (and the accom-
panying noise that they incur), we modify each layer of the HVA
ansatz to only include entangling gates between locally connected
qubits.

Figure 5 plots the partial derivative of the cost function with
respect to the parameter in the final layer of the ansatz, averaged
over 100 random parameter sets. We also plot averaged cost
differences from the corresponding maximally mixed values, as
well as the variance of both quantities. In the noise-free case both
the partial derivative and cost value differences decrease at a sub-
exponential rate. Meanwhile, in the noisy case we observe that
both the partial derivatives and cost value differences vanish
exponentially until their variances reach the same order of
magnitude as the shot noise floor. (As the shot budget on the IBM
Quantum device is limited, this leads to a background of shot

noise, and we plot the order of magnitude of this with a dotted
line.) This explicitly demonstrates that the problem of barren
plateaus is one of resolvability. In principle, if one has access to
exact cost values and gradients one may be able to navigate the
cost landscape, however, the number of shots required to reach
the necessary resolution increases exponentially with n.

Discussion
The success of NISQ computing largely depends on the scalability
of Variational Quantum Algorithms (VQAs), which are widely
viewed as the best hope for near-term quantum advantage for
various applications. Only a small handful of works have analy-
tically studied VQA scalability, and there is even less known
about the impact of noise on their scaling. Our work represents a
breakthrough in understanding the effect of local noise on VQA
scalability. We rigorously prove two important and closely related
phenomena: the exponential concentration of the cost function in
Lemma 1 and the exponential vanishing of the gradient in The-
orem 1. We refer to the latter as a Noise-Induced Barren Plateau
(NIBP). Like noise-free barren plateaus, NIBPs require the pre-
cision and hence the algorithmic complexity to scale exponen-
tially with the problem size. Thus, avoiding NIBPs is necessary for
a VQA to have any hope of exponential quantum speedup.

Fig. 5 Implementation on the ibmq_montreal superconducting-qubit
device. We consider the HVA with the number of layers growing linearly in
the number of qubits, n. a The average magnitude of the partial derivative of
the noisy and noise-free cost, with respect to the parameter in the final
layer, is plotted versus n. The average is taken over 100 randomly selected
parameter sets. As n increases, the noisy average partial derivative
decreases approximately exponentially, until around n= 9. This shows
evidence of Noise Induced Barren Plateaus on real quantum hardware. b
The deviation from exponential scaling can be understood by observing that
it coincides with the point that the variance of the noisy partial derivatives
reaches the same order of magnitude as the shot noise given by a finite
sample budget of 8192 shots. Thus, from this point onward we expect
fluctuations in the partial derivative to be dominated by shot noise, and
gradients to be unresolvable. c The difference of the cost value from its
corresponding maximally mixed value is plotted versus n. d The variance of
this difference is plotted versus n. Both these quantities also show
exponential decay until the variance of cost difference approaches the shot
noise floor, which shows evidence of exponential cost concentration on this
device.
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NIBPs have conceptual differences from noise-free barren
plateaus31–36 as the gradient vanishes with increasing problem
size at every point on the cost function landscape, rather than
probabilistically. As a consequence, NIBPs cannot be addressed
by layer-wise training, correlating parameters and other
strategies34,37,40–43, all of which can help avoid noise-free barren
plateaus. We explicitly demonstrate this in Remark 1 for the
parameter correlation strategy. Similar to noise-free barren pla-
teaus, NIBPs present a problem for trainability even when uti-
lizing gradient-free optimizers39 (e.g. simplex-based methods
such as81 or methods designed specifically for quantum
landscapes82) or optimization strategies that use higher-order
derivatives38. At the moment, the only strategies we are aware of
for avoiding NIBPs are: (1) reducing the hardware noise level, or
(2) improving the design of variational ansatzes such that their
circuit depth scales more weakly with n. Our work provides
quantitative guidance for how to develop these strategies.

We emphasize that naïve mitigation strategies such as artifi-
cially increasing gradients cannot remove the exponential scaling
of NIBPs as this simply increases the variance of any finite-shot
evaluation of derivatives, and it does not improve the resolvability
of the landscape. This argument extends simply to include any
error mitigation strategy that implements an affine map to cost
values83–89. Further, most error mitigation techniques consist
only of postprocessing noisy circuits. Thus, we deem it unlikely
many strategies can remove exponential NIBP scaling as infor-
mation about the cost landscape has fundamentally been lost (or
at least been made exponentially inaccessible). This is in contrast
to error correction where information is protected and recovered.
However, in general it is an open question as to whether or not
error mitigation strategies can mitigate NIBPs, and we leave this
question for future work.

An elegant feature of our work is its generality, as our results
apply to a wide range of VQAs and ansatzes. This includes the
two most popular ansatzes, QAOA for optimization and UCC for
chemistry, which Corollaries 2 and 3 treat respectively. In recent
times QAQA, UCC, and other physically motivated ansatzes have
be touted as the potential solution to trainability issues due to
(noise-free) barren plateaus, while Hardware Efficient ansatzes,
which minimize circuit depth, have been regarded as problematic.
Our work swings the pendulum in the other direction: any
additional circuit depth that an ansatz incorporates (regardless of
whether it is physically motivated) will hurt trainability and
potentially lead to a NIBP. This suggests that Hardware Efficient
ansatzes are in fact worth exploring further, provided one has an
appropriate strategy to avoid noise-free barren plateaus. This
claim is supported by recent state-of-the-art implementations for
optimization55 and chemistry54 using such ansatzes. Our work
also provides additional motivation towards the pursuit of
adaptive ansatzes90–98 that reduce circuit depth.

We believe our work has particular relevance to optimization.
For combinatorial optimization problems, such as MaxCut on
3-regular graphs, the compilation of a single instance of the
problem unitary e�iγHP can require an Ω(n)-depth circuit55.
Therefore, for a constant number of rounds p of the QAOA, the
circuit depth grows at least linearly with n. From Theorem 1, it
follows that NIBPs can occur for practical QAOA problems, even
for constant number of rounds. Furthermore, even neglecting the
aforementioned linear compilation overhead, NIBPs are guaran-
teed (asymptotically) if p grows in n. Such growth has been shown
to be necessary in certain instances of MaxCut64 as well as for
other optimization problems21,68, and hence NIBPs are especially
relevant in these cases.

While it is well known that decoherence ultimately limits the
depth of quantum circuits in the NISQ era, there was an inter-
esting open question (prior to our work) as to whether one could

still train the parameters of a variational ansatz in the high
decoherence limit. This question was especially important for
VQAs for optimization, compiling, and linear systems, which are
applications that do not require accurate estimation of cost
functions on the quantum computer. Our work essentially pro-
vides a negative answer to this question. Naturally, important
future work will involve extending our results to more general
(e.g., non-unital) noise models, and numerically testing the
tightness of our bounds. Moreover, our work emphasizes the
importance of short-depth variational ansatzes. Hence a crucial
research direction for the success of VQAs will be the develop-
ment of methods to reduce ansatz depth.

Methods
Special cases of our ansatz. Here we discuss how the the QAOA, the Hardware
Efficient ansatz, and the UCC ansatz fit into the framework as described in the
general framework subsection.

1. Quantum Alternating Operator Ansatz. The QAOA can be understood as a
discretized adiabatic transformation where the goal is to prepare the ground state
of a given Hamiltonian HP. The order p of the Trotterization determines the
solution precision and the circuit depth. Given an initial state sj i, usually the linear
superposition of all elements of the computational basis sj i ¼ þj i�n , the ansatz
corresponds to the sequential application of two unitaries UPðγlÞ ¼ e�iγlHP and
UMðβlÞ ¼ e�iβlHM . These alternating unitaries are usually known as the problem
and mixer unitary, respectively. Here γ ¼ fγkgLl¼1 and β ¼ fβkgLl¼1 are vectors of
variational parameters which determine how long each unitary is applied and
which must be optimized to minimize the cost function C, defined as the
expectation value

C ¼ hγ; βjHPjγ; βi ¼ Tr½HP γ; β
�� �

γ; β
� ��� ; ð23Þ

where γ; β
�� � ¼ Uðγ; βÞ sj i is the QAOA variational state, and where Uðγ; βÞ is given

by (5). In Fig. 6a we depict the circuit description of a QAOA ansatz for a specific
Hamiltonian where kP= 6.

2. Hardware Efficient Ansatz. The goal of the Hardware Efficient ansatz is to
reduce the gate overhead (and hence the circuit depth) which arises when
implementing a general unitary as in (3). Hence, when employing a specific
quantum hardware the parametrized gates e�iθlmHlm and the unparametrized gates
Wlm are taken from a gate alphabet composed of native gates to that hardware.
Figure 6b shows an example of a Hardware Efficient ansatz where the gate alphabet
is composed of rotations around the y axis and of CNOTs.

3. Unitary Coupled Cluster Ansatz. This ansatz is employed to estimate the
ground state energy of the molecular Hamiltonian. In the second quantization, and
within the Born-Oppenheimer approximation, the molecular Hamiltonian of a
system of Me electrons can be expressed as:
H ¼ ∑pqhpqa

y
paq þ 1

2∑pqrshpqrsa
y
payqaras , where faypg ({aq}) are Fermionic creation

(annihilation) operators. Here, hpq and hpqrs respectively correspond to the so-

Fig. 6 Special cases of our general ansatz. a QAOA problem unitary e�iγHP

for the ring-of-disagrees MaxCut problem, with Hamiltonian
HP ¼ 1

2∑jZjZjþ1. b Hardware Efficient ansatz composed of CNOTs and
single qubit rotations around the y-axis Ry(θ). c Unitary for the exponential
e�iθY1Z2Z3X4 . This type of circuit is a representative component of the UCC
ansatz.
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called one- and two-electron integrals50,69. The ground state energy of H can be
estimated with the VQE algorithm by preparing a reference state, normally taken to
be the Hartree-Fock (HF) mean-field state ψ0

�� �
, and acting on it with a

parametrized UCC ansatz.
The action of a UCC ansatz with single (T1) and double (T2) excitations is given

by ψ
�� � ¼ expðT � TyÞ ψ0

�� �
, where T= T1+ T2, and where

T1 ¼ ∑
i2occ
a2vir

tai a
y
aai; T2 ¼ ∑

i;j2occ
a;b2vir

ta;bi;j a
y
aa

y
bajai: ð24Þ

Here the i and j indices range over “occupied” orbitals whereas the a and b indices
range over “virtual” orbitals50,69. The coefficients tai and ta;bi;j are called coupled cluster

amplitudes. For simplicity, we denote these amplitudes ftai ; ta;bi;j g as {θlm}. Similarly, by

denoting the excitation operators {ayaai , a
y
aa

y
bajai} as {τlm}, the UCC ansatz can be

written in a compact form as UðθÞ ¼ e∑lmθlmðτlm�τylmÞ . In order to implement UðθÞ one
maps the fermionic operators to spin operators by means of the Jordan-Wigner or the
Bravyi-Kitaev transformations71,72, which allows us to write ðτ lm � τylmÞ ¼ i∑iμ

i
lmσ

i
n .

Then, from a first-order Trotterization we obtain (6). Here, μilm 2 f0; ±1g. In Fig. 6c
we depict the circuit description of a representative component of the UCC ansatz.

Proof of Theorem 1. Here we outline the proof for our main result on Noise-
Induced Barren Plateaus. We refer the reader to Supplementary Note 2 for addi-
tional details. We note that Lemma 1 and Remark 1 follow from similar steps and
their proofs are detailed in Supplementary Notes 3 and 4 respectively. Moreover,
we remark that Corollaries 1, 2 and 3 follow in a straightforward manner from a
direct application of Theorem 1 and Remark 1.

Throughout our calculations we find it useful to use the expansion of operators
in the Pauli tensor product basis. Given an n-qubit Hermitian operator Λ, one can
always consider the decomposition

Λ ¼ λ01
�n þ λ � σn ; ð25Þ

where λ0 2 R and λ 2 R4n�1. Note that here we redefine the vector of Pauli strings
σn as a vector of length 4n− 1 which excludes 1�n .

Central to our proof is to understand how operators are mapped by concatenations
of unitary transformations and noise channels. We do this through two lenses. First,
given an operator Λ we investigate how various ℓp-norms of λ are related at different
points in the evolution. Such quantities are well suited to study in our setting as we can
use the transfer matrix formalism in the Pauli basis, that is, to represent a channel N
with the matrix ðTN Þij ¼ 1

2n Tr σ in N ðσ jnÞ
h i

. Indeed, we see that the noise model in (7)

has a diagonal Pauli transfer matrix, which motivates this choice of attack. The second
quantity we use is the sandwiched 2-Rényi relative entropy D2 ρ k 1�n=2n

� �
between a

state ρ and the maximally mixed state. This is also useful to study due to the strong data
processing inequality in ref. 99 which quantifies how noise maps ρ closer to the
maximally mixed state.

Let us now present two lemmas that reflect these two parts of the proof. The
action of the noise in (7) on the operator Λ is to map the elements of λ as

λi !
N

λ0i ¼ qxðiÞX qyðiÞY qzðiÞZ λi where x(i), y(i), and z(i) respectively denote the number of
X, Y, and Z operators in the i-th Pauli string. Recall the definition
q ¼ maxfjqX j; jqY j; jqZ jg. Since x(i)+ y(i)+ z(i)⩾ 1, the inequality jλ0j ⩽ qjλj
always holds. We use this relationship, along with Weyl’s inequality and the unitary
invariance of Schatten norms to show that for an operator of the form (25) we have

WkðΛÞ
�� ��

1 ⩽ λ0 þ qk λ
!��� ���

1
ð26Þ

where Wk is a channel composed of k unitaries interleaved with noise channels of
the form (7). The second lemma we present is a consequence of a strong data-
processing inequality of of the sandwiched 2-Rényi relative entropy of ref. 99, from
which we can show

D2 WkðρÞ 1�n=2n
�� �

⩽ q2kD2 ρ
� ��1�n=2n

� � ð27Þ
where we note that D2 ρ k 1�n=2n

� �
itself is always upper bounded by n for any n-

qubit quantum state ρ.
Now that we have the main tools we present a sketch of the proof. In order to

analyze the partial derivative of the cost function ∂lmeC ¼ Tr O ∂lm ρL
� �

we first
note that the output state ρL can be expressed as

ρ L ¼ Wa �Wb

� �ðρ0Þ ¼ Wað�ρlÞ ; ð28Þ
where ρ0 is the input state and

Wa ¼ N � UL � � � � � U lþ1 �N � Uþ
lm; ð29Þ

Wb ¼ U�
lm �N � U l�1 � � � � �N � U1 �N ; ð30Þ

where U ±
lm are channels that implement the unitaries U�

lm ¼ Q
s⩽me

�iθlsHls and
Uþ

lm ¼ Q
s >me

�iθlsHls such that Ul ¼ Uþ
lm � U�

lm . For simplicity of notation here we
have omitted the parameter dependence on the concatenation of channels.

Additionally, we have introduced the notation �ρl ¼ Wbðρ0Þ and it is
straightforward to show that

∂lm�ρl ¼ �i½Hlm; �ρl � : ð31Þ
Using the tracial matrix Hölder’s inequality100, we can write

∂lmeC�� �� ¼ Tr Wy
aðOÞ ∂lm �ρl

� ��� �� ð32Þ

⩽ Wy
aðOÞ

�� ��
1 ∂lm�ρl

�� ��
1
; ð33Þ

where Wy
a is the adjoint map of Wa . The two terms in the product can then be

bounded with the above two techniques. Using (26) we find
Wy

aðOÞ
�� ��

1 ⩽ qL�lþ1NO ωk k1 for the first term. We bound the second term by
using (31), a bound on Schatten norms of commutators101, quantum Pinsker’s
inequality102, and (27) to obtain ∂lm�ρl

�� ��
1
⩽

ffiffiffiffiffiffiffiffiffiffi
8ln 2

p
Hlm

�� ��
1 n1=2ql . Putting the

two parts together we obtain

∂lmeC�� ��⩽ ffiffiffiffiffiffiffiffiffiffi
8ln 2

p
NO k Hlmk1 k ωk1n1=2qLþ1 ; ð34Þ

completing the proof.

Proof of Proposition 1. Here we sketch the proof of Proposition 1, with additional
details being presented in Supplementary Note 8.

We model measurement noise as a tensor product of independent local classical
bit-flip channels, which mathematically corresponds to modifying the local POVM
elements P0 ¼ 0j i 0h j and P1 ¼ 1j i 1h j as follows:

P0 ¼ 0j i 0h j ! eP0 ¼
1þ qM

2
0j i 0h j þ 1� qM

2
1j i 1h j ð35Þ

P1 ¼ 1j i 1h j ! eP1 ¼
1� qM

2
0j i 0h j þ 1þ qM

2
1j i 1h j : ð36Þ

In turn, it follows that one can also model this measurement noise as a tensor
product of local depolarizing channels with depolarizing probability 1⩾ (1− qM)/
2 ⩾ 0, which we indicate by NM . The channel is applied directly to the
measurement operator such that NMðOÞ ¼ ∑iω

iNMðσ inÞ ¼ eω � σn. Here eω is a

vector of coefficients eωi ¼ qwðiÞM ωi , where w(i)= x(i)+ y(i)+ z(i) is the weight of
the Pauli string. Here we recall that we have respectively defined x(i), y(i), z(i) as
the number of Pauli operators X, Y, and Z in the i-th Pauli string.

Let us first focus on the partial derivative of the cost. In the presence of
measurement noise we then have

∂lmeC ¼ 1
2n

Tr ðeω � σnÞðgðLÞ � σnÞ
� � ð37Þ

¼ eω � gðLÞ: ð38Þ
Which means that j∂lmeCj ¼ jeω � gðLÞj. We then examine the inner product in an
element-wise fashion:

jeω � gðLÞj⩽ ∑
i
jeωijjgðLÞi j⩽ ∑

i
qwðiÞM jωijjgðLÞi j : ð39Þ

Therefore, defining w ¼ min
i

wðiÞ as the minimum weight of the Pauli strings in the

decomposition of O, we have that qwðiÞM ⩽ qwM , and hence we can replace qwðiÞM with
qwM for each term in the sum. This gives an extra locality-dependent factor in the
bound on the partial derivative:

j∂lmeCj⩽ qwMFðnÞ: ð40Þ
An analogous reasoning leads to the following result for the concentration of

the cost function:

eC � 1
2n

Tr O

����
����⩽ qwMGðnÞ: ð41Þ

Details of numerical implementations. The noise model employed in our
numerical simulations was obtained by performing one- and two-qubit gate-set
tomography103,104 on the five-qubit IBM Q Ourense superconducting qubit device.
The process matrices for each gate native to the device’s alphabet, and the state
preparation and measurement noise are described in ref. 96,Apendix B]. In addition,
the optimization for the MaxCut problems was performed using an optimizer
based on the Nelder-Mead simplex method.

Data availability
Data generated and analyzed during the current study are available from the
corresponding author upon reasonable request.

Code availability
Code used for the current study is available from the corresponding author upon
reasonable request.
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