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Abstract
Hughes, S, Warmenhoven, J, Haff, GG, Chapman, DW, and Nimphius, S. Countermovement jump and squat jump force-time
curve analysis in control and fatigue conditions. J Strength Cond Res 36(10): 2752–2761, 2022—This study aimed to reanalyze
previously published discrete force data from countermovement jumps (CMJs) and squat jumps (SJs) using statistical parametric
mapping (SPM), a statistical method that enables analysis of data in its native, complete state. Statistical parametric mapping
analysis of 1-dimensional (1D) force-time curves was compared with previous zero-dimensional (0D) analysis of peak force to
assess sensitivity of 1D analysis. Thirty-two subjects completed CMJs and SJs at baseline, 15 minutes, 1, 24, and 48 hours
following fatigue and control conditions in a pseudo random cross-over design. Absolute (CMJABS/SJABS) and time-normalized
(CMJNORM/SJNORM) force-time data were analyzed using SPM 2-way repeated measures analysis of variance with significance
accepted at a5 0.05. The SPM indicated amagnitude of difference between force-time data with main effects for time (p, 0.001)
and interaction (p, 0.001) observed in CMJABS, SJABS, and SJNORM, whereas previously published 0D analysis reported no 2-way
interaction in CMJ and SJ peak force. This exploratory research demonstrates the strength of SPM to identify changes between
entire movement force-time curves. Continued development and use of SPM analysis techniques could present the opportunity for
refined assessment of athlete fatigue and readiness with the analysis of complete force-time curves.
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Introduction

Jump tasks, such as the squat jump (SJ) and countermovement
jump (CMJ), have been frequently researched (6,13) and are
commonly used as monitoring tools in elite sports (41). The ap-
peal of jump testing stems from the relationship between mea-
sures of jump performance and commonly desired traits
associated with sport performance such as strength (44) and
speed (25,44) including the ability to distinguish between athlete
competitive levels in sports such as soccer, American football, ice
hockey, rugby league, Australian rules football, and weightlifting
(4,5,24,37). These factors coupled with the simplicity, reliability,
and familiarity of jump assessments in athletes (6,7,41) have
likely driven its usage in elite sports. Typically, when jumping
tasks are used as fatigue monitoring tools, changes in one or more
discrete variables (e.g., jump height, peak power, relative peak
power, relative power, mean power, peak velocity, peak force,
mean force, rate of force development, eccentric/concentric time,
flight time/eccentric time, and flight time/contraction time) are
used to determine a fatigue response or readiness for the next
training stimuli (6). These metrics are either measured or

calculated from ground reaction force (GRF) data collectedwith a
force plate, displacement-time data collected with a linear posi-
tion transducer, or contact and flight times recorded with a
contact mat.

Variable selection likely has an effect on the sensitivity of
detecting readiness or fatigue as few variables have provided
consistent results (6).Mechanisms of fatigue are influenced by the
method of fatigue inducement and are confounded by subject
motivation, psychological status, muscle activation pattern, in-
tensity, duration, and the continuous or intermittent nature of the
task (2). Therefore, variable selection combined with the method
of fatigue inducement may play a role in these reported incon-
sistencies. Two other factors often not discussed include (1) use of
only discrete variables to describe a continuousmovement and (2)
the number of trials performed. One-dimensional (1D) statistical
procedures address these factors by allowing analysis of contin-
uous nature time-series data (31) and analysis of numerous trials
which may influence the effectiveness of jumps as a fatigue
monitoring tool (6,7).

The force-time curves of CMJ and SJ consist of hundreds or
thousands of data points per second and to facilitate analysis of
these force-time curves individual zero-dimensional (0D) data
points are selected from specific phases (e.g., peak concentric
force) or averaged acrossmultiple jumps. In addition, 0Ddata can
be derived from calculations of a limited number of points from a
particular region of the curve (e.g., flight time to contraction time
ratio) (31,32); however, 0D analysis characteristically involves
the removal of data from the force-time curve as opposed to
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statistical analysis on all data betweenmovement onset and offset.
Although 0D data can assist with the simplicity of statistical
analyses, it has been suggested that in comparison with the as-
sessment of the continuous force-time curve (e.g., 1D analysis),
the use of discrete variables (e.g., 0D analysis) derived from
continuous data is a reductionist approach that limits insights
into a motor skill (28). The removal of data or the selection of
individual 0D points for analysis may reduce the sensitivity of
jump testing and potentially introduce bias into the analysis and
interpretation of data (31,32), further supporting the potential
benefit of 1D analysis methods. Furthermore, the normalization
of time to a stance or phase as is common in biomechanical re-
search can change the ability for even 1D analysis to observe
temporal changes (28). Thus, evaluations using absolute data
aligned at movement onset or offset versus a more refined nor-
malization (interpolating cubic spline) should be explored.

It has been previously suggested that jumping movement pat-
terns are altered by fatigue (1,12,23) and result in timing varia-
tions in jump phases even where little difference is observed in
jump height (8). Furthermore, elite athletes demonstrate alter-
ations in muscle recruitment and movement proficiency to
maintain performance when fatigued (11,36,38). The ability to
alter muscle recruitment may be dependent on the skill level,
however, as mixed results have been observed in nonelite pop-
ulations (3,38). This phenomenon may be explained by the dy-
namical systems theory where multiple joints and muscles (or
degrees of freedom) emerge with different movement solutions
used to complete desired movements. This may occur specifically
when the preferred muscles used in a prior movement strategy are
fatigued (21) or injured (40), and it has been suggested that
movement reorganization enables the maintenance of tasks
through increased variations in skill execution (16,21). Changes
in jump force-time and power-time curves in response to strength
or power training have been reported in the literature (9,10). The
change in the phases of the force-time curve likely indicates joint-
based changes that summate to adaptations at the system center
of mass (COM) as expressed by force-time curves. Therefore,
movement alterations in response to fatigue, injury, physical ca-
pacity, or training specificity may present as variations in the
shape of the force-time curve despite equal impulses. Statistical
analysis of variables calculated from 2 or more 0D variables has
been undertaken to quantify changes in the force-time curve
shape with promising results (8,12,18). Ratios such as eccentric/
concentric time, flight time/eccentric time, flight time/contraction
time, duration of jump phases, and eccentric/concentric power in
relation to time have been explored; however, 1D analysis could
assess the complete GRF trace without the need to remove data or
use ratios thatmaymask changes because of opposing shifts of the
numerator and denominator. Consequently, force-time curve
analysis may provide greater insight than 0D variables alone (12).

Statistical parametric mapping (SPM) measures spatiotempo-
ral changes to smooth continuum data such as force-time curves
or angular-time curves. Traditionally used in 3D functional
neuroimaging, its use in biomechanical analyses allows the pre-
sentation of data in its native, complete state and reduces the
likelihood of analysis bias resulting from the selection of 0D
variables (31,32). The purpose of the current study was to de-
termine if SPM analysis of force-time curves would be suitably
sensitive to show changes in CMJ and SJ GRF traces between
control and fatigue conditions in an exploratory extension of
commonly assessed discrete variables (18). A secondary purpose
was to examine the effect of 2methods of data preparation for 1D
SPM analysis. The first method applied absolute data (CMJABS

and SJABS), aligned at a traditional offset (toe off). For each trial,
an exact duration before toe off was included to standardize total
data points across all trials. This method was compared with a
time normalization of data that included more temporally
matched phases of movement (CMJNORM and SJNORM). It was
envisaged that use of SPM could provide a more sensitive method
for coaches and scientists to assess changes in temporal-based or
magnitude-based changes of the force-time curve at any point of
athlete movement.

Methods

Experimental Approach to the Problem

A within-group pseudo random cross-over design was used to
compare multiple performance tests across time and model fa-
tigue in response to a randomly assigned seated control or re-
peated sprint cycle exercise condition. Ground reaction force data
were collected during CMJ and SJ as part of a previously pub-
lished battery of assessments that included a neuromuscular fa-
tigue questionnaire, Stroop task, postural sway, isometric
midthigh pull, and 10 seconds maximal cycle (18). Subjects
attended 7 laboratory testing sessions, a familiarization session
and 2 intervention blocks (fatigue and control) of 3 consecutive
days. As part of the aforementioned testing battery, 2 sets of 3 SJs
and CMJs were completed by each subject before control or fa-
tigue conditions as well as at 15minutes, 1, 24, and 48 hours after
each condition (Figure 1). Subjects were provided 10-seconds rest
between jump repetitions and 45-seconds rest between each set
with the collected jumps’ GRF time series data forming the data
used for analysis in this study.

Subjects

Thirty-two physically active subjects (24 men: 27.8 6 7.6 years;
81.46 11.1 kg and 8 women: 24.56 3.5 years; 69.06 14.1 kg;
SD) with a history of at least 6 months of resistance training were
recruited and completed all testing sessions. Subjects were asked
to avoid any strenuous exercise 24 hours before testing and
during the 24 and 48 hours follow-up assessment period. Each
subject was provided with a standardized meal (CHO 5 1–1.5
g·kg21; protein 5 0.3 g·kg21, fat 5 0.28–0.47 g·kg21) that was
consumed 2 hours before all testing sessions and a 600 ml bottle
(618 kJ) of Gatorade sports drink (PepsiCo, New York, NY)
during testing sessions. Subjects were instructed to avoid con-
sumption of coffee the morning of testing sessions and were
requested to maintain their current nutrition intake throughout
the study. Each subject was provided with a written outline of the
risks and benefits of study and given verbal instructions on how to
perform all tasks. After an opportunity to answer any specific
questions, written informed consent was obtained from all sub-
jects. The study was approved by the Edith Cowan University
institutional review board (Approval # 16284) which follows the
ethical guidelines set by the 1964 Helsinki Declaration and its
later amendments or comparable ethical standards.

Procedures

Squat Jump and Countermovement Jump. The methodology for
the SJ and CMJwere previously described (18). In brief, all jumps
were completed on dual force platforms (9286BA, Kistler, Win-
terthur, Switzerland) sampling at 1,000Hz, and vertical GRFwas
analyzed using Templo Jump Analysis Software (Version
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2016.1.404, Contemplas GmbH, Kempten, Germany). Subjects
completed 2 sets of 3 body weight SJ and CMJ with arms re-
stricted by a lightweight (0.4 kg) aluminum bar held across the
shoulders. The SJ repetitions were completed before CMJ with
subjects instructed to jump as high as possible with external cues
of “push off the ground as hard and as fast as possible” provided.
For the SJ, subjects were instructed tomaintain an isometric squat
with an estimated 90° knee bend for 3 seconds before jumping
vertically. Any trials with a GRF reduction .5% were discarded
and repeated. The CMJ consisted of a self-selected counter-
movement before a maximal vertical jump.

Data Processing. One subject was removed because of competi-
tive sport participation,24 hours before baseline resulting in 31
subjects. The force-time data were exported from Templo soft-
ware with all trials from 31 subjects included in the SPM analysis.
The unfiltered 1,000 Hz data from each force platform was
combined and aligned at the point of toe off using a custom
PowerShell script (Microsoft Corporation, Redmond, WA, ver-
sion.NET 4.5) with the first force value,20 N used to align data
and an additional 10 ms of data retained to capture the point
where force #0 N. Force-time curves were then divided by in-
dividual body mass in newtons to account for differences in body
mass between subjects. Movement onset was defined as the point
where normalized body mass reached #0.97 with an additional
10 ms of data retained to the left of the force-time curve. Because
of individual subjects’ movement timing, total movement dura-
tion between movement onset and toe off ranged between
530–1,186 ms in CMJ and 294–727 ms in SJ. Absolute data
(CMJABS and SJABS) consisted of all jumps aligned at toe off with
1,186 and 727 data points included before the point of toe off for
CMJ and SJ, respectively. To remove the need to distort the time
dimension of CMJABS and SJABS force-time curves, shorter du-
ration trials included a longer weighing phase to provide the
1,186 and 727 data points for analysis. This resulted in some
misalignment of jump phases between trials, with longer move-
ment duration trials entering the unweighting (CMJ) or pro-
pulsive (SJ) phase, whereas shorter trials were still in the weighing
phase. Importantly, SPM analysis assesses clusters of change;
however, because of the potential that changes in the force-time
curve may present at specific jump phases, linear length normal-
ization (17,42) was used to normalize contraction durations and
more closely align jump phases between subjects (CMJNORM and

SJNORM). Thus, CMJABS and SJABS data were trimmed from
movement onset to toe off and resampled through an in-
terpolating cubic spline resulting in curves with a common time
duration of 1,186 and 727 ms in CMJNORM and SJNORM,

respectively.

Statistical Analyses

All statistical analysis were completed in the Enthought Canopy
distribution of Python (Enthought, Inc., Austin, TX, version
1.7.4.3348) using open source package “spm1d” located at
http://www.spm1d.org/ (33). Statistical parametric mapping was
used to compare changes in CMJ and SJ force-time curves fol-
lowing a fatigue and control protocol with 2 approaches: (a) time
intact and aligned at toe off point (CMJABS and SJABS) and (b)
time normalized by linear length normalization (CMJNORM and
SJNORM). A SPM 2-way (condition 3 time) repeated measures
analysis of variance (ANOVA) was used for each jump and time
analysis approach resulting in CMJABS, CMJNORM, SJABS, and
SJNORM data with a 5 0.05. Although the current method of
ANOVA post-hoc analysis using the SPM T-test and Bonferroni
correction is likely too simple (30), where an interaction effect
was seen, post-hoc analysis was completed to further explore the
capability of SPM analysis method for future hypothesis gener-
ation. For post-hoc analyses, the alpha value was set at a/12 for
the number of post-hoc tests with 2-tailed inference analysis. The
scalar output statistics (SPM{F} and SPM{T}) were calculated
separately at each individual data point and are referred to as a
statistical parametric map with the calculation of the SPM{F} and
SPM{T} indicating the magnitude of the difference between data.
Where the scalar output statistic crossed the critical threshold ({F}
and {T}), the null hypothesis was rejected. Because of smoothness
of force-time curves and the inter-dependence of neighboring
points, multiple adjacent points of the SPM{F} or SPM{T} curve
often exceeded the critical threshold and are referred to as
“suprathreshold clusters” as exampled in Figure 2.

Results

Two-way repeated measures ANOVA analysis displayed supra-
threshold clusters exceeding the critical threshold in CMJABS,
SJABS, and SJNORM for both time and interaction (Table 1) with
CMJNORM displaying suprathreshold clusters for time alone. No

Figure 1. Study protocol overview. A) CMJ and SJ testing occurred at multiple time points
(gray squares) as part of a previously published data set (18) with control protocol (circle) and
fatigue condition (triangle). B) Fatigue condition consisting of 4 sprint sets interspersed with
90 seconds active recovery (dashed square). C) Sprint set breakdown consisting of 10 3 6
seconds sprints (crossed rectangle) with 30 seconds active recovery (dashed square). CMJ
5 countermovement jump; SJ 5 squat jump.
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clusters exceeded the critical threshold in the main effect of con-
dition for any analysis. Large suprathreshold clusters were ob-
served close to toe off in CMJABS, SJABS, and SJNORM but were
absent in CMJNORM (Figure 3).

Post-hoc analysis was used to compare the differences between
baseline and subsequent time points (15 minutes, 1, 24, and 48
hours) for control and fatigue conditions that demonstrated a
significant interaction effect. Because of the 2-tailed analysis,
suprathreshold clusters could cross the critical threshold ({T}) in a
positive or negative direction. Suprathreshold clusters crossing
the critical threshold represent a difference between the baseline
and post-condition time point. Positive suprathreshold clusters
represent a reduction in force when compared with the baseline
force-time curve, and negative suprathreshold clusters represent

an increase in force when compared with the baseline. The av-
erage and SD of phases has been provided in milliseconds for
absolute analyses with normalized analysis data presented as a
percent of movement. The critical threshold and p values are
provided in each figure.

Alterations in the force-time curve were present at multiple
time points when compared with baseline in CMJABS (Figure 4).
The average unweighting, braking, and propulsion phase in the
fatigue condition occurred at 341 6 117 ms, 669 6 91 ms, and
8726 51 ms, respectively. Large positive suprathreshold clusters
were present in 15 minutes (240–317 ms, 832–994 ms, and
1,096–1,170 ms) and 1 hour (229–354 ms, 843–1,007 ms, and
1,092–1,173 ms) time points with a small cluster at 24 hours
(1,137.9–1,138.1 ms). A suprathreshold cluster at 1 hour post-
fatigue (570–730 ms) was in a negative direction. In the CMJABS
control condition, the unweighting, braking, and propulsion
phase occurred at 3566 115ms, 6796 92ms, and 8776 52ms.
Positive clusters were present at 15 minutes (886–970 ms and
1,116–1,151 ms), 1 hour (861–965 ms and 1,113–1,165 ms), 24
hours (896–952 ms), and 48 hours (902–942 ms) with negative
changes observed at 1 hour (550–667ms) and 24 hours (589–638
ms) postcontrol condition (Figure 4).

In response to the fatigue intervention, changes were observed
at all time points in SJABS. (Figure 5). The average propulsion
phase in the fatigue condition occurred at 313 6 132 ms. Larger
suprathreshold clusters were present at 15 minutes (425–448 ms,
633–713 ms, and 725–726 ms) and 1 hour time points (400–496
ms and 642–711 ms), decreasing at 24 hours (429–450 ms) and
48 hours (687–697 ms). In the control condition, the average
propulsion phase occurred at 309 6 130 ms. Comparisons be-
tween baseline SJABS and later time points displayed changes in
force-time curves at 15minutes (352–463ms and 568–616ms), 1
hour (331–470 ms, 537–636 ms, and 669–707 ms), 24 hours
(331–445 ms and 537–669 ms), and 48 hours (292–293 ms,
294–417ms, and 536–667ms) (Figure 5). Visual analysis showed
a consistent pattern across all SJABS control time points where
positive suprathreshold clusters were present at the onset of force
production leading into negative suprathreshold clusters at peak
force production. This represented reduced force production
shortly after movement onset with an increase in peak force when
compared with baseline trials.

SJNORM time normalization (Figure 6) provided a standardized
propulsion phase, with all movement onset occurring at 0%. The
SJNORM conditions presented similar statistical parametric map

Figure 2. Example SPM t-test. Top—inference curve with
suprathreshold clusters (shaded), critical threshold (t statistic)
as a function of time represented by the dashed line that in-
dicates the random field theory thresholds for significance (a
5 0.05) and p-values that indicate the likelihood that a random
process of temporal smoothness would be expected to pro-
duce a suprathreshold cluster of the observed size.
Bottom—CMJ force-time curve for control (solid line) and fa-
tigue (dashed line) conditions with SD cloud (shaded). CMJ5
countermovement jump; SPM 5 statistical parametric
mapping.

Table 1

Results of SPM 2-way repeated measure ANOVA presenting the suprathreshold cluster locations for each jump type and condition.*†

Time Interaction

% ms p {F} % ms p {F}

CMJABS — 599–673 ,0.001 5.22 — 1,128–1,163 ,0.001 5.22

— 856–980 ,0.001 5.22

— 1,088–1,170 ,0.001 5.22

SJABS — 395–475 ,0.001 5.08 — 652–706 ,0.001 5.08

— 636–711 ,0.001 5.08

CMJNORM 21–37 — ,0.001 5.08

51–74 — ,0.001 5.08

88–94 — ,0.001 5.08

98.6–98.9 — ,0.05 5.08

SJNORM 77–96 — ,0.001 4.91 86–94 — ,0.001 4.91

*CMJ 5 countermovement jump; ANOVA 5 analysis of variance; SPM 5 statistical parametric mapping; SJ 5 squat jump.

†The start and finish locations of suprathreshold clusters are provided as milliseconds for absolute analyses and as a percentage of the total movement duration for normalized analyses. Probability value (p) and

critical threshold ({F}) are stated.
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shapes to SJABS, specifically with respect to positive and negative
clusters. However, large magnitude clusters observed midway
through the SJABS GRF traces presented earlier in the SJNORM

conditions with a reduction in cluster magnitude.

Discussion

The use of SPM analysis for this study enabled assessment of the
entire force-time curve, enhancing visual inspection of phases and
transition between phases. Because of timing variations between
subjects’ force-time curves, an explicit identification of phases
could not be provided in Figures 4–5. SPM analysis of a single
individual could improve identification of phases, enabling
greater identification of changes relative to phases and thus
demonstrating further practical utility of SPM for evaluating
differences within whole movement cycles. To improve compre-
hension of the discussion, the unweighting, braking, and pro-
pulsion phases (27) have been referenced relative to the average
phase onset of the force-time curves provided.

Initial analysis supports the ability of SPM techniques to
measure change in CMJ and SJ force-time curves because of ob-
served interaction effects for CMJABS, SJABS, and SJNORM as well
as the main effects of time (Figure 3). Although post-hoc testing
demonstrated changes in both fatigue and control conditions,
larger suprathreshold clusters observed in the fatigue condition
indicated greater changes in force postfatigue, specifically at 15

minutes and 1 hour time points. When compared with baseline,
the SJ fatigue trials demonstrated lower force development
throughout the movement represented by force decrements mid-
way through the propulsion phase and a reduction in peak force,
although these changes had largely dissipated by 24 hours.
However, improvements in peak force were observed in com-
parison with baseline in SJ control trials. Although post-hoc
analysis was not completed for CMJ or SJ main effects of con-
dition, visual inspection of 2-way repeated measures ANOVA
analysis shows the existence of clusters between 650 and 700 ms
in SJ conditions and 900–1,100 and 1,100–1,186 ms in CMJABS.
Despite this, the low number of conditions resulted in critical
thresholds {F} threefold higher than those in the main effects of
time and interaction, impacting statistical significance.

Consistent with the previous literature (27), changes in force
observed during the CMJ braking phase coincided with changes
in the unweighting phase. These associated changes are because of
equal net impulses being maintained between the 2 phases (27),
with the decreased net impulse observed during unweighting
suggesting that subjects reduced vertical displacement during this
phase. The early net impulse reductions resulted in a concomitant
reduction in the braking phase, explaining the depressed breaking
force and leading to a reduction in elastic energy storage potential
of the muscle-tendon units (27). Furthermore, 15 minutes and 1
hour CMJABS fatigue trials showed significant earlier movement
onset representing a longer movement duration than at baseline

Figure 3. SPM 2-way repeated measures ANOVA results for CMJABS, CMJNORM, SJABS, and SJNORM as labeled. Inference
curves with suprathreshold clusters (shaded) for time (column 1), condition (column 2), and interaction (column 3) with critical
threshold (dashed line). ANOVA 5 analysis of variance; CMJ 5 countermovement jump; SJ 5 squat jump; SPM 5 statistical
parametric mapping.
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which could be indicative of several potential mechanisms. When
fatigued, it is expected that subjects would experience reduced
force production and control. This could potentially result in a
prolonged movement duration and a reduction in negative COM
displacement after movement onset, presenting as decreased force
reduction during CMJ unweighting. The altered force-time du-
ration could also be a demonstration of the dynamic movement
theory representing the application of alternative movement
patterns to achieve the desired outcome (3). Although the control
condition did see a small magnitude reduction in unweighting, the
warm-up provided before the 15 minutes test battery was po-
tentially insufficient to reduce stiffness from sitting stationary on
the cycle ergometer for the duration of the control condition and
may have led to the observed decrements despite the absence of
fatigue inducement.

For suprathreshold clusters to exceed the critical threshold,
clusters of change must occur at similar segments of the force-
time curve across multiple trials. If force changes are restricted
to specific phases of a curve, large SDs in phase timing may
reduce suprathreshold clusters in non-normalized data. Pre-
viously reported differences in jump pattern between (19) and
within individuals (22) supports the use of normalization
techniques during analysis to reduce the affect jump timing
may have on phase alignment and the likelihood of clusters
crossing the critical threshold. The interpolation technique
used in this research led to improved alignment of phases;
however, areas closest to the original point of alignment (toe
off) were lengthened in shorter jump trials, reducing the
magnitude of clusters between peak force and toe off. Because
of this, the diminished cluster magnitude observed during the
late propulsion phase of CMJNORM, resulted in nonsignificant

findings in interaction and an inability to complete post-hoc
testing (30). Although a similar trend occurred in SJNORM,

significance was maintained with post-hoc tests showing a
mirrored reduction in suprathreshold clusters near toe off
when compared with SJABS. Potentially, the greater movement
complexity of the CMJ, specifically regarding the interplay
between the 3 phases, may have played a role in the larger
reduction in cluster magnitude after normalization.

This study provides an extended analysis of previous data with
an initial aim to compare 1D SPM analysis with traditional 0D
analysis methods commonly used in fatigue assessment. By pro-
viding the mean force-time curve (CMJABS) at each time point for
a single subject (Figure 7), we sought to highlight the potential
changes in a force-time curve that can occur in response to fatigue.
Differences observed in the force-time curve between 400 and 600
ms may be concealed when conducting discrete variable analysis
as these changes are not exclusively constrained to maxima or
minima. Previous 0D analysis of this data set (18) reported no 2-
way interaction in relative peak force of CMJ or SJ (Table 2), a
contrasting result to SPM analysis. Despite this result, significant
differences between control and fatigue conditions were reported
in 2 SJ (velocity and FT:CT ratio) and 3 CMJ (jump height, ve-
locity, and FT:CT ratio) variables. Thus, 0D analysis may be
useful to measure a desired performance outcome of a jump,
i.e., velocity or jump height, whereas SPM can provide deeper
analytical information on the movement strategy by presenting
information relative to the entire movement. This includes areas
between phases that may be overlooked in discrete assessment.
Although the selection and analysis of multiple discrete variables
spanning the entire movement may be an attractive alternative to
SPM analysis, the issue of selection bias, the required multiple

Figure 4. Follow-up SPM T-test with Bonferroni correction comparison between baseline and later time points in CMJABS
fatigue and control condition. Rows 1 and 3—inference curves with suprathreshold clusters (shaded) and critical threshold
(dashed line). Rows 2 and 4—CMJmean force for baseline (solid line) and postcondition time points (dashed line) with SD cloud
(shaded) standardized to body mass in newtons. CMJ 5 countermovement jump; SPM 5 statistical parametric mapping.
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Figure 5. Follow-up SPM T-test with Bonferroni correction comparison between baseline and later time points in SJABS fatigue
and control condition. Rows 1 and 3—inference curves with suprathreshold clusters (shaded) and critical threshold (dashed
line). Rows 2 and 4—SJ mean force for baseline (solid line) and postcondition time points (dashed line) with SD cloud (shaded)
standardized to body mass in newtons. SJ 5 squat jump; SPM 5 statistical parametric mapping.

Figure 6. Follow-up SPM T-test with Bonferroni correction comparison between baseline and later time points in SJNORM

fatigue and control condition. Rows 1 and 3—inference curves with suprathreshold clusters (shaded) and critical threshold
(dashed line). Rows 2 and 4—SJ mean force for baseline (solid line) and postcondition time points (dashed line) with SD cloud
(shaded) standardized to body mass in newtons. SPM 5 statistical parametric mapping; SJ 5 squat jump.
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comparison corrections, and possibility that changes are not
constrained to chosen discrete data points make SPM practically
more useful to statistically assess changes across the whole
movement.

Discrete variables calculated from ratios of movement time,
force, or powermagnitude provide a proxymeasure of changes to
movement timing with previous research using these ratios to
demonstrate fatigue (8,12). Cormack et al. (8) observed altered
flight time to contraction time ratio up to 2 days after elite com-
petition despite little changes in jump height performance,
whereas the ratio of mean eccentric 1 concentric power to jump
duration was more sensitive than peak power output, mean
power output, and peak force 24 hours after fatigue (12). The
observed changes in discrete variables using ratios of time, force,
or power may provide support for the dynamical systems theory
and the notion that different movement solutions occur to
maintain a desired “performance” metric such as jump height or
power output. Legg et al. (23) suggested that altering CMJ me-
chanics assisted with maintenance of jump height while in a

fatigued state, with changes in dipmagnitude observedmidseason
despite no change in jump height.

The current study contributes to the 1D analysis literature
(29,42,45) of force-time curves by providing initial analysis of
CMJ and SJ patterns using SPM. The greater sensitivity to force
data reported in this research suggests that SPM could prove
advantageous in fatigue assessment and understanding the read-
iness of an athlete to train or compete, a key component highly
sought after by strength and conditioning professionals and sport
scientists.

Changes in force-time curves across an entire CMJ have been
explored (9,10,20,26,35), although rarely after fatigue in-
ducement. In addition to a paucity of fatigue-related research,
several analysis techniques were not appropriate 1D analysis
methods. Gathercole et al. (14,15) have specifically looked at
changes in relative force and power traces after fatigue; however,
no statistical analysis was completed on these data. Visual anal-
ysis suggested longer movement durations in CMJ traces after
acute fatigue (12,15) consistent with this research, with shortened
durations after adaptation to chronic training (15). One-
dimensional techniques such as functional data analysis (FDA)
and SPM have been used to analyze force-time curves (43) with
SPM providing parametric analysis and FDA using curve fitting,
smoothing, and registration before nonparametric analysis. Al-
though they differ in implementation, FDA analysis performed
without curve fitting, smoothing, and registration has shown
comparable results with SPM. Force-time data can also be ana-
lyzed using statistical nonparametric mapping which has pro-
vided almost identical results to FDA analysis (43).

Despite the potential benefits explored in this research, the
current study is not without limitations. The complexity of the
initial study design, requiring SPM 2-way repeated measures
ANOVA analysis may be a limitation of this research. Post-hoc
analysis of SPM 2-way repeated measures ANOVA is currently
too simplistic (30) because it assumes that post-hoc tests are in-
dependent and involves separate smoothness assessments for each
post-hoc test. As a result, the post-hoc analysis in this study
should be interpreted with caution and in line with current
guidelines post-analysis was not completed if it disagreed with
initial ANOVA analysis (30). Furthermore, the large variation in
jumping patterns between subjects also provides an obstacle to
using SPM analysis methods. Wu et al.’s research suggested
subject variation was the most significant contributor to CMJ
variations after fatigue (45). Visual analysis of individual sub-
jects, such as that in Figure 7, supports a variable response to
fatigue by subjects. A critique of the style of analysis used in this
research is that subject variations in the timing of jump phases,
specifically in the CMJ, can potentially result in a mismatch of

Table 2

Comparison of 1D and 0D 2-way repeated measures ANOVA analyses of a single data set.*†

Two-way ANOVA Result Practical implications

1D—SPM analysis

CMJ and SJ relative force Significant difference Allows for analysis of the “how” of the jump provides potential

movement strategy changes

0D—discrete analysis (18)

CMJ and SJ relative force(18) No significant difference

CMJ height, FT:CT ratio, and velocity Significant difference Allows for analysis of the “what” of the jump, can miss strategy changes

but provides clear outcome-based performance measures

SJ FT:CT ratio and velocity Significant difference

*CMJ 5 countermovement jump; ANOVA 5 analysis of variance; SPM 5 statistical parametric mapping; SJ 5 squat jump.

†0D analysis previously published in Hughes et al. (18).

Figure 7.Mean CMJABS force-time curve of a single subject in
fatigue and control conditions. The mean CMJABS force curve
(solid line) at each time point with SD cloud (shaded) stan-
dardized to bodymass in newtons. CMJ5 countermovement
jump.
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jump phases. Aligning the force-time curve at toe off ensures the
final propulsion phase is aligned; however, as evidenced by the SD
of phases, unweighting and braking phases found at the begin-
ning and middle of the jump are less aligned. The linear in-
terpolation method applied as part of the CMJNORM and SJNORM

analysis partially corrected for this; however, in the CMJNORM

analysis, it was less effective. In this instance, using linear in-
terpolation to closer align early phases of the jump resulted in a
reduced alignment at the points near toe off and reduced signifi-
cance. Jump patterns are often highly variable with phases af-
fected by multiple variables such as jumping experience or motor
skill and training history (9,39). Consequently, an improved
method of phase alignment may be required to reduce limitations
of this method. Landmark or continuous registration techniques
may provide an improved method of normalization for this re-
search (34). These techniques transform curves to align specific
features and reduce phase variation. Specific landmarks used in
landmark or continuous registration often consist of maxima,
minima, or zero crossings with landmarks such as onset of
unweighting phase, minimum of unweighting phase, end of brak-
ing phase, maximum of propulsion phase, and end of propulsion
phase being potentially useful for analysis of the CMJ force trace.
However, to achieve use of landmark or continuous registration
techniques consistently across the literature, it is incumbent on
researchers to clearly define and agree to 0D landmarks.

Unimodal and bimodal peak variation reported within in-
dividual subjects (19,22) may also make cross sectional analysis
of GRF traces problematic. A potential improvement would be
the use of single subject analysis to reduce the magnitude of
change from the required normalization or to remove the need for
it entirely by increasing uniform jump characteristics across data
collection. Fewer large variations in jump characteristics (phase
timing and force application) may increase suprathreshold clus-
ters as data from a single subject (such as in Figure 7) could
provide greater consistency in control force traces making dif-
ferences because of fatigue more apparent. To compare 2 time
points using a SPMT-Test, as little as 6–12 jumpsmay be required
for a single individual, although this will be dependent on the SD
between force-time curves. If comparing multiple time points and
multiple conditions of a single subject in a similar design to this
study, a greater number of jumps would be required.

Practical Applications

Because of the low load required, daily or weekly jump testing
is a viablemethod for assessing training or taper status around
training blocks and competition; however, the analysis of
discrete variables taken from a single point in the jump may
miss changes elsewhere in the movement. Because strength
and conditioning professionals, coaches and movement sci-
ence specialists consider movement cues relative to whole
movements and not relative to discrete points, analysis of the
complete movement ensures identified differences are con-
sidered within the movement in its entirety. Practically, SPM
analysis can provide important information relating to an
athlete’s movement strategy, expressed through a variation in
the force-time curve, a key objective of coaches, movement
science specialists and strength and conditioning coaches. The
significant changes in force-time curves observed at multiple
time points suggests that 1D analysis can detect differences
throughout the force trace andmay provide amethod to assess
athlete fatigue and readiness to perform. Although this

research focused on athlete fatigue, the statistical assessment
of movement strategy changes throughout lower-limb injury
rehabilitation would be desirable for many professionals and
may be a further avenue of interest. This research affirms the
need for case study analysis on an individual experienced in
jumping to ascertain if greater uniformity in jumping char-
acteristics would demonstrate greater sensitivity than the
current data set of 31 subjects. Furthermore, case study
analysis could also compare 1D and 0D analysis to determine
if single subject analysis provides greater sensitivity to fatigue
than traditional 0D analysis methods. Continued de-
velopment of this analysis technique could provide the ability
to assess athlete fatigue and readiness to train by comparing
daily pretraining efforts to previous nonfatigued efforts and
providing an immediate analysis of athlete condition.
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