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Abstract: Numerous studies have shown that vitamin D deficiency is very common in modern
societies and is perceived as an important risk factor in the development of insulin resistance and
related diseases such as obesity and type 2 diabetes (T2DM). While it is generally accepted that vitamin
D is a regulator of bone homeostasis, its ability to counteract insulin resistance is subject to debate.
The goal of this communication is to review the molecular mechanism by which vitamin D reduces
insulin resistance and related complications. The university library, PUBMED, and Google Scholar
were searched to find relevant studies to be summarized in this review article. Insulin resistance is
accompanied by chronic hyperglycaemia and inflammation. Recent studies have shown that vitamin
D exhibits indirect antioxidative properties and participates in the maintenance of normal resting
ROS level. Appealingly, vitamin D reduces inflammation and regulates Ca2+ level in many cell types.
Therefore, the beneficial actions of vitamin D include diminished insulin resistance which is observed
as an improvement of glucose and lipid metabolism in insulin-sensitive tissues.

Keywords: vitamin D deficiency; insulin resistance; adipose tissue; oxidative stress; sub-inflammation;
epigenetic modification

1. Introduction

There is mounting evidence that vitamin D deficiency is now a worldwide health problem.
In addition, an alarming number of diseases connected with vitamin D deficiency such as obesity
and type 2 diabetes mellitus (T2DM) are observed. Both basic and clinical studies demonstrated
that the majority of common characteristics of these diseases result from defects in insulin signaling,
systemic inflammation, and pancreatic β-cells dysfunction [1–4]. It should be stressed that according
to recent investigations one of the major causative factors in insulin resistance development is vitamin
D deficiency. The results of some clinical studies have demonstrated that vitamin D supplementation
improves major metabolic parameters associated with insulin resistance, including low-density
lipoprotein (LDL), total cholesterol (TC), glycated hemoglobin (HbA1c), triglyceride (TAG), and
homeostatic model assessment-insulin resistance (HOMA-IR). We have shown that three-month
supplementation with vitamin D of the elderly with metabolic disorders markedly elevates HDL level,
reduces HOMA-IR, and TG/HDL ratio. Moreover, we observed that HbA1c percentage decreased about
0.5% in T2DM patients after vitamin D supplementation [5]. In turn, Upreti et al. have revealed that
six-month supplementation with vitamin D of T2DM patients leads to distinct reduction of HbA1c [6].
The results of study carried out by Mirrhosseini et al. have showed that vitamin D decreases HbA1c,
fasting plasma glucose (FPG), and HOMA-IR contributing to better glycemic control [7]. Interestingly,
Tabesh et al. have observed that co-supplementation of vitamin D with calcium decreases serum
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insulin level, HbA1c, HOMA-IR, LDL, and TC/HDL. Additionally, they also detected the significant
elevation of quantitative insulin sensitivity check index (QUICKI) and HDL [8]. El Hajj et al. have
found that vitamin D triggers to significantly diminish of HOMA-IR, FPG, TC, and LDL, but without
any significant changes in HbA1c [9]. The results of studies conducted by Barzegardi et al. have
presented pronounced decrease in serum levels of TG, LDL, and TC in diabetic nephropathy patients
after supplementation with vitamin D [10]. Taken together, these observations support that vitamin D
improves metabolic control of diabetes.

Vitamin D is involved in many cellular processes, e.g., the presence of its receptor and its
metabolizing enzymes have been found in the cells of various tissues, including pancreatic β-cells,
adipocytes, hepatocytes, and myocytes [11–14]. It also controls blood glucose concentration by
regulating insulin secretion and insulin sensitivity [15]. Furthermore, it has been found to act in adipose
tissue which is a major storage site of the vitamin [11]. It should be underlined that adipose tissue
secretes numerous adipocytokines involved in inflammation, a typical feature of insulin resistance,
obesity, and T2DM [11]. Numerous studies have revealed that vitamin D reduces the extent of
inflammation and chronic hyperglycemia-generated oxidative stress [5,15]. Appealingly, vitamin D
was demonstrated to modulate hepatic lipid and glucose metabolism [16]. Finally, it has also been
shown that vitamin D counteracts diet-induced insulin resistance in skeletal muscle [17].

However, it should be also emphasized that the results of clinical studies have revealed no effect
of vitamin D on insulin resistance and related disorders, including oxidative stress and inflammation.
Lerchbaum et al. have shown that vitamin D supplementation did not change significantly metabolic
parameters regarding insulin resistance and lipids in heathy men [18]. Forouhi et al. have found
no effect of vitamin D on HbA1c, lipid and apolipoprotein levels, CRP, as well as anthropometric
measures in subjects with increased risk of T2DM [19]. Similarly, Heshmat et al. have revealed no
changes in HbA1c, anthropometric measures, and HOMA-IR in diabetic patients treated with vitamin
D [20]. No differences in the FPG oral glucose tolerance test (OGTT) between prediabetes subjects
supplemented with vitamin D in comparison to the placebo group have also been observed [21].
In addition, no significant changes between T2DM group and T2DM group supplemented with vitamin
D have also been observed in the hs-CRP level, oxidative stress markers, LDL, HDL, and HbA1c [22].
In turn, Asemi et al. did not observe any significant changes in total plasma glutathione (GSH) and
serum high sensitivity C-reactive protein (hs-CRP) level in pregnant women with gestational diabetes
after supplementation with vitamin D [23].

Considering the above, the aim of this review is to provide a molecular insight into how vitamin
D reduces insulin resistance and its consequences.

2. Methods

To summarize the current scientific literature devoted to the molecular mechanism involved in the
reduction of insulin resistance and its consequences brought about by vitamin D, the university library,
PUBMED, and Google Scholar were searched to identify the relevant articles. The following keyword
combinations were used: Vitamin D OR vitamin D action OR vitamin D receptor OR genomic action of
vitamin D OR non-genomic action of vitamin D OR molecular mechanism of vitamin D OR vitamin
D deficiency OR vitamin D insufficiency OR vitamin D supplementation AND insulin resistance
OR intracellular calcium level OR insulin secretion OR insulin sensitivity OR insulin signaling OR
pancreatic β-cells dysfunction OR skeletal muscle OR myocytes OR liver OR hepatocytes OR adipose
tissue OR adipocytes OR adipogenesis OR adipocyte apoptosis OR adipocytokines OR adiponectin
OR lipid metabolism OR glucose metabolism OR thermogenesis OR sub-inflammation OR epigenetic
control OR oxidative stress OR reactive oxygen species OR immunomodulation OR immune cells.
Subject to analysis were in vivo, in vitro, animal, as well as human studies, including clinical trials.
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3. Vitamin D in Brief

Vitamin D, a cholesterol derivative, is one of the fat soluble vitamins. The term vitamin D refers
to two forms: Ergocalciferol (D2) and cholecalciferol (D3) [24,25]. Vitamin D2 is formed by plants
and mushrooms under ultraviolet B (UVB) radiation. Vitamin D3, on the other hand, is synthesized
in the epidermis, where pro-vitamin D3-7-dehydrocholesterol, is transformed into pre-vitamin D3

under 290–315 nm UVB radiation. Subsequently, pre-vitamin D3 is converted into vitamin D3 in
a heat-dependent process. It should be pointed out that about 20% of vitamin D comes from our
diet, the remaining 80% being provided by our skin. Both vitamin D2 and D3 bind to the vitamin
D-binding protein (VDBP) in the blood and are transported to the liver, where vitamin D 25-hydroxylase
(CYP27A1 and CYP2R1) metabolizes it to 25-hydroxyvitamin D (25(OH)D) called calcidiol. The latter
is a major circulating vitamin D form in the serum [26–28]. Calcidiol is further metabolized to
1,25-dihydroxyvitamin D (1,25(OH)2D3; calcitriol) by 25(OH)D 1α-hydroxylase (CYP27B1) in the
proximal tubule of the kidney. Notably, CYP27B1 is expressed not only in the tubule of the kidney, but
also in other cell types, including adipocytes, pancreatic β-cells, and macrophages. In turn, calcitriol is
the most bioactive form of vitamin D that enters the circulation, binds to VDBP, and is then delivered
to the target tissues, i.e., bone, kidney, and gut. It should be stressed that calcitriol has structural
similarities to other steroid hormones, and for that reason it is classified as a hormone [24,26,27,29–31].
The level of calcidiol and calcitriol is regulated by 25(OH)D 24-hydroxylase (CYP24A1). The latter is a
key vitamin D inactivating enzyme that performs hydroxylation of C-23 and C-24 of calcitriol and
calcidiol. The inactivation of vitamin D occurs via two pathways, biliary excreted calcitroic acid is a
product of the 24-hydroxylase pathway, whereas 1,25–26,23 lactone is formed in the 23-hydroxylase
pathway [26,27].

In the cells of target tissues, calcitriol binds to the vitamin D receptor (VDR), which belongs
to the nuclear receptor family and acts as a ligand-activated transcription factor, inducing both
genomic and non-genomic response to vitamin D [32,33]. In the genomic pathway, 1,25(OH)2D3

interacts with cytosolic VDR, which connects with retinoid X receptor (RXR). The formed complex
translocates to the nucleus. Subsequently, the 1,25(OH)2D3–VDR–RXR complex links with the
vitamin D response element (VDRE) in the promoter region of vitamin D-responsive genes leading
to recruitment of various enzymatic co-regulatory complexes engaged in facilitating the histones’
epigenetic modification, chromatin remodeling, and the recruitment of local RNA polymerase II.
In consequence, the expression of numerous vitamin D-responsive genes is regulated. Vitamin D
responsive genes govern multiple processes such as differentiation, proliferation, angiogenesis,
metabolism, and immunomodulation [34–36].

In turn, the activation of the non-genomic pathway by 1,25(OH)2D3 involves its binding with
membrane VDR known as 1,25D-membrane-associated, a rapid response steroid-binding protein
(1,25D-MARRS). The interplay between 1,25(OH)2D3 and 1,25D-MARRS switches on multiple cell
signaling pathways via direct protein-protein interaction with numerous intracellular molecules [33,37].
The non-genomic pathway activated by vitamin D turns on numerous signaling molecules, including
mitogen-activated protein kinases (MAPK)s, phosphatidylinositol-3 kinase (PI3K), Ca2+-calmodulin
kinase II (CaMPKII), phospholipase C (PLC), protein kinase A (PKA), protein kinase C (PKC), and
src. The plethora of kinases activated by vitamin D transduct the signal to the following transcription
factors: RXR, SP1, and SP3, which subsequently bind to VDRE on the promoter of vitamin D-responsive
genes. The activation of non-genomic pathway is a rapid response to 1,25(OH)2D3 based on numerous
protein-protein interactions. Simultaneously, vitamin D is also engaged in the secretion of second
messengers, such as Ca2+, cyclic AMP, 3-phosphoinositides, and fatty acids. However, it should be
underlined that the type of signaling molecules activated by vitamin D depends on the cell type and
the status of its maturation [38].

Vitamin D metabolism is regulated by the level of 1,25(OH)2D3 in a negative feedback mechanism [39,40].
Vitamin D inactivating enzyme CYP24A1 is a transcriptional target of 1,25(OH)2D3–VDR–RXR complex.
The promoter region of CYP24A1 includes two VDREs that are responsible for the induction of CYP24A1
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by 1,25(OH)2D3 [41]. Moreover, 1,25(OH)2D3 stimulates the expression of CYP24A1 by the recruitment
of RNA II polymerase and histone H4 acetyltransferases to CYP24A1 gene [42]. Therefore, the level of
both calcidiol and calcitriol is regulated by 1,25(OH)2D3-mediated CYP24A1 expression in the kidney.
Furthermore, 1,25(OH)2D3 suppresses CYP27B1 transcription in the kidney by complex mechanisms
engaging epigenetic modifications of CYP27B1 promoter region [43]. Additionally, studies revealed that
vitamin D metabolism is regulated by fibroblast growth factor-23 (FGF-23) and parathyroid hormone (PTH).
These biomolecules play a key role in the maintenance of Ca2+ and phosphate homeostasis [44–46]. FGF-23 is
a hormone secreted by osteocytes and osteoblasts in response to both high serum level of 1,25(OH)2D3 and
phosphate [45]. On the one hand, FGF-23 facilitates the secretion of phosphate by suppressing the expression
of sodium-phosphate cotransporter 2 (NPT2) placed at the apical membranes of proximal renal tubules.
On the other hand, FGF-23 decreases serum levels of 1,25(OH)2D3 by downregulation of CYP27B1 and
upregulation of CYP24A1 in the kidney [47–49]. In turn, the parathyroid gland secretes PTH in a response
to low level of Ca2+ in the serum [44]. PTH induces renal expression of CYP27B1 causing an increase of
1,25(OH)2D3 production [50,51]. It should be recognized that increased 1,25(OH)2D3 stimulates its own
degradation via the activation of CYP24A1 expression, whereas PTH sustains the 1,25(OH)2D3 level by the
kidney induction of CYP24A1 mRNA degradation [52,53]. Notably, a high Ca2+ level resulting in prolonged
induction of 1,25(OH)2D3 negatively regulates PTH secretion by the parathyroid gland in a mechanism of
negative feedback mechanism [54]. Figure 1 presents key information about vitamin D as described above.

Vitamin D Level

The serum level of calcidiol (25(OH)D) is thought to be a vitamin D status marker that reflects the
actual amount of vitamin D in an organism [55,56]. A deficiency in vitamin D is considered primarily
25(OH)D concentration below 25–30 nmol/L (10–12 ng/mL). There is no common agreement as to the
optimal concentration of vitamin D, however it is generally accepted that the serum 25(OH)D level
should not be lower than 50 nmol/L by the Scandinavian Nutrition Societies, The North American
Institute of Medicine (IOM), the European Society for Clinical and Economic Aspects of Osteoporosis
and Osteoarthritis, the D-A-CH nutrition societies, and the German Osteology governing body
(DVO) [57,58]. On the other hand, the International Osteoporosis Foundation and the Endocrine
Society considers 75 nmol/L (30 ng/mL) of the calcidiol in the serum as an adequate vitamin D level.

It should be also underlined that the excess of vitamin D is toxic and manifests itself as a severe
hypercalcemia [59]. Carmo et al. have demonstrated extensive vascular remodeling and elevated
vascular calcification as a response to high doses of vitamin D in a murine model of obesity and insulin
resistance [60]. It should be emphasized that vitamin D presents biphasic dose-responses (hormesis).
In low doses it shows beneficial effect, but in high doses vitamin D is a toxic agent.

The percentage of people with vitamin D deficiency is continuously rising, especially in countries
with low sun exposure. The main causes of vitamin D deficiency are alterations in vitamin D
transformation and metabolism such as impaired absorption, increased catabolism, elevated urinary
loss of 25(OH)D, reduced synthesis, and impaired transport. Vitamin D deficiency may also be due to
geographical factors, lifestyle, individual variables (i.e., skin pigmentation, skin grafts and aging), some
disorders, and therapy with some drugs. Latitude, seasons, and the time of day are the geographical
factors significantly affecting the volume of UVB photons that reach the earth according to the zenith
angle of the sun. Latitude higher than 35◦, the season from November to March, morning and late
afternoon, as well as low position of the sun on the horizon are related to lower UVB index and
decreased production of vitamin D in the skin [61]. The usage of sunscreens/sunoils, type of diet,
obesity, breast-feeding, and indoor workplace also significantly decrease the level of vitamin D in the
human body. Adipose tissue has been shown to sequestrate vitamin D, thus obesity is associated with
its reduced availability [61]. It has also been noted that human milk contains a low level of vitamin D
making infants susceptible to vitamin D deficiency during sole breast feeding [62,63].
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Individual features such as skin pigmentation, age and skin grafts also affect the synthesis of
vitamin D. Skin pigmentation depends on the concentration of melanin, which is responsible for the
absorption of UVB radiation. Thus, with dark-skinned people vitamin D production is five times
lower as compared to white-skinned people (Caucasian). Interestingly, skin grafts due to burns and
aging reduce the level of 7-dehydrocholesterol in the skin by about 75% in people aged 70 years and
older [61].

Low vitamin D level is observed in people treated with cholesterol lowering medications,
undergoing bypass surgery, suffering from celiac disease and chronic inflammatory bowel disease,
and other conditions [64,65]. In subjects with chronic kidney disease, on the one hand, the synthesis
of 1,25(OH)2D3 is inhibited, and-on the other-its metabolites are extracted from the body in higher
amounts than in individuals with normal kidney function [61]. In turn, nephrotic syndrome is
associated with increased loss of 25(OH)D with urine.

A significant catabolic effect of glucocorticoid, anticonvulsants, antirejection, AIDS treatment
medications, and nucleoside/nucleotide reverse transcriptase inhibitors on vitamin D metabolism
was also revealed [61]. In addition, rimfapicin and carbamazepine increase the level of PTH, which
decreases the active form of vitamin D and in consequence increases its clearance [66–69].

Low concentration of vitamin D was reported in carriers of polymorphisms and mutations of
VDBP and CYP27B1 genes. Numerous polymorphisms and mutations in genes associated with vitamin
D transport and transformation were detected in all types of rickets [61].

4. How does Insulin Resistance Develop?

4.1. The Physiology of Insulin Signaling

One of the major regulators of energy homeostasis is insulin signaling [70]. Insulin receptor
(IR), a member of the tyrosine kinase family receptors, is composed of extracellular α subunit and
transmembrane β subunit. IR activation occurs after insulin binding to α chain of IR that triggers
structural changes inβ chain. The result of IR activation is the formation of the heterotetrameric structure
followed by autophosphorylation of numerous tyrosine residues that are potential docking sites for the
multiple components of various signaling pathways [71]. Thus, the recruitment and phosphorylation
of different adaptor proteins, including substrate proteins, i.e., insulin-receptor substrate (IRS), is
mediated by multiple phosphotyrosines [72]. Next, phosphorylated IRSs activate and translocate
PI3K to the plasma membrane which phosphorylates the phosphatidylinositol 4,5-bisphosphate (PIP2)
to phosphatidylinositol-3,4,5-trisphosphate (PIP3). The level of PIP3 is controlled by phosphatase
and tensin homolog (PTEN) and SH2-containing inositol 5’-phosphatase-2 (SHIP2) that perform
dephosphorylation of PIP3 [73]. Insulin-initiated elevated level of PIP3 activates serine-threonine
kinase phosphoinositide-dependent protein kinase-1 (PDK1) causing both phosphorylation and
activation of PKC ζ/λ and protein kinase B also called Akt. The two proteins increase glucose
uptake by the translocation of GLUT to the cell membrane, including adipocytes’ and muscle
cells’ membranes [74–76]. Moreover, Akt stimulates glycogenesis in the muscles and liver and
lipogenesis in the adipocyte tissue, as well as the synthesis of protein, but represses proteolysis,
lipolysis, gluconeogenesis, and glycogenolysis [77]. Interestingly, Liang et al. reported that sirtuin 1
(SIRT1) controlled the insulin-mediated phosphorylation of IR and IRS. SIRT1 is a NAD-dependent
deacetylase that positively regulates insulin signaling via deacetylation of IRS-2, phosphorylation
of IRS-1, repression of protein tyrosine phosphate non-receptor type 1 (Ptpn1) expression, and the
activation of Akt in insulin-responsive cells [78]. It should also be pointed out that insulin, apart from
its metabolic effects, is a growth factor engaged in cell growth, proliferation, and differentiation [79].
Its mitogenic activity occurs via the induction of MAPK cascade [77].
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4.2. The Mechanism of Insulin Resistance

The typical signs of insulin resistance state are reduced uptake of glucose by skeletal muscle,
liver, and adipose tissue, and diminished gluconeogenesis in the liver [70,79]. As a result, the blood
glucose level pronouncedly increases and-if prolonged-it exerts a toxic effect on all cells, including
those in insulin-sensitive tissues. For example, impaired insulin response in adipocytes contributes to
increased release of free fatty acids (FFAs) into the circulation where they are uptaken by various organs,
mainly by the liver. In turn, chronic hyperglycaemia leads to the overproduction of reactive oxygen
species (ROS) and formation of oxidative stress. It is well documented that both glucotoxicity and
lipotoxicity induce chronic inflammation and each of these pathologies accelerates the development of
insulin resistance [80]. Several molecular pathways have been identified to play a key role in insulin
resistance [70]. FFAs and related metabolites including ceramides, diacyloglycerol (DAG), acyl-CoA
act on many protein kinases, including PKC ζ/λ, PKC-θ, nuclear factor-κB (NF-κB), kinase-β [IκB
kinase-β (IKK-β)], Jun kinase (JNK), and trigger to IRS phosphorylation which, in turn, attenuates
insulin signaling [80–84].

4.2.1. Muscle

It is well recognized that the systemic, increased availability of lipids, mainly elevated flux of fatty
acids, enlarges the intramyocellular pool of long-chain fatty acyl-(CoA). This results in higher energy
supply to mitochondrial oxidation and the synthesis of diacylglycerols (DAGs) for storage in the form
of lipid droplets filled with TAG. The intramyocellular DAG level temporarily or permanently increases
when the delivery and uptake of fatty acids exceed the ratio of mitochondrial long-chain fatty acyl-CoA
oxidation and DAGs to TAGs incorporation. The latter phenomena provide elevated C18-containing
DAGs in the cytosol and membrane activated novel protein kinase C (nPKC) isoforms, i.e., PKCθ.
The translocation of PKCθ into the membrane enhances serine (1101 position) phosphorylation of IRS-1,
which results in the inhibition of insulin-mediated tyrosine phosphorylation of IRS-1 and downstream
kinases, including PI3K. The direct consequence of these events is the restraint of the recruitment of
GLUT-4 to the cell membrane, impaired phosphorylation of glucose-6-phosphate (G-6-P), and reduced
synthesis of glycogen [85]. The insulin resistance in skeletal muscle is shown in Figure 2.
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by arrows and inhibition by T-bars, red color of arrow and T-bars denotes insulin resistance state,
whereas black physiological state. ↓ denotes decrease ↑ denotes increase.

4.2.2. Liver

Prolonged and excessive intrahepatocellular influx of fatty acids leads to grow in the level of DAGs
in the liver. In addition, the formation of DAGs in de novo lipogenesis, and re-estrification of fatty acids
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exceeds their incorporation into TAG in lipid droplets and mitochondrial oxidation. Subsequently,
DAGs in the hepatocyte activate protein kinase C ε (PKCε) which phosphorylates tyrosines of IR.
In turn, the phosphorylation of glycogen synthase kinase 3 (GSK3) and the phosphorylation of forkhead
box subgroup O (FOXO) decrease. As a result of these events the activity of glycogen synthase, the
storage of insulin-stimulated glycogen, and the transcription of FOXO-mediated gluconeogenic
enzymes (i.e., G-6-P and phosphoenolpyruvate carboxykinase (PEP-CK)) are diminished. Finally,
insulin-mediated suppression of hepatic gluconeogenesis occurs in insulin resistance-state [85].
The insulin resistance state in human liver is shown in Figure 3.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 35 
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4.2.3. Adipose Tissue

Similarly, to hepatocytes and myocytes, the development of insulin resistance in adipocytes is
related to impaired insulin signaling. The decreased IRS1 expression and increased IRS2, that are
key substrate for PI3K, were found in insulin resistance state in adipocytes [86]. Moreover, insulin
resistant adipocytes present decreased expression of GLUT4 [87] and alterations in the profile of
secreted adipocytokines such as leptin, tumor necrosis factor α (TNF-α), and adiponectin [88,89].

Physiologically, the level of TNF-α is very low, but it increases in obesity states, leading to
the acceleration of lipolysis and inhibition of lipogenesis. Interestingly, not only adipocytes, but
also cells derived from stromovascular fraction such as macrophages, endothelial cells, fibroblasts,
preadipocytes, smooth muscle cells, and leukocytes are an essential source of TNF-α in adipose
tissue [90–94]. Appealingly, it was also proposed that the TNF-α role in insulin resistance development
is associated with increased serine phosphorylation of IRS1 and decreased expression of GLUT4 [95,96].
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Physiologically, insulin promotes TAG accumulation in adipocytes via the stimulation of
preadipocytes’ differentiation to adipocytes, elevation of glucose uptake and lipogenesis, as well as
suppression of lipolysis [88,97]. The insulin action in adipocytes is mediated through two transcription
factors: FOXO1 and SREBP1. SREBP1 regulates transcription of numerous adipocyte-specific genes
required for fatty acid and lipid production [98–100]. In turn, FOXO1 that is activated by Akt,
constitutes a trans-factor for the cis-element of peroxisome proliferation-activated receptor γ (PPARγ)
promoters. PPARγ, being a nuclear receptor, is a key regulator of adipogenic differentiation [101], and
governs the expression of numerous adipocyte-specific genes [102]. Moreover, it was demonstrated
that changes in the PPARγ activity affected the synthesis of adipocytokines, i.e., leptin, adiponectin,
and were associated with insulin resistance. FOXO1 binds to the PPARγ promoter and suppresses
its expression. Armoni et al. showed that the impaired ability of FOXO1 to translocate into the cell
nucleus led to increased activity of PPARγ [103].

5. How does Vitamin D Overcome Insulin Resistance and Related Disorders?

5.1. Vitamin D via the Regulation of Ca2+ Homeostasis Participates in Insulin Secretion by Pancreatic β-Cells

The secretion of insulin by the pancreatic β-cells is a consequence of elevated blood glucose
concentration. Glucose molecules flow into the pancreaticβ-cells via the glucose transporter 2 (GLUT-2).
Then, glucose breaks down in numerous metabolic pathways, which is ultimately accompanied by ATP
production. Increased ATP suppresses the ATP-sensitive K+ channel resulting in the depolarization of
β-cell membrane followed by the activation of the L-type voltage-operated channels to produce the
localized Ca2+ pulses crucial for the secretion of insulin [104].

Numerous studies showed that vitamin D deficiency is associated with impaired secretion of
insulin by pancreatic β-cells [105–109]. Importantly, it was demonstrated that the supplementation
with vitamin D restored proper secretion of the hormone [105,107,110]. However, it should be
underlined that the findings concerning this issue are not unambiguous especially with regard to
clinical trials [3,111–115].

One of the molecular mechanisms by which vitamin D participates in insulin secretion by pancreatic
β-cells is the regulation of intracellular Ca2+ concentration. It was reported that 1,25(OH)2D3 reduced
the expression of the L-type Ca2+ channels causing a decrease in intracellular Ca2+ concentration
and thereby altering calcium signaling. In turn, rapid, non-genomic 1,25(OH)2D3 action was found
to be responsible for the increase of cytoplasmic Ca2+ level that activates exocytosis of insulin in
the pancreatic β-cells. Two vitamin D-mediated signaling pathways are involved in this process.
The first includes PKA activation that phosphorylates various proteins engaged in the function of
L-type voltage-dependent Ca2+ channels associated with insulin secretion. The second engages
PLC synthesis and the activation of inositol triphosphate (InsP3) triggering the secretion of Ca2+

from ER leading to DAG synthesis. Subsequently, DAG activates PKC that is responsible for the
phosphorylation of the KATP channels and L-type voltage-dependent Ca2+ channels. The latter
trigger the depolarization of cytoplasmic membrane and opening of T-type Ca2+ and L-type channels
that in consequence leads to the elevation of intracellular Ca2+ followed by insulin secretion [116].
PKC is also able to mobilize insulin secretory vesicles that together with increased Ca2+ concentration
induce insulin secretion [117]. Furthermore, increased intracellular Ca2+ concentration stimulates
insulin secretion via activation of CaMPKII. CaMPKII is a serine-threonine protein kinase occurring in
secretory vesicles of insulin. Its primary function is the promotion of phosphorylation of numerous
proteins involved in exocytosis, as well as mobilization of insulin vesicles [118]. Another study
demonstrated that increased intracellular Ca2+ concentration is associated with the expression of
insulin gene via cAMP-responsive element-binding protein (CREB). The activation of CREB occurs in
response to numerous stimuli, including glucose growth factors (i.e., the insulin-like growth factor-1
(IGF-1)), incretin hormones (i.e., the glucagon-like peptide-1 (GLP-1), the gastric inhibitory polypeptide
(GIP), the pituitary adenylate cyclase-activating polypeptide (PACAP)). All these stimuli lead to the
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phosphorylation of CREB at serine 133 residue. CREB is a crucial transcriptional element responsible
for the efficient transcription of insulin gene, glucose sensing, exocytosis of insulin, and survival of
pancreatic β-cells [119].

It is worth highlighting that the regulation of intracellular Ca2+ level by vitamin D is mediated
by calbidin, a cytosolic Ca2+ -binding protein involved in the stimulation of insulin secretion.
Calbidin-D28k expression was found to be regulated by vitamin D [113,120]. It was also reported
that 1,25(OH)2D3 increased the expression of calbindin D-9k, parvalbumin, the plasma membrane
Ca2+-ATPase 1b, the sodium/calcium exchanger (NCX), and the Ca2+ pumps. All of these proteins are
involved in the maintenance of low resting Ca2+ concentration in pancreatic β-cells [32,121–123].

Taken together, vitamin D is a potential modulator of depolarization-induced secretion of insulin
via intracellular Ca2+ level regulation in pancreatic β-cells [120]. The effect of vitamin D on pancreatic
β-cells is presented in Figure 4.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 35 
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5.2. Vitamin D Controls Ca2+ Level in Myocytes and Adipocytes

It is well known that Ca2+ are second messengers engaged in intracellular events induced by
insulin in muscle and adipose tissue. That is why intracellular Ca2+ level changes have a substantial
impact on multidirectional insulin actions. Numerous studies have demonstrated that the low level of
Ca2+ in the cells of insulin targeted tissues is associated with reduced activity of glucose transporter
followed by the development of peripheral insulin resistance [110].

Intracellular Ca2+ concentration in insulin-responsive tissues, including adipose tissue and skeletal
muscle, is regulated by several mechanisms. The first mechanism involves the action of PTH that
increases intracellular Ca2+ concentration in insulin-responsive tissues, including adipose tissue and
skeletal muscle [124–126], as well as reducing insulin-induced transport of glucose [127,128]. Therefore,
both growing intracellular Ca2+ concentration and the decreasing number of GLUT-1 and GLUT-4
on the cell membranes evoked by PTH promotes insulin resistance observed as reduced glucose
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uptake [128,129]. There is evidence that vitamin D deficiency is associated with increased PTH
levels coexisting with insulin resistance [130,131]. Wright et al. have shown that vitamin D reduced
insulin resistance in skeletal muscle as a result of elevation of intracellular Ca2+ concentration and
strengthening of GLUT-4 translocation to the membrane of muscle cells and glucose uptake [132].

It has also been observed that vitamin D might decrease insulin resistance indirectly via the
renin-angiotensin-aldosterone system (RAAS). It is well known that the RAAS system inhibits
insulin action in peripheral tissues and regulates cellular Ca2+ concentration in skeletal muscle
cells [132–134]. Interestingly, the increased expression of renin and secretion of angiotensin II, as well as
1,25(OH)2D3-mediated inhibition of renin biosynthesis have been observed in VDR-null mice [135–137].
Therefore, it was shown that vitamin D improved insulin sensitivity via inhibition of RAAS [138].

To conclude, vitamin D alleviates the insulin resistance state via regulation of Ca2+ level and
RAAS action in insulin targeted tissue, including skeletal muscle and adipose tissue.

5.3. Vitamin D-Mediated Improvement of Insulin Sensitivity Is Connected with Insulin Signaling

Accumulating evidence uncovers multiple potential mechanisms by which vitamin D deficiency
can contribute to insulin resistance. It is generally accepted that abnormalities in the insulin signaling
pathway are responsible for the development of insulin resistance that is characterized by reduced
reaction of target cells to circulating insulin.

It has been found that vitamin D mediated increase in insulin sensitivity occurs via binding
of calcitriol to VDR [139], induction of IRs expression [140], and the activation of peroxisome
proliferator-activated receptor delta (PPAR-δ) [141]. The latter is a transcription factor engaged in
the mobilization and metabolism of fatty acids in skeletal muscle and adipose tissue. What is more,
activated PPAR-δ decreased FFAs-mediated insulin resistance in skeletal muscle. It was shown that
1,25(OH)2D3 activated PPAR-δ and improved insulin sensitivity. [141]. Manna et al. documented
that vitamin D improved glucose metabolism as a result of upregulation of the SIRT1/IRS1/GLUT-4
signaling cascade and enhanced glucose uptake in high glucose-treated C2C12 myotubes [142].

The genomic pathway induced by 1,25(OH)2D3 in pancreatic β-cells, which express both VDR
and CYP27B1, stimulates insulin synthesis and secretion since VDRE is present in the promoter
region of the insulin gene [113,116,143]. Relevantly, studies performed on mice with the lack of
functional VDR revealed that after glucose load, insulin synthesis and secretion were impaired [144].
Vitamin D-mediated improvement of insulin sensitivity is connected with insulin signaling. As a
result of 1,25(OH)2D3 -mediated transcriptional activation of IR gene, the number of IRs on the
surface of insulin responsive cells increases. Thus, upregulation of the IR gene ensures proper insulin
signaling [140,145,146] and in this way calcitriol maintains insulin sensitivity [140,145,147]. It is
suggested that vitamin D deficiency is involved in the onset of insulin resistance as a consequence of
reduced expression of IR [2]. However, the results of vitamin D-mediated activation of IR expression in
the liver are unambiguous. George et al. reported that vitamin D supplementation upregulated liver
expression of IRs in streptozotocin-induced diabetic rats [148]. On the contrary, several studies failed
to identify alterations in IR expression in the liver of mice fed with high-fat diet or low-fat diet [149], as
well as in streptozotocin-induced diabetic rats after vitamin D supplementation [150].

To sum up, vitamin D alleviates insulin resistance via improvement of insulin signaling.

5.4. Vitamin D Possesses Indirect Antioxidant Properties

The pathogenic mechanism of insulin resistance is complex and has yet to be fully elucidated.
Undoubtedly, the trigger factor in insulin resistance is adiposity, especially visceral, which is
accompanied by chronic hyperglycemia, oxidative stress, and low grade chronic inflammation [80,151].
Additionally, a balance in the physiologic redox state is crucial for normal β-cells function, glucose
homeostasis, and insulin sensitivity [152–154]. Oxidative stress is an imbalance between the production
of reactive oxygen species (ROS) and the efficacy of antioxidant defense system. Endoplastic reticulum
(ER) stress, hyperglycemia, dyslipidemia, lipid peroxides, and nitric oxide synthase, as well as advanced
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glycation end-products are involved in ROS overproduction in the insulin resistance diabetic state.
It is well recognized that oxidative stress may activate several factors contributing to the development
of insulin resistance [155,156]. Inoguchi et al. found that hyperglycemia and FFAs might activate
ROS production via PKC-dependent stimulation of NADPH oxidase [157]. It was also observed
that increased production of ROS is a key activator of insulin resistance [158,159]. Moreover, the
association between the degree of insulin resistance and oxidative stress is suggested to induce cellular
damage [156,160,161]. ROS have the ability to directly oxidize and damage cellular macromolecules,
i.e., DNA, proteins, and lipids. Additionally, ROS may act as a signaling molecule that activates
numerous cellular stress-sensitive pathways, i.e., NF-κB, JNK/SAPK, p38MAPK, and hexosamine
involved in cellular damage and related pancreatic β-cells dysfunction, insulin resistance, and diabetes
complication [162].

It is generally known that the hyperglycemic state is a causative factor responsible for the
overproduction of ROS and reduced ATP formation that in turn exerts an effect on Ca2+ homeostasis
leading to β-cell exhaustion and reduced resting insulin secretion. Furthermore, it is well recognized
that the elevated formation of ROS increases the release of Ca2+ from ER via sensitization of the
ryanodine receptors (RYRs) and inositol 1,4,5-trophosphate receptors (InsP3Rs). Reduced ATP level
diminishes the capability of the Ca2+ pumps in ER and plasma membrane to press out Ca2+ from the
cytoplasm outside of the cell. The effect may stimulate an increase of Ca2+ level in the pancreatic β-cells
that triggers excessive insulin secretion leading to exhaustion of pancreatic β-cells [2]. Therefore, the
elevated level of ROS strengthens Ca2+ signaling and may contribute to the onset of diabetes.

It was also proposed that oxidative stress coexisting with diabetes/chronic hyperglycemia is a result
of increased FFAs levels that exert an effect on the mitochondria leading to increased ROS production
(i.e., superoxide, hydrogen peroxide, hydroxyl radical ions) [163–166]. It was also suggested that
vitamin D may regulate cellular bioenergetics in the mitochondria via VDR in the nucleus. This effect
is related to the upregulation of numerous components involved in mitochondrial function, including
mitochondrial respiration [167,168]. Additionally, VDR is capable of entering mitochondrion via
permeability transition pores [169] and controls its functions, however this mechanism is still not
fully understood [170]. It has also been found that vitamin D deficiency is connected with a decline
in the mitochondrial respiration process. This effect is a consequence of the reduction of proteins
and nuclear mRNA molecules engaged in this process [167,168]. Decreased respiration leads to a
drop of mitochondrial bioenergetics related to alterations in oxidative phosphorylation, reduced
ATP formation, and increased production of ROS [2]. Reduced expression of complex 1 of the
electron transport chain contributes to the decrease of ATP production and ROS overproduction.
In turn, increased ROS level reduces the activity of the insulin signaling pathways via lowering of
GLUT-4 gene transcription, phosphorylation of IRS, disturbances in insulin signaling, and changes of
mitochondrial activity [171–173]. These observations are supported by the results of a study showing
that 1,25(OH)2D3/VDR signaling inhibits the process of differentiation of brown adipose cells and
mitochondrial respiration [174]. Recently, Ricca et al. have demonstrated that VDR-mediated action
of vitamin D may protect cells from overproduction of ROS and excessive respiration that leads to
cell damage [175]. Vitamin D controls the balance of mitochondrial respiration via maintenance of
mitochondrial respiratory chain activity [176] and the regulation of expression of uncoupling protein 1
(UCP1). UCP1 is localized on the inner membrane of mitochondria and is engaged in the regulation of
thermogenesis [11]. The role of vitamin D in the maintenance of normal activity of mitochondria may
explain at least partially the privileged relationship between diabetes and vitamin D deficiency.

Vitamin D has been shown to decrease ROS production in adipocytes [177] via the regulation
of cellular antioxidants expression such as glucose-6-phosphate dehydrogenase (G6PD), glutathione
peroxidase (Gpx), TR [178]. Interestingly, vitamin D together with Klotho and Nrf2 may control
the expression of numerous antioxidants including catalase, Prx-2, Prx-3, SOD 1

2 , GSH, TR, G6PD,
TRX, Trxrd-1, Gpx. It has been documented that vitamin D decreases the expression of NADPH
oxidase which is responsible for the production of ROS [179], while increasing the expression of
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SOD [178,180]. Furthermore, vitamin D elevated the production of glutathione (GSH), a major redox
buffer through the upregulation of glutamate cysteine ligase, glutathione reductase, and G6PD [181–183].
To conclude, it seems that antioxidant properties of vitamin D are indirect and related to its genomic
and non-genomic action.

5.5. Vitamin D Controls the Expression of Epigenetic Genes

A link has been proposed between epigenetic mechanism and numerous diseases, including
obesity and T2DM [184]. DNA methylation was found to be increased in obese individuals and
declared to be one of the risk factors in the development of diabetes [185]. It was observed that vitamin
D maintains the expression of DNA demethylases genes as a result of its genomic mechanism of action.
Namely 1,25(OH)2D3-VDR-RXR complex and its interaction with VDRE regulates the expression of
vitamin D-dependent DNA demethylases (i.e., Jumonji domain-containing protein 1A and 3 (JMJD1A
and JMJD3) and lysine-specific demethylase 1 and 2 (LSD1 and LSD2)). These enzymes perform
demethylation of the promoter regions of numerous genes (i.e., ZEB1, ZEB2, SNAIL), and thereby
prevent their hypermethylation [2,186].

5.6. Vitamin D Ensures Normal Function of Adipose Tissue

Wamberg et al. showed that VDR is expressed in the subcutaneous adipose tissue (SAT) and
visceral adipose tissue (VAT). The VDR expression is higher in the VAT of obese as compared to lean
individuals. However, no difference was observed in the expression of VDR in SAT between obese and
lean individuals [187]. The expression of VDR was also reported in primary adipocytes from obese
patients [188], suggesting a possible role of vitamin D in the processes of adipose tissue development
and metabolism. The effect of vitamin D on adipogenesis, adipocyte apoptosis, lipolysis, lipogenesis,
thermogenesis, and inflammation has been recognized [188–193].

5.6.1. Vitamin D Regulates Lipid Metabolism in Adipose Tissue

It is widely known that adipocyte lipolysis is under hormonal regulation. Lipolytic hormones,
including catecholamines, act via β-adrenergic receptors leading to increases in cAMP, which then
activate cAMP-dependent PKA. Activated PKA, in turn, phosphorylates and activates enzymes of
lipolysis [194]. Increased lipolysis coexisted with upregulated expression of fat oxidation markers
such as CPT1α, PGC1α, PPARα, UCP1, SIRT-1, hormone-sensitive lipase (HSL), and lipoprotein lipase
(LPL) [189]. It was demonstrated that 1,25(OH)2D3 inhibited adipocyte basal lipolysis in human
adipocytes culture. Vitamin D increased the intracellular Ca2+ level [195] that caused a reduction of
cAMP and a decrease in phosphorylation of HSL. In addition, Larrick et al. [196] and Chang et al. [189]
have observed that calcitriol elevates the release of glycerol under basal andβ-adrenergically stimulated
murine 3T3-L1 adipocytes [189]. Summarizing, vitamin D exerts a suppressive effect on lipolysis.

It has been shown that the non-genomic mechanism of vitamin D action is involved in the
regulation of adipocyte lipogenesis. Shi et al. reported that 1,25(OH)2D3 elevated the intracellular
Ca2+ level and then the activity of fatty acid synthase (FSA). The observed effect was blocked by
membrane antagonists and mimicked by membrane VDR agonists [195]. 1,25(OH)2D3-dependent
upregulation of FAS might be mediated by VDR [188,197]. The increased mRNA of LPL, protein
expression of lipogenic enzyme fatty acid-binding protein (FABP), and elevated accumulation of
TAG was observed in response to 1,25(OH)2D3 of differentiated subcutaneous human adipocytes of
female and male donors with 25.6–50.9 kg/m2 BMI range [190]. Moreover, the incubation of human
adipocytes with 1,25(OH)2D3 evoked an increase in FAS protein level [195]. Interestingly, the increased
expression of FAS in adipose tissue was not observed in Sprague-Dewley rats (16 days) after injection
of 1,25(OH)2D3 [198]. Taken together, vitamin D may modulate the expression of lipogenic enzyme,
however, further in vivo human studies are required to clarify these findings.
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5.6.2. Vitamin D May Control Adipogenesis

The participation of vitamin D in the process of adipogenesis has been explored. Along with the
progress of adipocyte differentiation, VDR expression gradually decreases [199,200]. On the one hand,
vitamin D was identified to promote adipogenesis in human and primary mouse preadipocytes [190].
On the other hand, however, the suppressive effect of vitamin D on adipogenesis in mouse preadipocyte
and 3T3-L1 cell line [199] and the inhibition of brown adipocyte differentiation have also been shown.
Moreover, it is suggested that a high dosage of calcitriol may inhibit the early stages of adipogenesis
in 3T3-L1 cells [199,200]. Calcitriol suppressive effect on adipogenesis is exerted via its action
on numerous targets decreasing the expression of C/EBPα and PPARγ, antagonizing the activity
of PPARγ sequestrating RXR, as well as decreasing C/EBPβ mRNA and protein expression [200].
Blumberg et al. demonstrated that calcitriol stimulated the expression of eight twenty-one (ETO),
a C/EBPβ corepressor. This molecule inhibits the action of C/EBPβ transcriptional activity that is
required for adipogenesis [199].

Many signaling molecules, members of the WNT family, are released during preadipocyte
differentiation. Physiologically, the WNT/β-catenin pathway exhibits decreased expression during
adipogenesis and is responsible for maintaining the preadipocytes in an undifferentiated state [201].
Vitamin D was found to inhibit differentiation of adipocytes via MAPK [202] and Wnt/β-catenin
signaling pathways [11,203]. It was also shown that calcitriol was involved in the regulation of the
expression of the nuclear WNT10B and β-catenin, thereby suppressing PPARγ in a VDR-dependent
manner leading to the inhibition of adipogenic differentiation in 3T3-L1 preadipocytes [199]. In addition,
Cianferotti et al. revealed that 1,25(OH)2D3 diminished the level of secreted frizzled-related protein 2
(SFRP2) expression through VDR-dependent WNT signaling triggering to the suppression of mouse
bone marrow stromal cells (BMSCs) differentiation [204]. Interestingly, calcitriol also demonstrated an
inhibitory effect both on the mRNA expression and on phosphorylation of extracellular regulated kinase
(ERK) resulting in the suppression of adipocyte differentiation [202]. Mesenchymal stem cells undergo
differentiation towards adipocytes showing an accumulation of lipid droplets with coexisting increased
expression of FABP4, PPARγ, and FASN. Calcitriol was found to strengthen the expression of the above
differentiation markers and accumulation of lipids [188]. Mahajan et al. observed that incubation
of porcine mesenchymal stem cells (MSCs) with vitamin D activated both their differentiation and
proliferation as a consequence of increased mRNA of adipocyte-binding protein 2 (AP2), PPARγ, and
LPL [205].

To conclude, vitamin D exerts an effect on the expression of genes engaged in adipogenesis.
However, the results of studies focused on its influence on adipogenesis are inconsistent. Thus, further
studies are required to further our understanding of the effect of vitamin D on adipogenesis.

5.6.3. Vitamin D Is Engaged in Apoptosis of Adipocytes

It is well documented that Ca2+ is a key player in apoptosis and due to the vitamin D effect
on the regulation of intracellular Ca2+ level, it is suggested that the vitamin is involved in this
process [206–208]. Sergeev et al. have proposed a mechanism of intracellular Ca2+ regulation and
apoptosis by calcitriol in obesity. This process was initiated by the vitamin D-dependent stimulation of
Ca2+ influx from the extracellular space and mobilization of Ca2+ ER stores via the InsP3 receptor/Ca2+

release channel (InsP3R) and voltage-insensitive Ca2+ channels (VICC). Then, the activation of µ-calpain
by the sustained cytosolic Ca2+ signal was followed by the induction of Ca2+/calpain-dependent
caspase-12. These activated proteases seem to be sufficient for the execution of apoptosis [207]. By
contrast, Sun et al. reported that calcitriol inhibited apoptosis and stimulated the expression of genes
that promote the proliferation of human subcutaneous adipocytes [192]. They demonstrated that low
doses of vitamin D suppressed, whereas high doses of calcitriol induced apoptosis of differentiated
3T3-L1 cells [209]. It was also suggested that low doses of vitamin D3 counteracted adipocyte apoptosis
by elevating the ATP yield and mitochondrial potential, as well as suppressing UCP2 [210].
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To summarize, decreased level of vitamin D in obesity and the action of 1,25(OH)2D3 to control
mass of adipose tissue in vivo via regulation of adipocyte apoptosis may suggest a mechanistic role of
vitamin D in adiposity [211]. However, further studies are required to better understand its role in
adiposity and regulation of adipocyte apoptosis.

5.6.4. Vitamin D Exerts an Effect on Thermogenesis

Thermogenesis is a process of heat generation and a key mechanism responsible for the maintenance
of stable body temperature. In the management of obesity, thermogenesis reduces stored fat in
β-oxidation process leading to the production of heat and ATP. Human studies have shown that
vitamin D supplementation decreased body weight and fat mass [212,213]. Similarly, vitamin D
may increase apoptosis of adipose cells in mice with diet-induced obesity which results in loss of
weight [214]. Moreover, elevated fat oxidation and thermogenesis after vitamin D-rich breakfast intake
show a direct relation between vitamin D and metabolism [215]. Brown adipose tissue expresses
UCP1 that enhances thermogenesis. It has been shown that expression of UCP2 is inhibited by VDR
after 1,25(OH)2D3 treatment of human adipocytes [193]. The increased expression of UCP2 driven by
calcitriol leads to accelerated thermogenesis in mice with a high calcium diet. By contrast, Wong et al.
have shown that VDR null mice have decreased storage of body fat, reduced level of cholesterol, and
TAG under normal calcium concentration as compared to wild type mice suggesting that vitamin
D did not mediate the loss of body fat. Additionally, white adipose tissue has shown a higher ratio
of β-oxidation and upregulation of UCP1, UCP2, UCP3 in VDR-null mice as compared to wild type
mice [216].

Taken together, the result of studies aimed to establish the effect of vitamin D on the regulation of
thermogenesis and storage of body fat are inconclusive. Thus, further studies are required to better
understand its role in these processes.

5.7. Vitamin D Decreases Low-Grade Chronic Inflammation Coexisting with Insulin Resistance

5.7.1. Anti-Inflammatory Properties of Vitamin D Are Driven by the Reduction of
Adipocytokine Production

It is well recognized that hypertrophic enlargement of adipose tissue is related to insufficient
blood flow leading to hypoxia, macrophages infiltration, and inflammation, a typical feature of
obesity [217,218]. The hypertrophied adipocytes overproduce pro-inflammatory cytokines such as
TNF-α, IL-8, MCP1, IL-6, and resistin, as well as secreting less adiponectin [219–221]. In consequence,
the dysregulation of many signaling pathways in hypertrophic adipose tissue causes insulin
resistance [11,71–74,77,222–224]. Many acute phase proteins and pro-inflammatory cytokines are
responsible for undesired crosstalk with biomolecules of insulin signaling [225]. For example, TNF-α
and other pro-inflammatory cytokines influence the peripheral insulin sensitivity via the inhibition of
insulin-dependent tyrosine phosphorylation of IRS-1. This effect then leads to improper activation
of downstream insulin signaling molecules, including PI3-kinase and translocation of GLUT-4 to
the cell surface [226,227]. It is known that angiotensin II and cytokines, i.e., monocyte chemotactic
protein 1 (MCP1), TNF-α, IL-6, as well as other inflammatory factors engaged in inflammation may
activate numerous intracellular protein kinases (i.e., JNK, S6 K, IKK, PKC) that phosphorylate IRS1 and
IRS2 followed by attenuation of insulin signaling [133,219,226,228–232]. Therefore, low-grade chronic
inflammation and increased adipose tissue infiltration of immune cells are strictly associated with both
local and whole-body adipose tissue insulin resistance [229,233].

The action of vitamin D in adipose tissue is not only connected with the presence of VDR and
enzymes involved in its metabolism, but also with its anti-inflammatory properties [11,234,235]. In vitro
studies have shown that 1,25(OH)2D3 suppresses chronic inflammation in both mouse 3T3-LI cell line
and human adipocytes as a result of diminished secretion of pro-inflammatory cytokines [233,236,237].
1,25(OH)2D3 was also reported to decrease the activity of pro-inflammatory cytokines (i.e., MCP-1,
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IL-6, TNF-α, and IL-1β) in macrophages [229,233]. In turn, Chang et al. have shown increased protein
and mRNA of TNF-α, IL-6, and macrophage infiltration in adipose tissue of Sprague-Dawley male
mice fed with a high-fat low vitamin D content diet as compared to high-fat diet supplemented with
1000 IU of vitamin D per kg [238].

Another anti-inflammatory mechanism of vitamin D action found in murine adipocytes and
human preadipocytes involves the inhibition of NF-κB/MAPK pathway [239–243]. NF-κB is known to
be an important component of inflammatory pathways in adipose tissue. Its activation and translocation
of p65 subunit to the nucleus is a result of IκBα degradation [244]. TNF-α- or LPS- stimulated receptors
(i.e., IL-6R, TLR) activate NF-κB or p38MAPK-mediated transcription of pro-inflammatory genes
(i.e., IL-6, IL-1β, and TNF-α). Cannel et al. showed that calcitriol inhibited IκBα phosphorylation
and then translocation of NF-kB or p38MAPK into the nucleus [245]. Mutt et al. revealed that
calcitriol suppressed the release of LPS-stimulated IL-6 in mature human adipocytes and differentiated
MSC [240]. Moreover, it was demonstrated that 1,25(OH)2D3 reduced IL-1β-activated expression
of pro-inflammatory genes including MCP-1, IL-6, and IL-8. However, the findings from in vitro
studies are not in line with in vivo outcomes. On the one hand, Wamberg et al. reported that oral
supplementation with vitamin D (700 IU per day) for 26 weeks did not reduce adipose tissue expression
or circulating levels of IL-6, IL-8, and MCP-1 in obese patients [246]. On the other hand, in a mice
model of obesity induced by a high-fat diet supplementation with calcitriol reduced IL-6 level in
adipose tissue was observed [236].

It should be underlined that numerous cytokines activate kinases from both the Jun N-terminal
kinase 1 (JNK1) and IKK-β/NF-κB pathways. In turn, these activated kinases phosphorylate
IRS-1 leading to the impairment of insulin signaling [61,74]. Therefore, excessive secretion of
pro-inflammatory cytokines triggers dysregulation of glucose and lipid metabolism [247]. Several
studies demonstrated that vitamin D decreases monocyte chemotaxis, secretion of cytokines and
chemokines playing an important role in reducing the extent of inflammation [70,76,80,81].

To conclude, numerous data indicate that vitamin D inhibits the release of pro-inflammatory
cytokines [229,231,248], i.e., TNF-α, IL-6, and C-reactive protein [249,250]. The bioactive form of
vitamin D strongly suppresses the activation of NF-κB and MAPK signaling pathways preventing
transcription of pro-inflammatory genes. Thus, calcitriol significantly reduces the inflammation in
adipose tissue.

5.7.2. Vitamin D Regulates the Production of Adipokines

Recent data found that vitamin D was engaged in the regulation of adipokines release such as
adiponectin and leptin [251–253]. Leptin released by adipose tissue acts on the hypothalamus that
suppresses appetite and increases energy expenditure [254]. This hormone regulates the metabolism of
lipids via the activation of lipolysis and suppression of lipogenesis [241,242]. Interestingly, the synthesis
of leptin is induced by insulin, glucocorticosteroids, TNF-α, and estrogens, but it is suppressed by
FFAs and growth hormones [255]. A positive correlation between leptin level and body fat mass is
well documented [256]. It was revealed that vitamin D mediated, not only adipokines release, but
also energetic homeostasis via the regulation of leptin formation. Another study showed that vitamin
D suppressed the secretion of leptin by adipose tissue [257]. Additionally, CYP27B1 knockout mice
were hypoleptinemic and consumed more food as compared to their wild type counterparts. In turn,
VDR knockout (VDRKO) mice exhibited lean phenotype, hypoleptinemia, and hyperphagia related
to reduced serum level of leptin [258]. The adipose tissue mass determines the level of leptin in the
serum. It was not fully understood whether hypoleptinemia is a result of body fat content or is a
direct result of action of the vitamin D/VDR system on leptin expression in VDRKO mice. 1,25(OH)2D3

directly initiates both the expression and secretion of leptin in wild-type mouse adipose tissue cultures.
However, this effect was not observed in VDR-null mice adipose tissue cultures. It has also been found
that 1,25(OH)2D3 decreases the expression of leptin by at least 84% in mouse 3T3-L1 adipocytes [259].
Notably, leptin was found to suppress the renal transformation of vitamin D3 to its active metabolite
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indirectly via the stimulation of osteoblast and/or osteocyte production of FGF-23 [260]. FGF-23
suppresses the synthesis of calcitriol via inhibition of renal CYP27B1 [261].

Adiponectin is an anti-inflammatory and insulin-sensitizing hormone [262,263] that is considered
as a biomarker of insulin resistance [255]. Its biological action depends on its serum level,
the type of isoforms, and subtype of tissue specific receptor. The negative correlation between
circulating adiponectin level and body mass index (BMI) is widely known. The downregulation of
adiponectin, especially the HMW isoform has been found in obese children characterized by vitamin
D deficiency [11,253]. Contrariwise, the elevated adiponectin level was identified in patients with
T2DM supplemented with vitamin D-fortified food [264]. Moreover, calcitriol treatment increases
adiponectin expression and disulfide bond-A oxidoreductase-like protein (DsbA-L). DsbA-L is a key
protein involved in the multimerization of adiponectin [253]. On the one hand, no effect of calcitriol
on the expression of adiponectin in human adipocyte culture was observed [265]. On the other hand,
calcitriol was demonstrated not only to inhibit TNF-α –induced release of MCP-1, but also to suppress
the release of adiponectin from differentiated adipocytes of subcutaneous VAT [266]. The effect of
vitamin D on adipocyte function is summarized in Figure 5.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 18 of 35 
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5.8. Vitamin D Regulates Lipid and Glucose Metabolism in Muscle Tissue and Liver

5.8.1. Skeletal Muscle

Gilsanz et al. demonstrated that increased infiltration of fat in skeletal muscle tissue associated
with insulin resistance and related vitamin D deficiency takes place independently of body mass
increase [267]. Another study showed that the exposure of L6 and C2C12 myotubes to 1,25(OH)2D3

evoked increased expression of VDR, insulin receptor, and GLUT-4 [268,269]. What is more, it was
demonstrated that the incubation of C2C12 myotubes with 1,25(OH)2D3 ameliorated lipid-induced
insulin resistance by increased tyrosine phosphorylation of IRS-1 and serine phosphorylation of
AKT [270,271]. Calcitriol was also able to increase mRNA of adipose triglyceride lipase (ATGL) and
perilipin 2 (PLIN 2) in C2C12 myotubes, thereby revealing its engagement in intramuscular lipid
catabolism and lipolysis [272].
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Another mechanism of calcitriol action on skeletal muscle includes mitochondria. Ryan et al.
found that the incubation of human primary muscle cells from healthy lean donors with calcitriol
improved mitochondrial morphology and decreased mRNA of carnitine palmitoyltransferase 1
A (CPT1A) and pyruvate dehydrogenase kinase 4 (PDK4) which participate in muscle lipid and glucose
metabolism [273].

Taken together, vitamin D may exert an effect on muscle insulin sensitivity by the improvement of
glucose and lipid metabolism, mitochondrial function, and lipid turnover. However, further studies are
needed to determine the importance of vitamin D in insulin sensitivity in muscle tissue. The mechanism
of vitamin D action in myocyte is presented in Figure 6.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 19 of 35 
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5.8.2. Liver

It is well recognized that obesity is associated with excessive deposition of fat in the liver being a
result of hepatic insulin resistance and inflammation [274]. Kong et al. have shown that intrahepatic
injection of calcitriol in a dose of 5 ng/g body weight, twice per week for four weeks to vitamin D
deficient mice fed with a high fat diet evoked the downexpression of pro-inflammatory markers and
genes connected with hepatic lipogenesis, as well as the upregulation of bile acid transport [275].
Similarly, intraperitoneal injection of 1,25(OH)2D3 in a dose of 2.5 ng/g body weight, three times per
week for four weeks decreased liver fat accumulation in mice [276].

Vitamin D was reported to affect hepatic lipogenesis and gluconeogenesis. This action is mediated
via numerous vitamin D-regulated pathways, i.e., Akt/Notch signaling and/or AMP-activated protein
kinase (AMPK)-calmodulin. The enzymatic property of AMPK is induced by phosphorylation
through either serine/threonine kinase 11 pathways or the calcium/calmodulin protein kinase beta
(CaMKKβ). Hepatic AMPK activation leads to the promotion of lipid oxidation and glycolysis, as
well as attenuation of lipogenesis and gluconeogenesis [277]. Moreover, the induction of AMPK
suppresses Foxo1 activity [278] causing the decrease in ER stress and attenuation of insulin resistance
and steatosis [279,280]. It has been demonstrated that high doses of calcitriol ameliorates the abnormal
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hepatic glucose and lipid metabolism in insulin resistance models without toxicity symptoms. Lin et al.
have shown that the elevated level of cytosolic 1,25(OH)2D3 in HepG2 cells evoked the induction of
Ca2+/CaMKKβ/AMPK pathway. Additionally, calcitriol was found to ameliorate hepatic steatosis
by the upregulation of autophagy-related mRNA genes such as ATG16L1 showing that vitamin D
may stimulate lipophagy by the autophagy-lysosomal pathway [276]. Nelson et al. have shown an
inverse correlation between the serum level of 25(OH)D3 and hepatocyte damage in obese women
and men with steatohepatitis [281]. However, no correlation has been observed between the serum
vitamin D level and fat accumulation in the liver or insulin sensitivity in obese women and men with
steatohepatitis [282].

To summarize, vitamin D may ameliorate hepatic lipid and glucose abnormalities in vitro and
in vivo via activation of Ca2+/CaMKKβ/AMPK signaling. The action of vitamin D in hepatocyte is
shown in Figure 7.
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5.9. Immunomodulatory Function of Vitamin D

The immunomodulatory function of calcitriol is widely known [29,283]. Vitamin D not only
decreases adipose tissue inflammation by influencing leukocyte infiltration and maturation of
adipocytes [284,285], but also acts on both the innate and adaptive immune system [245]. Vitamin
D reduces the secretion of pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-12 and increases
production of anti-inflammatory cytokines (IL-10). Additionally, it was recognized that dendritic cells
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acquire an immunoregulatory function and tolerogenic properties as a result of vitamin D action [286].
It is also known that vitamin D reduces the expression and secretion of pro-inflammatory cytokines
such as TNF-α, IL-1β, IL-8, and IL-6 in monocytes [287,288]. Moreover, vitamin D is involved in the
change from more inflammatory response of T-helper 1 (Th1)/Th17 to less inflammatory Th2/Treg
profile in lymphocytes [289]. Interestingly, the T lymphocyte activity is modulated in obesity [290].
Regulatory T cells (Treg) are subtypes of T lymphocytes. Treg are significantly decreased in VAT in obese
mice [291]. Recent evidence has shown two crucial immunological mechanisms associated with insulin
resistance namely, obesity-dependent and obesity-independent. Obesity-dependent insulin resistance
is characterized by macrophage-driven inflammation [292]. In turn, obesity-independent mechanism
involving age-related insulin resistance is controlled via adipose-resident regulatory T cell (aTreg) [293].
Calcitriol was demonstrated to reduce inflammation through strengthening the suppressive Tregs
activity [291]. However, the action of vitamin D on aTreg is still not fully understood [294].

Considering the presence of numerous immune cells in adipose tissue and vitamin D actions, it
alleviates the inflammation driven by insulin resistance [295].

6. Conclusions

Apart from mineral and bone metabolism regulation, vitamin D is also involved in a great number
of cellular processes responsible for the homeostasis of glucose and lipid metabolism via insulin
signaling pathway. Accumulating evidence supports that vitamin D deficiency is associated with the
pathogenesis of insulin resistance. Disturbances in insulin signaling and inflammation are closely
related, and vitamin D was found to reduce both of these disorders. Current evidence suggests that
these benefits are the effect of vitamin D on Ca2+ and ROS homeostasis, as well as regulation of the
expression of numerous genes. Considering multiple targets of vitamin D, we propose that pleiotropic
action of vitamin D is a result of the crosstalk between insulin signaling and other signaling pathways
governing metabolism, inflammation, immunomodulation, apoptosis, and adipogenesis. We have
only just started to understand how vitamin D reduces insulin resistance and associated disorders.
However, we would like to underline that although the awareness of vitamin D–associated health
benefits is arising, the elevated consumption of vitamin D supplements may predispose to an increased
incidence of vitamin D toxicity. Thus, without medical supervision, we advise caution for people who
self-administrate higher than recommended doses of vitamin D.
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