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Abstract
Impairments in mitochondrial physiology play a role in the progression of multiple neurodegenerative conditions, including 
peripheral neuropathy in diabetes. Blockade of muscarinic acetylcholine type 1 receptor  (M1R) with specific/selective antagonists 
prevented mitochondrial dysfunction and reversed nerve degeneration in in vitro and in vivo models of peripheral neuropathy. 
Specifically, in type 1 and type 2 models of diabetes, inhibition of  M1R using pirenzepine or muscarinic toxin 7 (MT7) induced 
AMP-activated protein kinase (AMPK) activity in dorsal root ganglia (DRG) and prevented sensory abnormalities and distal nerve 
fiber loss. The human neuroblastoma SH-SY5Y cell line has been extensively used as an in vitro model system to study mecha-
nisms of neurodegeneration in DRG neurons and other neuronal sub-types. Here, we tested the hypothesis that pirenzepine or MT7 
enhance AMPK activity and via this pathway augment mitochondrial function in SH-SY5Y cells.  M1R expression was confirmed 
by utilizing a fluorescent dye, ATTO590-labeled MT7, that exhibits great specificity for this receptor.  M1R antagonist treatment in 
SH-SY5Y culture increased AMPK phosphorylation and mitochondrial protein expression (OXPHOS). Mitochondrial membrane 
potential (MMP) was augmented in pirenzepine and MT7 treated cultured SH-SY5Y cells and DRG neurons. Compound C or 
AMPK-specific siRNA suppressed pirenzepine or MT7-induced elevation of OXPHOS expression and MMP. Moreover, muscarinic 
antagonists induced hyperpolarization by activating the M-current and, thus, suppressed neuronal excitability. These results reveal 
that negative regulation of this  M1R-dependent pathway could represent a potential therapeutic target to elevate AMPK activity, 
enhance mitochondrial function, suppress neuropathic pain, and enhance nerve repair in peripheral neuropathy.
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Introduction

Muscarinic acetylcholine receptors (mAChRs) are members 
of the superfamily of G protein coupled receptors (GPCRs) 
and consist of five molecular subtypes (M1–M5) [1, 2]. 

These receptors are coupled to various signal transduction 
pathways where M1, M3, and M5 couple with Gq to acti-
vate the inositol triphosphate  (IP3) pathway, and the M2 
and M4 receptors couple with Gi to inhibit adenylyl cyclase 
[3, 4]. The muscarinic acetylcholine type 1 receptor  (M1R) 
regulates numerous fundamental functions of the central 
and peripheral nervous systems and has been targeted for 
the development of new therapeutic modalities and drugs 
[5–7]. A variety of molecules block  M1R activation includ-
ing pirenzepine, which is a selective orthosteric receptor 
antagonist with high affinity [8], and muscarinic toxin 7 
(MT7) which is a highly specific antagonist (or negative 
allosteric modulator) [9, 10].

Mitochondria are highly dynamic, energy generating 
organelles that are known to concentrate in regions of 
high energy demand [11, 12] and are densely packed in 
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sensory nerve terminal boutons [13, 14]. Mitochondrial 
membrane potential (MMP) is a marker of optimal mito-
chondrial function where mitochondrial depolarization 
can indicate mitochondrial dysfunction [15–17]. Depo-
larization and the loss of MMP impacts respiratory chain 
complexes, which interrupts cellular electron flow and 
results in ATP depletion [18–21]. Maintenance of MMP 
is fundamental for the normal performance and survival 
of cells that have a high-energy requirement [22], such 
as sensory neurons [23–25]. Mitochondrial dysfunction 
and any energy deficit can contribute to the pathogenesis 
of neurodegenerative disease such as diabetic sensory 
neuropathy [23, 26, 27]. Furthermore, abnormal mito-
chondrial function correlated with a downregulation of 
mitochondrial proteins, including components of the res-
piratory chain complex [23, 26, 28]. Interestingly, block-
ade of  M1R with pirenzepine or MT7 prevented mito-
chondrial dysfunction and reversed nerve degeneration in 
rodent models of diabetic neuropathy [29, 30].

The energy sensor AMP-activated protein kinase 
(AMPK)/peroxisome proliferator-activated receptor-γ coac-
tivator α (PGC-1α) signaling pathway is linked to mitochon-
drial biogenesis and function [31, 32] and impaired AMPK/
PGC-1α signaling contributes to the aforementioned mito-
chondrial dysfunction and development of sensory neurop-
athy in diabetes [24, 30, 33–35]. Increased AMPK phos-
phorylation, driven by resveratrol or IGF-1, was associated 
with protection from neuropathy mediated via upregulation 
of respiratory chain components, augmentation of mito-
chondrial function, and respiratory complex activities [24, 
36, 37]. We have recently shown in adult sensory neurons 
that pirenzepine and MT7 drive phosphorylation of AMPK 
mediated via  Ca2+ influx and activation of  Ca2+/calmodu-
lin-dependent protein kinase kinase β (CaMKKβ) [29, 30]. 
This resulted in augmentation of mitochondrial function and 
elevated neurite outgrowth [29, 30, 38].

Neuronal hyperexcitability is a feature of neuropathic 
pain. The opening of potassium  (K+) channels leads to 
hyperpolarization of the cell membrane which results 
in a decrease in cell excitability.  K+ channels, primarily 
Kv7.2/7.3 sub-types (termed M channels), regulate neuronal 
excitability in peripheral neurons and are modulated by a 
large array of receptor types [39–41]. The M-current  (IM) 
is sensitive to the  M1R agonist muscarine [42]. Muscarinic 
activation of  M1R mobilizes internal  Ca2+ stores leading to 
closure of M channels and inducing a slow and long-lasting 
depolarization by inhibiting  IM and this effect is usually 
accompanied by a decrease in membrane conductance [43, 
44]. This muscarinic suppression of  IM was antagonized by 
pirenzepine [45] through enhancing the  IM current to make 
the neuron less excitable. However, the mechanistic interac-
tions between antimuscarinic drug, mitochondrial membrane 
potential, and M-current remain to be defined.

Therefore, to advance understanding of the downstream 
consequences of  M1R antagonism, we tested the hypothesis 
that  M1R antagonism enhances mitochondrial function via 
activation of the AMPK signaling pathway as well as modu-
lating neuronal excitability in human cells. This compre-
hensive study aimed at evaluating mitochondrial parameters 
including oxygen consumption rate (OCR), mitochondrial 
membrane potential (MMP), and expression of component 
proteins of the mitochondrial complexes (OXPHOS). We 
also investigated changes in plasma membrane potential in 
response to pirenzepine or MT7 in human neuroblastoma 
SH-SY5Y cells and primary neurons.

Materials and Methods

Animals and Cell Culture

The human neuroblastoma SH-SY5Y cell line (ATCC CRL-
2266, Virginia, USA) was a kind gift from Dr. Jun-Feng 
Wang, University of Manitoba. The cells were cultured in 
DMEM/F12 (1:1) media supplemented with heat inactivated 
10% FBS and 1X antibiotic antimycotic solution (A5955, 
Sigma, St. Louis, MO, USA).

Dorsal root ganglia (DRG) from adult male Sprague–Dawley 
rats were dissected and dissociated using previously described 
methods [29]. All animal procedures followed the guidelines 
of the University of Manitoba Animal Care Committee using 
the Canadian Committee on Animal Care (CCAC) rules. 
Neurons were cultured in defined Hams F12 media containing 
10  mM D-glucose (N4888, Sigma) supplemented with 
modified Bottenstein’s N2 additives (0.1 mg/ml transferrin, 
20 nM progesterone, 100 mM putrescine, 30 nM sodium 
selenite, 0.1 mg/ml BSA; all additives were from Sigma). In all 
experiments, the media was also supplemented with 0.146 g/L 
L-glutamine, a low-dose cocktail of neurotrophic factors 
(0.1 ng/ml NGF, 1.0 ng/ml GDNF and 0.1 ng/ml NT-3; all from 
Promega, Madison, WI, USA), 0.1 nM insulin, and 1X antibiotic 
antimycotic solution. Cultures were treated with 100 nM MT7 
(M-200, Alomone Labs, Jerusalem, Israel) or 1 µM pirenzepine 
(P7412, Sigma).

Localization of  M1R

Fluorescent dye ATTO Fluor 590-conjugated MT7 (MT7-
ATTO590; Alomone Labs) was used to detect  M1R. The 
activity of this MT7-ATTO590 conjugate on M1R was con-
firmed by the company (Alomone Labs) in  M1R/C6 cells 
by measuring intracellular changes in  Ca2+ levels and the 
specific binding was determined in rat DRG culture in the 
presence of excess (1 µM) unlabeled MT7 (data not shown). 
Adult wild-type and  M1R-KO (C57BL/6 background, line 
1784; Taconic Biosciences Inc.) [46] mouse DRG tissues 
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were incubated with 100 nM MT7-ATTO590 containing 
media at 37 °C  CO2 incubator overnight and then fixed in 
2% PFA, cryoprotected in 20% sucrose, and embedded in 
Tissue-Tek O.C.T. compound to prepare 7 µm sections. All 
sections were incubated overnight at 4 °C with β-tubulin III 
antiserum (1:500; T8578, Sigma) and then stained for 1 h 
with Alexa Fluor 488-conjugated anti-mouse IgG (1:1000; 
Invitrogen, California, USA) at room temperature. To con-
firm  M1R expression in SH-SY5Y cells and cultured rat 
DRG neurons, cells/neurons were incubated with 100 nM 
MT7-ATTO590 at 37° C in a  CO2 incubator overnight for 
microscopy. All images were taken by using a Carl Zeiss 
LSM510 confocal or Axioscope-2 fluorescence microscope.

Small Interfering RNAs (siRNA)‑Based Knockdown 
of AMPK

SH-SY5Y cells were transfected with 10 nM AMPK-spe-
cific siRNAs (AMPKα1, cat. 4392420, ID: s100 and s102; 
AMPKα2, cat. 4390824, ID: s11057, Thermo Scientific, 
Pittsburgh, PA, USA), or scrambled siRNA (cat. 4390843, 
Thermo Scientific) using Lipofectamine RNAiMAX (Invit-
rogen, Life Technologies, USA) according to the instruction 
manual. Briefly, siRNA was incubated with transfection rea-
gent in Opti MEM (Invitrogen) for 5 min at room tempera-
ture to allow the formation of transfection complexes, and 
then the transfection complexes were added to cells drop-
by-drop. Before transfection, the medium was changed to 
antibiotic-free DMEM. After 24 h of transfection, cells were 
changed to fresh medium and then subjected to various treat-
ments as required.

Quantitative Western Blotting

Cell lysate was harvested from cell culture and then homog-
enized in ice-cold RIPA buffer containing 25 mM Tris pH 8, 
150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% 
Triton X-100, and protease and phosphatase inhibitor cocktail. 
Protein assay was performed using the DC protein assay (Bio-
Rad, CA, USA), and Western blot analysis was conducted. Pro-
teins (15 µg total protein/lane) were resolved and separated via 
10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis 
(SDS-PAGE). The proteins were subsequently transferred to a 
nitrocellulose membrane (Bio-Rad) using Trans-Blot Turbo 
Transfer System (Bio-Rad) and immunoblotted with specific 
antibodies to phosphorylated AMPK (pAMPK on Thr172; 
1:1000, Cell Signaling Technology, Massachusetts, USA), total 
AMPK (T-AMPK; 1:7000, Abcam, Cambridge, UK), total 
OxPhos (1:1000, Invitrogen; antibody cocktail containing mul-
tiple OxPhos antibodies against complex I (20 kDa), complex II 
(30 kDa), complex III (core 2; 48 kDa), complex IV (MTCO1 
subunit, 40 kDa), and complex V (ATP5a subunit, 55 kDa)), 
NDUFS3 (1:1000, Abcam, complex I, 30 kDa), and total ERK 

(T-ERK; 1:3000, Santa Cruz Biotechnology, Texas, USA). Of 
note, total protein bands were captured by chemiluminescent 
imaging of the blot after gel activation (TGX Stain-Free™ 
FastCast Acrylamide Solutions, Bio-Rad) in addition to the use 
of T-ERK levels for target protein normalization (to adjust for 
loading). The secondary antibodies were HRP-conjugated goat 
antirabbit IgG (H + L) or goat anti-mouse IgG (H + L) from 
Jackson ImmunoResearch Laboratories, PA, USA. The blots 
were incubated in Clarity™ Western ECL substrate (Bio-Rad) 
or SignalFire™ ECL Reagent (Cell Signaling Technology) and 
imaged using a Bio-Rad ChemiDoc image analyzer (Bio-Rad).

Measurement of Mitochondrial Membrane Potential 
(MMP)

The MMP was evaluated by use of the fluorescent, lipophilic, 
and cationic probe, 5,5′,6,6′-tetrachloro-1,1′,3,3′-iodide (JC-1) 
(Invitrogen) according to the manufacturer’s instructions. JC-1 
dye stains mitochondria in a membrane potential-dependent 
manner. In functioning mitochondria with intact membrane 
potential differential, the mitochondria show a high red-to-green 
fluorescence ratio, whereas in depolarized mitochondria, the 
cationic dye is in monomeric form and produces a low red-to-
green ratio [47]. The ratio of aggregate (red) to monomer (green) 
is decreased after the addition of FCCP (an uncoupler that dis-
sipates the transmembrane electrochemical gradient). Cultured 
SH-SY5Y cells in 96-well plates (black clear-bottomed; Thermo 
Scientific) were loaded with 20 μM JC-1 and DRG neurons were 
loaded with 5 μM JC-1 staining solution for 15 min at 37 °C and 
washed with JC-1 staining buffer and then subjected to vari-
ous treatments. The fluorescence intensity was measured by a 
Biotek Synergy Neo2 multimode plate reader with 485 nm for 
excitation and 530 nm for emission of green (monomer form) 
fluorescence, and 485 nm for excitation and 590 nm for emission 
for red (aggregate form) fluorescence. The MMP of cells in each 
group was evaluated as the fluorescence ratio of red to green. 
The data were expressed as the relative expression to the control.

Assessment of Plasma Membrane Potential

Cultured DRG neurons or SH-SY5Y cells in 96-well plates 
(black clear-bottomed; Thermo Scientific) were loaded with 
5 μM of DiBAC4(3) (Invitrogen) staining solution for 30 min at 
37 °C to ensure dye distribution across the plasma membrane. 
DiBAC4(3) is an anionic potentiometric probe that partitions 
between cells and extracellular solution in a membrane poten-
tial-dependent manner [48]. With increasing membrane poten-
tial, the probe partitions into the cell, resulting in an increase 
in fluorescence due to dye interaction with intracellular lipids 
and proteins, whereas hyperpolarization evokes a decrease in 
fluorescence. Fluorescence signals were recorded (with a Carl 
Zeiss LSM510 confocal inverted microscope; excitation at 
488 nm and emission 520 nm) for 8 min at 5 s intervals. After 
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Fig. 1  Human neuroblastoma 
SH-SY5Y cell line and DRG 
neurons express M1 receptors. 
A–D Confocal images of cul-
tured SH-SY5Y cells (A, B) and 
rat DRG neurons (C, D) stained 
with 100 nM MT7-ATTO590. 
E–H Immunohistochemistry 
images of mouse DRG tissues 
for wild type (E, F) and  M1R 
KO (G, H) mice stained with 
100 nM MT7-ATTO590. F, 
H Neuronal cells were stained 
with ß-tubulin III antibodies. 
White arrows indicate  M1R + ve 
and yellow arrows indicate  M1R 
-ve cells or neurons. WT, wild 
type;  M1R KO,  M1R knock out
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Fig. 2  Pirenzepine and MT7 elevate phosphorylation of AMPK in a 
dose and time-dependent manner. A SH-SY5Y cells were cultured 
overnight, serum deprived (SD) for 4  h and then treated with vari-
ous doses of pirenzepine (PZ) for 1  h. Western blots are shown for 
P-AMPK and T-AMPK. B Levels of expression of P-AMPK (in A) 
presented relative to T-AMPK. C SH-SY5Y cells were subjected 
to SD exposed to 1 µM PZ for various times (15 min, 30 min, and 
60 min). D Levels of P-AMPK (in C) presented relative to T-AMPK. 
E SH-SY5Y cells were cultured overnight, starved for 4 h and then 

treated with various doses of MT7 for 1 h. Western blots are shown 
for P-AMPK and T-AMPK. F Levels of expression of P-AMPK (in E) 
presented relative to T-AMPK. G SH-SY5Y cells were subjected to 
SD exposed to 100 nM MT7 for various times (15 min, 30 min, and 
60 min). H Levels of P-AMPK (in G) presented relative to T-AMPK. 
Data are expressed as mean ± SEM, n = 3 replicates; *p < 0.05 and 
***p < 0.001 vs control by one-way ANOVA with Dunnett’s post hoc 
test
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measurement of 1 min basal fluorescence, drugs (MT7 100 nM, 
pirenzepine (PZ) 30 µM, muscarine (Mus) 100 µM; prepared 
in the assay buffer containing DiBAC4(3)) were administered 
to the culture. At the end, 90 mM KCl was applied. Only neu-
rons that responded to KCl with membrane depolarization were 
selected for analysis. Images were analyzed using Fiji software 
[49]. Regions of interest (ROIs) containing individual neurons 
were selected and fluorescence intensities quantified. Responses 
were corrected for any background changes in fluorescence and 
data were plotted with baseline correction.

Statistical Analysis

Data are expressed as mean ± SEM, and where appropriate, 
data were subjected to unpaired 2-tailed Student’s t test, one-
way ANOVA with Tukey’s, or Dunnett’s multiple comparison 
post hoc tests. Area under the curve (AUC) analysis was per-
formed using the trapezoidal rule with baseline correction. A 
value of p < 0.05 was considered statistically significant. Graph-
Pad Prism software was used to perform statistical analysis.

Fig. 3  Pirenzepine and MT7 treatment increase the expression of 
mitochondrial respiratory chain proteins. A–D SH-SY5Y cells were 
treated with/without 1 µM pirenzepine (PZ; A, B) and 100 nM MT7 
(C, D) for 8 h, and lysates subjected to Western blotting. Representa-
tive Western blot (A, C) showing OXPHOS protein levels. Specific 

proteins from each respiratory complex were quantified and expressed 
relative to total protein (B, D). Data are expressed as mean ± SEM, 
n = 6 replicates; *p < 0.05 or **p < 0.01 or ***p < 0.001 vs control by 
unpaired Student’s t-test
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Results

Expression of  M1R in Human Neuroblastoma 
SH‑SY5Y Cell Line and Rodent DRG Neurons

The presence of  M1R in SH-SY5Y cell line and rat 
DRG neurons was assessed by using MT7-ATTO590 
(Fig. 1A–D). This labelled MT7 is absolutely specific 
for the  M1R and is superior to the use of antibodies that 
cross-react with other MR sub-types. The specificity of 
MT7-ATTO590 was confirmed by using DRG tissues 

from wild-type and  M1R knock out  (M1R KO) mice 
(Fig. 1E–H). The SH-SY5Y human neuroblastoma cell 
line is a well-characterized model to study muscarinic 
cholinergic function [50, 51] and we decided to use this 
cellular model to establish the effect of  M1R antagonism. 
We also confirmed the mRNA expression levels of  M1R 
in SH-SY5Y cells by using quantitative RT-PCR (Sup-
plementary Fig. 1) and this data confirmed a previous 
report [52]. Overall, these observations clearly demon-
strate that  M1R is widely expressed in rodent DRG and 
neuroblastoma cells.

Fig. 4  AMPK knockdown 
blocks pirenzepine-mediated 
upregulation of mitochondrial 
respiratory protein complexes. 
SH-SY5Y cells were cultured 
overnight, transfected with 
scrambled siRNA (siNC) or 
siRNAs specific to AMPK-
isoforms α1 and α2 (siAMPK) 
and cultured for 24 h. Cells 
were subsequently treated with/
without 1 µM PZ for 8 h, and 
subjected to Western blotting. 
A Representative Western blot 
showing OXPHOS protein 
levels for control + siNC, 
PZ + siNC, control + siAMPK, 
and PZ + siAMPK. B–G Band 
intensity of each protein was 
normalized to total protein. 
Western blotting for total 
AMPK was used to calculate 
the knock-down efficiency of 
AMPK isoforms (A) where 
levels of expression of T-AMPK 
are presented relative to total 
protein (G). H Total ERK 
(T-ERK) was used as a loading 
control. Data are expressed 
as mean ± SEM, n = 6 repli-
cates; *p < 0.05 or **p < 0.01 
or ***p < 0.001 by one-way 
ANOVA with Tukey’s post hoc 
test
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Pirenzepine/MT7 Augment AMPK Phosphorylation 
in a Dose‑ and Time‑Dependent Manner 
and Enhance Respiratory Chain Protein Expression 
and Mitochondrial Function in SH‑SY5Y Cells

Pirenzepine- or MT7-induced AMPK activation was con-
firmed by detecting the phosphorylated form of AMPK 
(Fig.  2). SH-SY5Y cells were starved in serum free 
DMEM for 4 h before treatment. Western blots exhibited 
a marked dose-dependent and time-dependent elevation 
in AMPK phosphorylation (pAMPK) following piren-
zepine/MT7 treatment. Quantification of pAMPK rela-
tive to T-AMPK revealed ~ 2.0-fold elevation at 1 µM 
PZ (Fig. 2A, B) and ~ 1.5-fold elevation at 100 nM MT7 
(Fig. 2E, F). A time course for the effect of 1 µM piren-
zepine and 100 nM MT7 was performed and revealed an 
elevation in pAMPK levels following 1 h of treatment, 
where pirenzepine caused a ~ 2.5-fold increase (Fig. 2C, 
D) and MT7 caused a ~ 2.0-fold enhancement in pAMPK 
(Fig. 2G, H). Previous studies reported that there are sev-
eral downstream effectors of AMPK that contribute to the 
regulation of mitochondrial biogenesis [53, 54]. In line 
with these observations, pirenzepine/MT7 treatment (8 h, 
without starvation) induced mitochondrial OXPHOS pro-
teins, components of the electron transport chain (ETC), 
including complex components V-ATP5a, III-UQCRC2, 
IV-MTCO1, II-SDHB, and I-NDUFB8 (Fig. 3A-D). In 
serum-deprived condition, 8 h treatment with pirenzepine 
or MT7 also exhibited enhanced mitochondrial protein 
expression (Supplementary Fig. 2), although some protein 
complexes were not statistically significant and changes 
not as robust as compared with the data (without starva-
tion) revealed in Fig. 3. This may be explained by the fact 
that cells were subjected to increasing duration of serum 
deprivation and so experience a stressful condition [55]. 
In addition to mitochondrial protein expression, mitochon-
drial oxygen consumption rate (OCR) was enhanced with 
 M1R antagonist treatment (Supplementary Fig. 3). The 
bioenergetic parameter of maximal respiration was also 

increased, although not reaching statistical significance 
(P < 0.06) (Supplementary Fig. 3C). Relative ATP pro-
duction, measured using the Seahorse machine, was aug-
mented by MT7 treatment (Supplementary Fig. 3E). This 
confirms our previous work in cultured rat DRG neurons, 
and in tissues from STZ-induced diabetic rodents [29]), 
that blockade of  M1R enhances mitochondrial function.

AMPK Knockdown Blocks Upregulation 
of Mitochondrial Respiratory Protein Complexes 
Driven by  M1R Antagonists Pirenzepine and MT7 
in SH‑SY5Y Cells

Impaired AMPK signaling in DRG neurons is linked to 
mitochondrial dysfunction [24]. To confirm the causal 
involvement of AMPK activation in upregulation of 
mitochondrial protein complexes by pirenzepine/MT7, 
we employed siRNA-mediated AMPK knockdown in 
SH-SY5Y cells. Following 24 h of treatment with the 
siRNAs, the level of total-AMPK protein was signifi-
cantly depleted (Figs. 4G and 5G). AMPK knockdown 
significantly blocked the upregulation of mitochondrial 
OXPHOS proteins induced by pirenzepine (Fig. 4A–F) 
or MT7 treatment (Fig. 5A–F).

AMPK Inhibition or Downregulation Suppresses 
the Pirenzepine/MT7 Effect on Mitochondrial 
Membrane Potential (MMP) in SH‑SY5Y Cells and Rat 
DRG Neurons

MMP generated by the proton pumps of the mitochon-
drial respiratory complexes is indispensable in the pro-
cess of energy storage during oxidative phosphorylation 
[56]. MMP, a key indicator of cell health or injury, has 
become a useful parameter for monitoring changes in 
mitochondrial function [57]. Changes in MMP were ana-
lyzed by employing the mitochondrial cationic dye, JC-1 
(Figs. 6 and 7). A time course experiment for the effect 
of 1 µM pirenzepine was performed in SH-SY5Y cells. 
Exposure to pirenzepine for 6 h increased the MMP in 
SH-SY5Y cells (Fig. 6A). Similar time course experiment 
for 1 µM pirenzepine and 100 nM MT7 was performed 
in cultured DRG neurons where MMP was elevated after 
3 h of pirenzepine (Fig. 7A) or MT7 treatment (Fig. 7B). 
To see whether this upregulation was due to AMPK acti-
vation, SH-SY5Y cells and DRG neurons were treated 
with Compound C (a pharmacological AMPK inhibitor) 
or transfected with siRNAs to AMPK. Pharmacological 
blockade of AMPK using Compound C suppressed the 
pirenzepine (Fig. 6B) or MT7 (Fig. 7C) induced elevation 
of MMP. siRNA-based inhibition of AMPK also exhibited 
a similar suppression of pirenzepine-induced enhance-
ment of MMP in SH-SY5Y cells (Fig. 6C).

Fig. 5  AMPK knockdown blocks MT7-dependent upregulation 
of mitochondrial respiratory protein complexes. SH-SY5Y cells 
were cultured overnight, transfected with scrambled siRNA (siNC) 
or siRNAs specific to AMPK-isoforms α1 and α2 (siAMPK) and 
cultured for 24  h. Cells were subsequently treated with/without 
100  nM MT7 for 8  h, and subjected to Western blotting. A Repre-
sentative Western blot showing OXPHOS protein levels for con-
trol + siNC, MT7 + siNC, control + siAMPK, and MT7 + siAMPK. 
B–G Band intensity of each protein was normalized to total protein. 
Western blotting for total AMPK was used to calculate the knock-
down efficiency of AMPK isoforms (A) where levels of expression 
of T-AMPK are presented relative to total protein (G). H T-ERK 
was used as a loading control. Data are expressed as mean ± SEM, 
n = 6 replicates; *p < 0.05 or **p < 0.01 or ***p < 0.001 by one-way 
ANOVA with Tukey’s post hoc test

◂
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Role of  M1R Antagonists in the Regulation of Plasma 
Membrane Potential in Primary DRG Neurons 
and SH‑SY5Y Cells

Cultured DRG neurons were loaded with the voltage sen-
sor probe DiBAC4(3) to evaluate the plasma membrane 
potential (Vm). In DRG neurons,  M1R antagonists (MT7 
or pirenzepine) induced hyperpolarization thus inducing a 
less excitable state. The muscarinic receptor agonist, mus-
carine, depolarized the neuronal plasma membrane poten-
tial (Fig. 8A–J). The same experiment was performed in 
SH-SY5Y cells where there was a similar hyperpolarizing 
response to MT7 and depolarization to muscarine (Supple-
mentary Fig. 4A-F).

Discussion

The findings in our current study indicate a link between 
impaired AMPK signaling and mitochondrial respiratory 
chain dysfunction in human neuroblastoma SH-SY5Y 
cells. The SH-SY5Y cell line has been used extensively as 
an in vitro model system of peripheral sensory neurons as 
they exhibit traits of sensory neuron phenotype [58]. Thus, 
the rationale for this approach is that the assay performed in 
this cell line can be a predictor of efficacy in human cells and 
will be useful for future drug screening endeavors [59]. In 
addition, this work provides important background informa-
tion that will underpin future molecular studies not feasible 
in primary neurons, e.g., proteomic studies to understand 

Fig. 6  Effects of pirenzepine 
treatment on mitochondrial 
membrane potential in SH-
SY5Y cells. SH-SY5Y cells 
were cultured overnight, stained 
with JC-1 dye to analyze mito-
chondrial membrane potential 
(MMP) and subsequently, the 
loss of MMP in response to 
FCCP. A Cells were treated 
with/without 1 µM pirenzepine 
(PZ) for various times (1 h, 
3 h, and 6 h). B Cells were 
treated with AMPK inhibitor 
compound C (CC, 3 µM) with/
without 1 µM PZ for 6 h. C 
SH-SY5Y cells were cultured 
overnight, transfected with 
scrambled siRNA (siNC) and 
siRNAs specific to AMPK-
isoforms α1 and α2 (siAMPK) 
and were cultured for 24 h. 
Cells were subsequently treated 
with/without 1 µM PZ for 6 h. 
Fluorescence ratio was used for 
MMP quantitative analysis. The 
ratio of aggregate to monomer 
is decreased after the addition 
of FCCP (an uncoupler). All 
the left panels show the MMP, 
whereas the right panels show 
changes in MMP after FCCP 
treatment. The JC-1 dye ratio 
was determined using a Biotek 
Neo2 Synergy multimode plate 
reader. Data are expressed as 
mean ± SEM, n = 10–15 repli-
cates; *p < 0.05 or **p < 0.01 
or ***p < 0.001 by one-way 
ANOVA with Tukey’s post hoc 
test
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molecular pharmacology at the  M1R (for example, see [60]). 
We observed MT7 and pirenzepine treatment enhanced 
AMPK phosphorylation, augmented mitochondrial complex 
protein expression, and enhanced mitochondrial function in 
the SH-SY5Y cell line, and these data support our previous 
report in DRG neurons [23, 24, 29, 30]. Importantly, siRNA 
targeting AMPK significantly blocked the drug-induced 
upregulation of mitochondrial OXPHOS proteins resulting 
in a suppressed oxidative phosphorylation system.

Dynamic morphological changes in mitochondria are 
required to maintain a homogenous population of func-
tional mitochondria to ensure continuous and optimal 
mitochondrial respiration. Optimal mitochondrial function 
is a key factor for axonal outgrowth and repair [37, 61]. 

Mitochondrial abnormalities have been proposed to medi-
ate development of diabetic complications through cellular 
dysfunction in endothelial cells, skeletal muscle, cardio-
myocytes, and neurons [23, 24, 26, 62–64]. Mitochondrial 
biogenesis is triggered by the AMPK-PGC-1α-Nrf1 pathway 
which, in turn, regulates the expression of both mitochon-
drial and nuclear genes encoding respiratory chain subunits 
and other proteins that are required for mitochondrial func-
tion [65, 66]. Energy supplementation provided by this path-
way is required for axonal outgrowth and neuronal growth 
[65]. Previous studies have highlighted that activation of 
AMPK can elevate neurite outgrowth. For example, resvera-
trol, an activator of AMPK, drives axonal outgrowth and 
was protective against diabetic neuropathy in STZ-induced 

Fig. 7  Effects of pirenzepine 
and MT7 treatment on MMP 
in DRG neurons. DRG neurons 
derived from adult control rats 
were cultured for 24 h, stained 
with JC-1 dye to evaluate MMP 
and the loss of MMP subse-
quent to FCCP application. A, 
B Neurons were treated with/
without 1 µM PZ (A) or 100 nM 
MT7 (B) for various times 
(1 h and 3 h). C Neurons were 
treated with AMPK inhibi-
tor compound C (CC, 3 µM) 
with/without 100 nM MT7 for 
3 h. All the left panels show 
the MMP, whereas the right 
panels show changes in MMP 
after FCCP treatment. Data 
are expressed as mean ± SEM, 
n = 8–10 replicates; *p < 0.05 or 
**p < 0.01 or ***p < 0.001 by 
one-way ANOVA with Tukey’s 
post hoc test
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diabetic rats [24, 67]. Recent studies also report IGF-1-medi-
ated upregulation of mitochondrial respiration together with 
a dose-dependent stimulation of ATP production through 
AMPK in a type 1 model of diabetes [36]. Other works 
have determined that certain mitochondrial complexes and 
mitochondrial membrane potential were impaired in corti-
cal tissues and primary DRG neurons from diabetic rat but 
the cellular mechanisms are not completely understood [23, 
25, 68].

The present study demonstrates for the first time that 
blockade of the  M1R by the specific antagonist MT7 or the 
selective antagonist pirenzepine causes an augmentation of 
the mitochondrial membrane potential (MMP) in both cul-
tured SH-SY5Y cells and DRG neurons. This stimulatory 
effect on MMP was time dependent and triggered within 
1 h. MMP is a parameter for mitochondrial metabolic state 
and provides an estimate of the ATP production within indi-
vidual mitochondria [69]. The AMPK inhibitor, Compound 
C, abolished the pirenzepine and MT7-mediated upregu-
lation of mitochondrial MMP. SiRNA-based inhibition of 
endogenous AMPK exhibited a similar suppression of the 
pirenzepine enhancement of MMP. These novel observations 
in neurons provide functional evidence linking AMPK and 
alterations in mitochondrial performance, such as mainte-
nance of MMP.

M1R activation inhibits voltage-gated Kv7 potassium 
channels that mediate the M-current in sympathetic neurons 
[43, 70]. M-current  (IM) is a low-threshold, slowly activating 
potassium current in sympathetic neurons where it functions 
as a “brake” for neurons receiving persistent excitatory input 
[70]. The M-current is strongly suppressed by  M1R activa-
tion [42, 45, 71, 72] which is known to play an important 
role in modulating neuronal excitability and its suppression 
is predicted to increase input resistance in response to excita-
tory synaptic inputs [70, 73–75]. M-current inhibition via 
 M1R activation by acetylcholine is phosphatidylinositol-
4,5-bisphosphate  (PIP2)-dependent with depletion of  PIP2 
dramatically decreasing Kv7 channel open probability [76, 
77]. Acute ACh activation of  M1R promotes  PIP2 hydrolysis 

through phospholipase C activation, resulting in PKC phos-
phorylation and generation of inositol triphosphate, which 
induces endoplasmic reticulum  Ca2+ release [78]. Down-
stream  Ca2+-dependent pathways drive closing of Kv7 chan-
nels, and the outcome is an enhanced propensity for depo-
larization of the plasma membrane. Interestingly, activated 
PKC may also contribute to the muscarinic inhibition of Kv7 
channels [79]. Activated PKC phosphorylates the C-termi-
nus in the calmodulin (CaM) binding site of the Kv7.2 subu-
nit assisted by A-kinase-anchoring protein AKAP79/150. 
The phosphorylated state of the channel destabilizes the Kv7 
channel/PIP2 complex and consequently  PIP2 hydrolysis sup-
presses the M-current [80–83].

Kv7/M-channel activity represents an integral regula-
tor of PNS sensitivity downstream of multiple transduction 
mechanisms likely to contribute to dampening of peripheral 
pain pathways [84]. They are densely expressed at the sites 
of spike generation, e.g., axon initial segment of central neu-
rons and terminals of peripheral nociceptive neurons [85, 
86]. Previous investigations of the role of Kv7 in regulating 
neuronal excitability, pain pathways, and nociceptive behav-
iors utilized pharmacological M-channel blockers or enhanc-
ers [41, 87–90]. M-current perturbations were strongly 
implicated in neuronal hyperexcitability underlying epilepsy 
and ALS [87, 91], neuroinflammation [92], and neuropathic 
pain [93, 94]. M-current “opener” compounds have been 
suggested to be efficacious in preventing brain damage after 
multiple types of insults/diseases, such as stroke, traumatic 
brain injury, drug addiction, and mood disorders [95]. How-
ever, sensory neurons express Kv7 channels and exhibit the 
M-current, activated at near resting potential such that at 
subthreshold potentials produce a prominent outward cur-
rent [41, 42, 96] helping to keep the resting potential within 
a hyperpolarized range but an initiating role of  M1R in this 
pathway has not been directly elucidated [41, 97]. In accord-
ance with this concept, the present experiments revealed 
that antimuscarinic drugs pirenzepine or MT7 have a novel 
mechanism of action acting as putative positive modulators 
of Kv7 M-channels, i.e., Kv7 channel opener/enhancers in 
SH-SY5Y cells and sensory neurons. Consequently,  M1R 
antagonists help to establish the neuronal resting membrane 
potential by providing a continual hyperpolarizing influence 
and make the neurons less excitable. The effects of pirenz-
epine/MT7 on M-current activation were reversed by mus-
carinic agonist muscarine leading to increased responsive-
ness of neurons toward depolarizing stimuli.

As such, the data presented here offer promising evidence for 
the pivotal role of the Kv7 channel as a target of  M1R antago-
nists to stabilize membrane potential as well as dampening 
deviations in depolarization and, therefore, preventing ectopic 
firing and spontaneous pain. Importantly, upon axotomy, sen-
sory neurons exhibit spontaneous electrical activity that con-
sumes extensive ATP [98–101].  M1R antagonism enhances 

Fig. 8  Changes in the plasma membrane potential in response to 
 M1R antagonists or agonist in DRG neurons. A–H. Confocal images 
of primary cultures of DRG neurons in the presence of the resting 
membrane potential probe DiBAC4(3) showing fluorescence at basal 
(A, B) and after administration of 100 nM MT7 (C), 30 µM PZ (D), 
100 µM muscarine (Mus; E, F), and 90 mM KCl (G, H). Arrows indi-
cate a selection of neurons that responded to MT7 or PZ. I–J. Traces 
of DiBAC4(3) fluorescence intensity (left panel) and AUC (right 
panel) show the changes in plasma membrane potential measured 
in response to MT7 (I) or PZ (J) followed by muscarine and KCl. 
The AUC was estimated for 1 min before each treatment (MT7/PZ, 
Mus, KCl) from the baseline to a relative fluorescence level of − 30. 
Data are expressed as mean ± SEM, n = 50–54 neurons; *p < 0.05 or 
**p < 0.01 or ***p < 0.001 by one-way ANOVA with Tukey’s post 
hoc test
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neurite outgrowth of axotomized adult sensory neurons in cul-
ture. Therefore, enhancement of the M-current would reduce the 
possibility of depolarization, thus theoretically preserving ATP 
to support actin treadmilling in the growth cone and enhancing 
axon outgrowth [29, 102]. Thus, pirenzepine and MT7 could 
be signaling via two self-supporting but different pathways to 
drive axon outgrowth: the AMPK pathway, which is dependent 
upon a drug-induced rise in intracellular  Ca2+ and activation 
of CaMKKβ [29, 30], and a supplementary pathway involving 
antimuscarinic elevation of the M-current and hyperpolariza-
tion of the plasma membrane and conservation of ATP levels. 
This latter pathway would be expected to downregulate AMPK 
activity; however, we propose the drug-induced  Ca2+ influx 
overrides this effect. At this stage, we have no evidence that 
antimuscarinic drug action, possibly mediated through the open-
ing of Kv7 channels, has any role in AMPK activation. How-
ever, recent work localizing functional Kv7.4 channels to the 
mitochondria of cardiac myocytes and CNS neurons provides 
an intriguing link between the M-current and regulation of cel-
lular bioenergetics and is worthy of future investigation in adult 
sensory neurons [103].

Conclusions

Our present findings highlight the utility of muscarinic 
receptor antagonism as a tool to manipulate the AMPK path-
way which is a central component of the pathogenic cascade 
linking mitochondrial function with neurodegeneration. We 
have demonstrated that pirenzepine or MT7 enhances mito-
chondrial function via AMPK and regulate mitochondrial 
membrane potential and the plasma membrane potential. 
Pirenzepine or MT7 enhances the M-current activity that 
is crucially important for controlling the excitability of 
neurons. Thus, these findings strengthen the case for using 
 M1R antagonists for improvement of mitochondrial func-
tion, while the ability to suppress excitability of sensory 
neurons may offer routes for treatment of neuropathic pain 
as well as simultaneously promoting nerve regeneration in 
neurodegenerative diseases.
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