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Autism spectrum disorders (ASD) have long-term implications on functioning at
multiple levels. In this perspective, we offer a brainstem-informed autism framework
(BIAF) that traces the protracted neurobehavioral manifestations of ASD to early life
brainstem dysfunctions. Early life brainstem-mediated markers involving functions of
autonomic/arousal regulation, sleep-wake homeostasis, and sensorimotor integration
are delineated. Their possible contributions to the early identification of susceptible
infants are discussed. We suggest that the BIAF expands our multidimensional
understanding of ASD by focusing on the early involvement of brainstem systems.
Importantly, we propose an integrated BIAF screener that brings about the prospect
of a sensitive and reliable early life diagnostic scheme for weighing the risk for ASD.
The BIAF screener could provide clinicians substantial gains in the future and may carve
customized interventions long before the current DSM ASD phenotype is manifested
using dyadic co-regulation of brainstem-informed autism markers.

Keywords: autism spectrum disorders (ASD), brainstem, auditory brainstem evoked response (ABR), respiratory
sinus arrhythmia (RSA), sleep, sensory processing, arousal, neonates

INTRODUCTION

The brainstem and its rostral networks underlie a wide array of operations, ranging from
autonomic functions such as respiration (Bianchi and Gestreau, 2009), cardiovascular activity
(Dampney, 2016), and sleep-wake regulation (Scammell et al., 2017), through sensorimotor
reactivity (Kobayashi and Isa, 2002), and even involvement in consciousness and self-awareness
(Parvizi and Damasio, 2001).

Autism spectrum disorders (ASD) are a set of neurodevelopmental disorders manifested
in deficits in social-communication abilities and restrictive and repetitive behaviors (American
Psychiatric Association [APA], 2013). Despite the DSM nosology that classifies ASD as a unified
construct, various findings suggest a high degree of heterogeneity in ASD phenomenological
manifestation and genetic basis that nevertheless share common cellular and molecular features,
including alterations in neurogenesis, synaptogenesis, and structural formation (Gilbert and Man,
2017). Recent accounts, some from our lab, emphasize the role of early brainstem functions in the
epiphenomena of ASD (Dadalko and Travers, 2018; Delafield-Butt and Trevarthen, 2018); namely,
in social attention (Geva et al., 2017), communication (Geva et al., 2013, 2014), and repetitive
behaviors (Cohen et al., 2013; Gandhi and Lee, 2021)– all key features of ASD.
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Social attention, communication, and adaptation of behavior
have primary roles in the human core being already at birth.
Hence, we suggest that brainstem circuits that mature in very
early life and even during fetal stages to regulate vital autonomic
functions (Zec and Kinney, 2003), have a central role in
shaping social communication and adaptation of behavior. We
suggest that given the early maturation of brainstem pathways,
their pervasive role in functioning at multiple levels, and their
specific involvement in social-communication deficits, brainstem
functions enable a valuable window into the pathophysiology of
ASD. Its neurobehavioral manifestations are already evident in
the first phases of postnatal life.

Research thus far suggests brainstem involvement in ASD
by typically denoting a unitary brainstem marker. Building
upon an integration of the literature, in the current perspective,
we propose a brainstem-informed autism framework (BIAF)
that zooms in on the distinct paths by which compromised
brainstem functions possibly stir development and increase the
susceptibility for ASD-related symptomatology. We then suggest
that zooming out to look at the full battery of brainstem-
related expressions, rather than individual markers, may enable
constructing a highly sensitive early risk neurobehavioral
screening tool of ASD.

THE FORMATION OF BRAINSTEM
NETWORKS

Principal morphological changes in the embryonic brainstem
in multiple organisms buds during the first trimester of
pregnancy (ten Donkelaar et al., 2014). Animal models indicate
that the genesis of motoneurons in rhombomeres 7 and 8
commence approximately at the fourth week of fetal life; these
neurons subsequently migrate and form the vagal nerve nuclei,
including the dorsal motor nucleus, nucleus ambiguus, solitary
tract nucleus, and spinal trigeminal nucleus (ten Donkelaar
et al., 2014; Watson et al., 2019). The neural functionality
of brainstem pathways is noted from early gestational stages
(Glover et al., 2008; Marrs and Spirou, 2012). A post-mortem
specimens study of the medulla in human fetuses indicated
that a neural branching from and into the solitary tract
nucleus is established and expedites cardiorespiratory control
around gestational age (GA) of 20 weeks (Zec and Kinney,
2003). The development of vital parasympathetic functions is
further secured from mid-gestation to parturition as myelination
of the vagal nerve roots progresses (Tanaka et al., 1995).
Importantly, myelination of efferent fibers from the nucleus
ambiguus to the sinus nodes that regulate cardiac pace is
accelerated (Porges, 2011) and stabilizes the parasympathetic
activity when reaching term age as manifested by increased heart
rate variability at the higher (i.e., above 0.2 Hz) frequencies
(Longin et al., 2006). Similar neuro-maturational processes
involving the birth of neurons in hindbrain rhombomeres
and mesencephalic neuromeres, neurons migration, and axonal
navigation contribute to the formation of the cranial nerves
sensorimotor nuclei in the brainstem from Carnegie stage
12 (O’Rahilly and Müller, 2006; ten Donkelaar et al., 2014).

These structures support auditory, ocular, tactile, gustatory,
and olfaction development and shape motor reactivity in a
progressive fashion. As such, early postnatal myelination of axons
radically increases the rate and synchronicity of transmission
through the auditory pathway, emanating from the cochlear
nuclei, superior olive, lateral lemniscus, and inferior colliculus
(Sano et al., 2007), alongside other sensorimotor paths that evolve
in tight temporospatial constraints.

Optimal structuring of the brainstem has vast implications on
neurocognitive sequelae, as the early structural building blocks of
these early maturing networks influence the emerging operations
of higher-order top-down limbic and neocortical systems.
Eventually, brainstem networks affect functions from basic
reception through multisensory and motor integration (Geva
and Feldman, 2008), in ways that affect behavioral inhibition
(Geva et al., 2014), higher-order social engagement (Geva et al.,
2017), and social communication capacities (Geva et al., 2013). As
such, evaluation of brainstem integrity offers multiple candidate
markers for ASD. These markers are potentially diagnosable at
term age and soon thereafter.

To date, the research has mostly treated each BIAF factor as a
single primary marker. We review each one shortly and suggest
that their integration presents a strong case for a cohesive BIAF.
We shall focus on the hallmarks of brainstem functions: cardiac,
respiratory, and arousal regulation; sleep-wake homeostasis; and
primary sensorimotor operations. Following the exploration of
their main effects and interactions, we will delineate a BIAF,
focusing on how it first unfolds in gestation and the post-
birth period.

CONTROL OF AROUSAL:
CARDIOVASCULAR AND RESPIRATORY
DEVELOPMENT

The vertical hierarchical framework was formulated in our lab
to delineate the development of self-regulation and positioned
brainstem functions at the crux of the model (Geva and Feldman,
2008). According to this model, brainstem networks serve pivotal
roles in regulating the young infant’s arousal responses to
sensations. Recent notions accentuate that nascent autonomic
conditioning of socioemotional reflexes and arousal responses
occur at the brainstem and peripheral levels and prior to the
top-down cortical navigation of arousal (Ludwig and Welch,
2020). Poor arousal regulation is one of the key features of ASD
(Prince et al., 2017; Cuve et al., 2018; Corbett et al., 2019; de
Vries et al., 2021), evident by hyper- or hypo-arousal reactivity
of the autonomic system in response to sensory stimulation.
Particularly in infants who are siblings of children with ASD
(Zivan et al., 2021). The functional implications of autonomic
dysfunctions in individuals with ASD are vividly apparent in
an array of markers, including pupil diameter (Zivan et al.,
2021), electrodermal activity (Prince et al., 2017), and the
coordination of heart rate and breathing (Corbett et al., 2019).
These autonomic functions are by and large regulated at first by
brainstem networks that mature in late-term stages and have been
suggested to serve social engagement purposes (Porges, 2001).
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The inner workings of the mechanisms involved in this
interplay are now under investigation using different models and
an array of techniques. Here we note some of the literature that
exemplifies the richness of data and intricate set of interlinked
neurophysiological processes currently explored.

Possible causes for the abnormalities in autonomic functions
in ASD are aberrations in cerebellar-brainstem white matter
tracts, involving insufficient glial maturation and axonal growth
differences noted in infancy and early childhood (Shukla et al.,
2010; Yu et al., 2020), altered white matter connectivity of
brainstem tracts found in tractography machine learning analysis
(Zhang et al., 2018), and atypical structuring of the medullary
arcuate nucleus which is involved in cardiorespiratory regulation
(Bailey et al., 1998). The exact trajectory and localization of
histogenesis and primal autonomic circuitries development in
ASD remain to be further elucidated. Hopefully, future studies
will clarify whether abnormal patterns of myelination, axonal
navigation, and circuits formation of vagal nerve nuclei during
embryonic and neonatal development are implicated in the
autonomic sequelae of individuals with ASD. Even though
the developmental pathophysiological course is not yet fully
established, several cardiorespiratory indices were utilized to
weigh the involvement of vagal functions in ASD research. We
shall focus on respiratory sinus arrhythmia (RSA).

Respiratory sinus arrhythmia measures the variations in heart
rate as a function of the respiration cycle and is regarded
as an applicable index of the vagal tone and its coordination
by the nucleus ambiguus (Berntson et al., 1993). Porges’
polyvagal theory proposes that inner physiological experiences
are innervated by socio-emotional sensations right from birth
and that this interplay underlies the nascent steps of social
development (Porges, 1995, 2011, 2021).

A recent comprehensive meta-analysis (Cheng et al., 2020)
involving participants with ages spanning the first three decades
of life revealed that diagnosis of ASD was associated with
diminished baseline RSA and diminished RSA reactivity during
social experiences. A previous prospective study including a
cohort of very preterm children has shown that neonatal
RSA indices predicted social competence at the age of three
(Doussard-Roosevelt et al., 1997) and then at school age
(Doussard-Roosevelt et al., 2001). Further, infants diagnosed
with ASD in late childhood showed a blunted pattern of RSA
development from the age of 18 months (Sheinkopf et al., 2019).
The RSA findings imply that the alignment of vagal resources
with the social environment, mostly those involving the adaptive
switching between tranquil/non-engaged and charged/engaged
states, scaffolds the building blocks of social development from
birth. It further accentuates that cardiovascular hypo- and
hyper-arousal reactivity might affect vigilance and impede the
prospect of a durable engagement with parents, peers, and
significant others in ASD.

Vigilance models have been proposed to explain a range
of psychopathological processes from mania to attention
deficits (Hegerl and Hensch, 2014). These models have noted
links between poor arousal regulation, unstable vigilance,
and sleep deficits. We suggest that these notions are highly
relevant to the BIAF.

SLEEP AS A SOCIAL AWAKENER

Primal sleep-wake substrates in the brainstem promote sleep
rhythms long before the anterior limbic circuits gain dominance
(Villablanca et al., 2001). Given the primary involvement of
brainstem networks in sleep regulation, the BIAF suggests that
congenital compromised brainstem functions could instigate
sleep-wake dysregulations from the neonatal period. Then, it
might perturb the brainstem-limbo-cortical connectivity and lead
to long-term sleep deficits (Geva and Feldman, 2010; Blumberg
et al., 2014).

The primal sleep-wake system consists of wake-promoting
loci in the reticular formation along the brainstem, including
the monoaminergic locus coeruleus (LC) and dorsal raphe
nucleus (DRN), and the cholinergic laterodorsal tegmental
nucleus and parabrachial nuclei; the primal GABAergic sleep-
promoting structures include the nucleus pontis oralis, nucleus
subcoeruleus and the Purkinje cells in the cerebellum (Phillips
and Robinson, 2007; Blumberg et al., 2014; Sokoloff et al.,
2015). These brainstem-cerebellar hubs are highly implicated
in the ultradian cyclicity of sleep-wake bouts during the first
weeks of extrauterine life (Geva and Feldman, 2010). Infant
sleep is marked by high rates of REM sleep that have a
vital neuroprotective role and is guided by the aforementioned
brainstem loci (Heraghty et al., 2008). Accordingly, lesions and
morphological abnormalities in both gray and white matter in
pontine and adjacent regions are associated with reduced REM
sleep in human adults (Landau et al., 2005; Scherfler et al., 2011).
Further, sleep organization and a smooth transition between
sleep stages seem important. Fragmented neonatal sleep has
been noted to impede infant attention orienting at 18 months
of age (Geva et al., 2016). One should keep in mind these
phenomena when considering the trajectories of sleep integrity
in populations with ASD.

Children, adolescents, and adults with ASD display various
sleep abnormalities, including decreased sleeping time, delayed
sleep latency, and less efficient sleep (Elrod and Hood, 2015; Lugo
et al., 2020; Chen et al., 2021), and show a strikingly elevated
risk for sleep disorders (Lai et al., 2019; Lugo et al., 2020). These
findings suggest that sleep deficits and ASD possibly stem from
a similar neuropathological disrupted circuitry that involves the
brainstem in a major way.

Studies have illustrated several influences of the brainstem
in sleep-wake dysregulation in ASD populations. Vis-à-vis
inhibitory pathways, genetic findings suggest that ASD is
associated with microduplications copy-number variations in
the chromosome 15q11–q13 region responsible for coding the
GABAA receptor’s subunits (Sebat et al., 2007; Meguro-Horike
et al., 2011; Sanders et al., 2012). Accordingly, post-mortem
studies found a decrease in GABAergic Purkinje neurons in
cerebellum specimens of deceased ASD patients (Bailey et al.,
1998; Palmen et al., 2004). Functional alterations in the activity
of excitatory networks involving the LC are found in children
with ASD (Bast et al., 2018; Huang et al., 2021). Taken together,
these suggest that an imbalance between the primary excitatory
(e.g., the monoaminergic LC and DRN) and inhibitory (e.g., the
GABAergic Purkinje cells) circuits (Coghlan et al., 2012) of the
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brainstem is involved in the pathogenesis of sleep disturbances in
ASD patients, as well as affecting other arousal-related domains
(Wintler et al., 2020).

The extent of sleep deficits could also be viewed as a distinct
factor that affects social development. Several findings support
this latter notion. First, abnormal sleep patterns in early life
are associated with subsequent ASD diagnosis and symptoms
(Humphreys et al., 2014; Saenz et al., 2015; Miike et al.,
2020). Further, in children with ASD, shorter sleep duration
exacerbates the severity of both repetitive behaviors and social-
communication deficits (Schreck et al., 2004; Tudor et al., 2012;
Veatch et al., 2017). The hazards posed by sleep disruptions in
children with ASD urged clinicians to recommend that sleep-
wake homeostasis issues be assessed and managed as a central
feature in the therapeutic plan of ASD patients (Cohen et al.,
2014; Abel et al., 2017; Souders et al., 2017). This agenda
accentuates the primary role sleep possibly serves in the evolution
of ASD and the neuroprotective role of sleep in its containment
(Wintler et al., 2020).

The findings suggest that sleep and arousal play a major role in
ASD. Sleep disturbances are plausibly a result of fetal, genetic, and
epigenetic brainstem-mediated antecedents. At the same time,
they stand by themselves as factors that might exacerbate the risk
for ASD or lead to more severe symptoms by impeding brain
development and its regulated reactivity to stimulation through
the various senses.

THE STEM OF THE SENSES

Atypical behavioral responses to sensory stimulation are a
ubiquitous characteristic of ASD (Marco et al., 2011). Research
on unimodal sensory processing and multisensory integration
using various neuroimaging techniques demonstrated significant
alterations in sensory processing neural substrates (Marco et al.,
2011). Here we briefly review some of the unimodal and
multisensory processing findings that pertain to the BIAF.

Auditory Processing
A feasible aperture into neonatal brainstem auditory functions
involves the highly utilized auditory brainstem evoked response
(ABR) test. The ABR is broadly implemented across the globe
as a screener for hearing deficits in newborns (Morton and
Nance, 2006; Levit et al., 2015). Diving into its characteristics
enables uncovering its germaneness to autism. In the ABR
procedure, newborns are exposed to auditory stimulations (i.e.,
click or speech sounds in standardized dB levels) while an
electrode attached to the scalp measures the electrophysiological
activity. The latencies of neuro-electrical fluctuations following
the auditory stimuli are typically manifested in five major wave
peaks in neuro-typical adults; waves I and II originate from
the auditory vestibular nerve, while wave peaks III–V putatively
reflect the reaction of deeper structures including the cochlear
nuclei (wave III), superior olive (wave IV) and lateral lemniscus
and inferior colliculus (wave V; Wilkinson and Jiang, 2006).
Apart from its conventional role for detecting hearing deficits,
the ABR presents intriguing information on deficient brainstem

maturation, detectable already in the late-term period in ways
pertaining to ASD risk detection.

Both functional and structural brainstem auditory path
alterations are noted in individuals with ASD. Changes in neural
transmission rates through the brainstem (most prominently
a delayed V peak latency) that appear already at birth have
been associated with increased risk for subsequent diagnosis of
ASD (Cohen et al., 2013; Miron et al., 2016, 2021; Tu et al.,
2020). This association persists throughout infancy, toddlerhood,
and childhood (Miron et al., 2018; Talge et al., 2018). Along
with the functional differences in brainstem auditory structures,
morphological studies have demonstrated durable alterations in
size, volume, and neuronal density in the superior olive (Kulesza
et al., 2011; Mansour and Kulesza, 2020), as well as abnormal
geometric arrangements of cells body shape and orientation
(Kulesza and Mangunay, 2008). Taken together, abnormalities in
brainstem auditory centers may be a relatively stable marker of
ASD, which stands so a long way before autism symptoms onset.

What does a deficient ABR at birth imply concerning the
mechanisms driving ASD? Two non-mutually exclusive options
come to mind: First, a deficit in reception, filtering, and
processing of auditory signals (Morton and Nance, 2006; Levit
et al., 2015). A deficit in auditory processing may account for
persistent disruptions in neuro-cognitive development. Inability
to perceive vocal cues and produce them well has a profound
effect on social and communication capacities (Del Zoppo et al.,
2015; Petersen and Hurley, 2017). Accordingly, an auditory
processing deficit is highly prevalent in populations diagnosed
with ASD (O’Connor, 2012; Williams et al., 2020). Impairments
such as auditory hypersensitivity (Williams et al., 2021) and
diminished background noise filtering (Park et al., 2017) can
obstruct the ability to prepare ahead of time and might lead to
intensified anxiety, repetitive behaviors, and a strong need to keep
routines and rigidly anticipated schedules (Schaaf et al., 2011;
Kargas et al., 2015; Kanakri et al., 2017; Park et al., 2017; Ahmmed
and Mukherjee, 2021). As such, the auditory path alone already
accounts well for a large portion of ASD phenomenology.

Alternatively, even when the infant’s hearing threshold is
preserved, an asynchronous auditory nerve firing or delayed
processing evident in the ABR may signal altered neural
programming that operates in a pervasive manner. These
alterations affect a widely distributed network that goes
beyond the direct effect of disrupted auditory functions, on
to language and communication development (Miron et al.,
2016; Geva et al., 2017; Chen et al., 2019). Notably, individuals
diagnosed with ASD display increased susceptibility not only to
auditory processing deficits but to difficulties in other sensorial
modalities, such as vision.

Visual Processing and Gaze
The optic tract develops via a genetically driven regulation
of axonal growth, navigation, and neuronal migration in the
retinogeniculate pathway. The tract’s development also depends
on endogenous and exogenous stimulation during the first
years of life to secure and strengthen the synapses that refine
the topographic map in the thalamic lateral geniculate nucleus
and primary visual cortex (Graven, 2004). The more primal
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and fast to react dorsal visual stream is highly operational
during the first months of life, relaying low-resolution data
from the rods with increased sensitivity to changes in the
exterior scenery (Hammarrenger et al., 2003; Bridge et al., 2016).
The role of the superior colliculus (SC) in the dorsal stream
has been recently highlighted, suggesting that in the neonatal
period, this midbrain structure is pertinent for exercising focal
oculomotor operations, receiving and integrating multimodal
sensory inputs, and communicating with higher-order visual-
neural configurations (Pitti et al., 2013; Jure, 2019). The SC is,
thus, highly involved in rudimentary social behaviors, including
the preference to fixate on human faces and the ability to
detect and imitate emotion-resonating facial expressions (Jure,
2019). Neonatal experiences drive the SC to refine its ability to
integrate inputs from diverse sensorial modalities in ways that
expand social capabilities (Stein et al., 2014). Impairments in
SC-contingent functions are found in populations with ASD.

An important line of evidence accentuating the major role
of visual refinement through the SC for social-communication
development is that congenital blindness is a significant risk
factor for ASD, affecting approximately 50% of infants born
without the ability to see (Jure et al., 2016). Ample evidence for
the apparent vulnerability of the dorsal stream network is noted
in a wide range of both genetic and acquired developmental
disorders (Grinter et al., 2010; Braddick et al., 2011). With
specific regard to ASD (Grinter et al., 2010), deficits in stabilizing
visual fixation at 6–9 months were shown to predict social-
communication problems at 36 months (Wass et al., 2015). These
data suggest that deficits in apprehending the spatial grid and
dynamic movements of objects (abilities rooted in the dorsal
stream) have a major effect on the ability to execute contingent
motor actions with social agents.

Notably, during the first year of life, the "fine-tuning" of the
visual system for processing complex and socially charged stimuli
is impaired in infants who are siblings of children with ASD
(Zivan et al., 2021) and in those who are subsequently diagnosed
with ASD (Zwaigenbaum et al., 2005; Elsabbagh et al., 2012; Jones
and Klin, 2013). Later in development, abnormalities in social
gaze patterns (Wegiel et al., 2013; Frazier et al., 2017) and other
oculomotor functions (Johnson et al., 2016) are significantly
associated with ASD. We suggest that the association between
newborns’ visual processing indices, particularly the reactivity
to highly salient, social, and moving stimuli, could serve as
possible markers for a dorsal-colliculi deficiency in the BIAF and
should be further investigated. Similar somatosensory processing
dysfunctions should be further addressed.

Gustatory and Olfaction Processing
Individuals diagnosed with ASD are more likely to have odors
and tastes identification impairments (Bennetto et al., 2007;
Boudjarane et al., 2017). Of specific interest to the BIAF is
the trigeminal bottom-up olfactory pathway that innervates the
nasal mucosa to execute protective respiratory reflexes in the
presence of noxious odorants (Pérez de los Cobos Pallares et al.,
2016). Operations of this pathway can be observed in newborns’
behavioral responses of disgust following exposure to unpleasant
odors (Soussignan et al., 1997) and their autonomic regulation

of breathing (Marlier et al., 2005). One of the primary odors
for newborns is maternal odors during feeding. A meta-analysis
found a negative association between maternal breastfeeding and
ASD (Tseng et al., 2019); the authors interpreted the results by
suggesting that breastfeeding has a moderating effect, but the
involved mechanism is yet to be determined. Apart from the
acknowledged importance of touch and emotional investment
associated with breastfeeding, congenital deficits in olfactory,
gustatory, and motor functions could add significantly to the
accounts of both phenomena and to difficulties in the initiation
of breastfeeding (Suberi et al., 2018). Taken together, these data
suggest that impaired trigeminal reflexes in the newborn could
be an additional BIAF early marker.

Tactile-Motor Integration
Changes in responses to tactile stimulation have been
acknowledged as a distinguishable feature of people with
ASD (Wiggins et al., 2009; Foss-Feig et al., 2012; Balasco et al.,
2020). Importantly, this network is rooted in the brainstem. The
inferior olivary nucleus (ION) is an axial brainstem hub that
receives multimodal sensory inputs, including tactile sensations.
Through climbing excitatory fibers to the Purkinje cells, the ION
enables the execution of coordinated motor actions (Wu et al.,
2010; Ju et al., 2019).

Aberrant structuring of the ION, as found in populations with
ASD (Rodier et al., 1996; Bailey et al., 1998), might restrain the
valence of early life experiences, and the latency and proclivity
to react via oscillations of efferent motor fibers (Arndt et al.,
2005). Indeed, reduced tactile-motor reactivity at 12 months in
the context of parent-child interaction was shown to be a risk
factor for a subsequent diagnosis of ASD (Baranek, 1999). Given
that collecting tactile information depends on perception and
execution of movement, the findings suggest that the difficulties
in tactile processing in children with ASD are intertwined
with motor development. This notion is corroborated by the
increased risk for impairments in motor functioning found in
infants and toddlers who later develop autism (West, 2019).
Taken together, these suggest that a deficit in ION-mediated
tactile-motor rhythmicity might progress into a broader difficulty
in the timing of communication and compromise social-
communication efficacy in ASD.

Sensorimotor Exchanges
A shortfall in synchronous sensorimotor communications
with the world is almost intrinsic to the experience of
children with ASD and their caregivers. It has profound
implications on developmental outcomes in isolating the
self from the social sphere, restricting exposure to familiar
sensations, and limiting the sense of communicative agency
(Delafield-Butt and Trevarthen, 2018).

Rhythmic communications, in which our senses swiftly grasp
the exterior surrounding and contribute to it with our actions,
are essential for building our sense of relatedness with the
world and the people around us (Keller et al., 2014). The
reviewed early life indices of sensorimotor integration suggest
that early dysfunctions in brainstem systems impede the typical
progression of the embodiment of social exchanges via alterations
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of the valence of sensorial inputs and the latency, vitality,
and congruency of sensorimotor reactions. Importantly, several
markers that could trace the full-blown ASD phenotype to
brainstem-mediated abnormalities in newborns and infants were
pinpointed. Their integration enables the development of an
integrated BIAF.

INTEGRATING INDIVIDUAL MARKERS
INTO A COHESIVE
BRAINSTEM-INFORMED AUTISM
FRAMEWORK

It has been shown that the ABR alone has a noteworthy
sensitivity for detecting infants who later develop ASD, with 70%
accuracy (Miron et al., 2016). We suggest that integrating the
individual markers points to the importance of a cohesive early
life BIAF. The advent of such a framework offers advancements
in our multidimensional understanding of autism. First, the
BIAF proposes that the susceptibility to ASD develops during
gestation and marks the neural networks that account for
its early presentations, those that precede DSM symptoms
oftentimes. Secondly, given the richness of the pathways
traversing through the brainstem, the BIAF accounts for the
heterogeneity in autism. Thirdly, the integrated BIAF may
inform and promote the establishment of a clinical screener
that will build upon prominent indices of brainstem functions
to reach high sensitivity and reliability for weighing the risk
for social development deficits. Such a screener could also
ascertain the domain-specific impairments for each infant and
reveal in which functions auxiliary support is necessitated (e.g.,
auditory or tactile processing, autonomic-arousal reactivity, sleep
hygiene, etc.). Accordingly, an early life BIAF screener could
provide clinicians substantial gains vis-à-vis early detection
of susceptible populations using electrophysiological indices
(Figure 1, depicted on the right) along with behavioral ones
(Figure 1, depicted on the left). The BIAF screener may
carve new opportunities for customized interventions for the
specific infant’s needs.

Theoretical and Clinical Applications of
the Brainstem-Informed Autism
Framework
The BIAF has impactful applications for the scientific and
clinical fields in the following key areas: (a) diagnostics, (b)
prevention and moderation of symptoms, and (c) applicability.
We suggest that these domains should be advanced in the
following directions:

a. Diagnostics: An early life screener for detecting
compromised brainstem functions should be implemented
by assembling pertinent brainstem-mediated indices.
A possible screener could consist of cardiorespiratory (e.g.,
RSA), sleep-related (e.g., actigraphy), and behavioral (e.g.,
facial-emotional reactivity) indices. We suggest that such a
screener should be further evaluated and could bring about

remarkable prospects for early detection of susceptibility
to ASD.

While detection of some of the proposed BIAF
markers requires further research, the use of brainstem-
mediated indices in the neonatal period can already enable
pinpointing susceptible populations, as ABR protocols for
the detection of early risk for autism are available (Miron
et al., 2016). However, we suggest that adding additional
BIAF indices may improve the sensitivity of early ASD
detection compared to relying only on the ABR.

b. Prevention: Early detection of risk for ASD may enable
referral to follow-up assessments and interventions at a
sensitive period when the brain plasticity is exceptionally
high. The opportunity of amending the pervasive
changes in neural architecture has a high potential in
moderating the protracted disturbances in brainstem
functions, including cardiorespiratory reactivity, sleep-
wake homeostasis, and sensorimotor development (Welch
et al., 2015, 2020; Beebe et al., 2018).

c. Support, Intervention, and Vital Care: Recent notions
highlight the pivotal role of calming regulatory interaction
cycles between the child and the environment in shaping
autonomic and social development (Ludwig and Welch,
2020), thus, expanding the role of parent-child interaction
that is also central to our vertical hierarchical model
(Geva and Feldman, 2008). These weighty notions of
the calming cycle theory suggest that brainstem-mediated
symptoms often associated with ASD should be viewed
as treatable traits shaped in a dyadic context at sensitive
stages of development. Assimilation of these ideas urges
clinicians and scientists to conceptualize physio-emotional
development as an open co-regulatory feedback system,
including infants (and even fetuses) and their caregivers,
rather than a process of a singular entity working in
solitude (Ludwig and Welch, 2019). Such an approach
suggests that the infant’s ability to regulate the autonomic
activity for homeostasis, socioemotional and learning
purposes is materialized in concert with the caregiver, as a
dyad. We embrace this approach and suggest that aiding
infant-caregiver dyads in preventing hyperexcitation
and promoting tranquil dyadic experiences could be
vital for moderating the risks posed by brainstem
dysfunctions in susceptible infants. We further suggest
that nurturing parents’ ability to mind and accurately
attend to susceptible infants’ autonomic and sensorimotor
cues is highly promising and calls for further evaluations
in future BIAF interventions studies.

d. Applicability: Implementation of an early life BIAF
screener for identifying infants with an increased risk for
ASD could prove to be highly applicable and, in the long
term, may aid in diminishing to some extent the related
economic burden in several ways:

i. The ABR is a cost-effective test and is already
administered to millions of newborns worldwide.
It could be easily recalibrated using specifically
tailored protocols (Miron et al., 2016) to detect early
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FIGURE 1 | A proposed brainstem-informed autism framework (BIAF) screener for identification of early risk for autism spectrum disorders (ASD). Illustration of the
links between the suggested markers and their brainstem substrates. Auditory processing is weighed by the auditory brainstem evoked response (ABR) test
(specifically, a delayed V peak latency); DSW: near birth. Control of arousal is weighed by the cardiorespiratory index of respiratory sinus arrhythmia (RSA);
developmental screening window (DSW): 0–12 months. Olfaction processing is weighed by the trigeminal olfaction reflex (disgust response following exposure to
noxious odorants); DSW: 0–2 months. Sleep-wake regulation is weighed by actigraphy indices (e.g., sleeping duration and sleep efficiency); DSW: 1–4 months.
Visual processing and gaze are weighed by the abilities to detect and imitate emotional resonating facial expressions; DSW: 1–6 months. Tactile-motor integration is
weighed by indices of response thresholds following tactile stimulation; DSW: 1–12 months. Created with BioRender.com.

risk for long-term social-communication deficits
on large scales.

ii. Developing a cohesive BIAF screener could reinforce
the sensitivity of the ABR with additional brainstem-
mediated behavioral, cardiorespiratory, arousal, and
sleep-wake indices, hence, possibly transforming the
prospect of early detection of ASD from theoretical
to applicable. As time is of the essence, early
identification of susceptible infants could provide us
with better opportunities to amend the long-term
developmental outcomes by referring them and their
families to early interventions when brain plasticity
is most receptive to modification– targeting primary
brainstem-mediated neurobehavioral symptoms that
are often associated with ASD.

iii. Offering treatments compatible with the BIAF early
in development is highly promising. Treatments
that employ co-regulatory processes targeting
brainstem-informed domains by fostering calming
cycles carry the prospect of ameliorating to some
extent the pervasiveness and suffering attributed to

social-communication deficits throughout life (Geva
and Feldman, 2008; Welch et al., 2015, 2020).
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