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Arabidopsis HY5 protein functions as a DNA-binding tag
for purification and functional immobilization of proteins

on agarose/DNA microplate
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Abstract Protein microarray is considered to be one of the key
analytical tools for high-throughput protein function analysis.
Here, we report that the Arabidopsis HY5 functions as a novel
DNA-binding tag (DBtag) for proteins. We also demonstrate
that the DBtagged proteins could be immobilized and purified
on a newly designed agarose/DNA microplate. Furthermore,
we show three applications using the microarray: (1) detection
of autophosphorylation activity of DBtagged human protein
kinases and inhibition of their activity by staurosporine, (2) spe-
cific cleavage of DBtagged proteins by a virus protease and cas-
pase 3, and (3) detection of a protein–protein interaction between
the DBtagged UBE2N and UBE2v1. Thus, this method may
facilitate rapid functional analysis of a wide range of proteins.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The successful sequencing of entire genomes of various

organisms has led to the identification of a large numbers of

novel genes [1]. The genomic information thus obtained so

far and two other technologies in particular, DNA microarray

and mass spectrometry, have largely helped advancing the

analyses of transcriptome and proteome. In contrast, biochem-

ical analysis of proteins has been hampered mainly because the

traditional protein analysis methods are low-throughput in

nature. Therefore, there is an urgent need to develop a high-

throughput analytical tool, one analogous to the DNA micro-

array, for proteins. In the post-genomic era, the protein micro-

array is particularly promising in elucidating the biochemical

properties of a large number of gene products [2]. Since the
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proteins found in a genome will have a wide variety of bio-

chemical properties, it would be very useful to have several

methodologies for making protein arrays.

Currently available protein microarray technology has

allowed large-scale screening of biomarker proteins recognized

by serum antibodies [3]. However, this method is yet to become

a commonly used biochemical tool for the analysis of proteins

[4]. Certainly there are rooms for further improvement before

this technology could become a routinely used laboratory tool.

For example, one of the problems is the difficulty in immobi-

lizing a variety of proteins in their functionally active forms.

Many proteins needed to be appropriately oriented for proper

functioning [2]. However, it is not easy to control the orienta-

tion of the protein during its mobilization on the surface of the

microplate. Another problem is that the high-throughput func-

tional analysis requires freshly produced and purified proteins;

however, unlike DNA, many purified proteins are not stable

and thus, cannot be stored in active condition for long time.

The development of functional protein microarrays for practi-

cal use, therefore, requires relatively easy methods for the func-

tional immobilization and purification of freshly prepared

proteins on the microplate. We recently developed a high-

throughput method for protein synthesis using the wheat germ

cell-free protein synthesis and an automatic protein synthesizer

[5–7], and demonstrated that the automatic synthesizer is very

useful for the production of freshly prepared proteins.

Affinity-tag purification is a conventional technique [8] that

is widely used to purify recombinant proteins from the crude

mixtures of lysed cells or cell-free translation systems. In this

method, a target protein is expressed as a fusion protein with

an affinity tag and then purified on an affinity column. A

variety of affinity tags have been used, which include whole

proteins such as glutathione S-transferase (GST) [9], malt-

ose-binding protein (MBP) [10] and Staphylococcus protein

A [11], and also include peptide tags of specific affinity such

as myc-tag [12], FLAG-tag [13], polyhistidine tag [14], calmod-

ulin-binding peptide [15], Strep-tag II [16] and SBP-tag [17].

However, these affinity tags have not been commonly used

for purification of proteins on the microplate.

To create a new type of protein microarray, we developed a

novel tag using a DNA-binding protein and a newly designed

microplate consisting of agarose and commercial-available

genomic DNAs. The new tag, named here as DBtag, is

the Arabidopsis transcription factor HY5 having a basic
blished by Elsevier B.V. All rights reserved.
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leucine-zipper domain [18]. We found that the HY5 protein

had high binding affinity to commercially available salmon

sperm and calf DNAs. Here, we used this DNA-binding ability

of HY5 to immobilize and purify the fusion protein on the

microplate. Using this new protein microarray, we demon-

strated (1) the autophosphorylation activity of the fusion

human protein kinases, (2) specific cleavage of the fusion

proteins by a virus protease and caspase 3, and (3) a pro-

tein–protein interaction between UBE2N and UBE2v1.
2. Materials and methods

2.1. General
The following procedures have been either described in detail or

cited [5,7,19–21]: the isolation of wheat germs and preparation of the
extract, generation of DNA template by polymerase chain reaction
(PCR) using split-primers, synthesis of mRNA and protein in parallel,
and estimation of the amount of protein synthesized by densitometric
scanning of the Coomassie brilliant blue (CBB)-stained band and by
autoradiography.
Fig. 1. Purification of DBtag and DBtag-fusion proteins, and scheme for co
(HY5) was found in the eluted fraction (lane 3 in DBtag, indicated by arrow
(lane 3 in DHFR). (B) Scheme for DBtag-fusion method by the ‘‘split-prim
amplification by SPu primer makes full-length SP6 promoter. (C) Purificat
(compare lane 3 with the crude mixture in lane 1). Lane 1: total fraction, lan
concentration (500 mM NaCl), lane 4: DNase I treatment, lane 5: TEV pro
Asterisks indicate purified proteins.
2.2. Template genes
The Arabidopsis HY5 gene (GenBank Accession No. AB005436)

was previously cloned [5] and was inserted into a pEU-based vector
(pEU-DBtag). The open reading frames of the glycogen synthase 1
(GS, muscle, NM_002103) and the following 11 human protein kinases
were amplified by PCR from their respective commercially available
cDNA templates (BioChain Institute, Inc., CA, USA and Takara
Bio Inc., Otsu, Japan): MST3 (Accession no. NM_001032296),
MST2 (NM_006281), SRPK2 (NM_182692), CK2a1 (NM_001895),
PKR (NM_002759), MARK3 (NM_002376), PAK2 (NM_002577),
PAK3 (NM_002578), CaMK2d (NM_001221), DAPK3
(NM_001348), MARK3 (NM_002376), CK1g3 (NM_004384), and
TTK (NM_003318)]. The amplified clones were inserted into the vector
pT7blue (Novagen, Merck Biosciences, Inc., Darmstadt, Germany),
and their sequences were confirmed by DNA sequencing. The plasmids
pEU-GFP [5] and pDsRed2 (Takara Bio Inc.) were used as the sources
of GFP and RFP, respectively.

2.3. Construction of DNA template
The DBtag fragment (accession no. AB369281) for ‘‘split-primer’’

PCR-based fusion was amplified from the pEU-DBtag using the
following primers (see Fig. 1B): deSP6E02 (5 0-GGTGACACTA-
TAGAACTCACCTATCTCTCTACACA) and DBtag-A (5 0-TGG-
TGGTGGTGGGTGGAAGCCCTGGAAGTACAGGTTCTC). The
amplified product was then treated with exonuclease I (1 U/10 ll reac-
nstruction of DBtag-fusion template by the PCR. (A) Purified DBtag
head). DHFR protein (negative control) was, however, not recovered
er’’ PCR. The DBtag fragment includes partial SP6 promoter. DNA

ion of the DBtag-fusion proteins was observed in the eluted fraction
e 2: wash fraction (200 mM NaCl), lane 3: eluted fraction at high salt
tease treatment to cleave between the DBtag and the target protein.
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tion mixture, GE Healthcare, Little Chalfont, UK) and was purified
with a PCR product purification kit. Next, the first round of the
‘‘split-primer’’ PCR was performed on each cDNA using 10 nM of
each of the following primers: a target protein specific primer (5 0-
CCACCCACCACCACCAatgnnnnnnnnnnnnnnnn-3 0; uppercase and
lowercase indicate common sequence and the 5 0-coding region of the
target gene, respectively) and the AODA2306 primer (5 0-AGCGTCA-
GACCCCGTAGAAA). Then, a second round of PCR was carried out
to construct the templates for the protein synthesis using a portion
(5 ll) of the first PCR mix, 100 nM SPu primer (5 0-GCGTAGCAT-
TTAGGTGACACT), 100 nM AODA2303 primer (5 0-GTCAGACC-
CCGTAGAAAAGA), and 2 nM DBtag fragment. GST and
streptavidin (STA) tags were used according to methods we described
previously [5,22]. Six histidine tag (His tag) was constructed by
long primer (5 0-GGTGACACTATAGAACTCACCTATCTCCC-
CAACACCTAATAACATTCAATCACTCTTTCCACTAACCACC-
TATCTACATCACCAAGATATCACTCGAGAATGCACCATCA-
CCATCACCACCCACCACCACCAATG). By performing the
second PCR, theses fragments or His tag were fused onto the N
terminals of all the genes. The condition for the split PCR has been
described in detail in a previous report [5]. The method for DBtag
fusion by the PCR was illustrated in Fig. 1B.

2.4. Cell-free protein synthesis
Cell-free protein synthesis was carried out using the robotic synthe-

sizer [7] GenDecoder� 1000 (CellFree Sciences, Yokohama, Japan) as
described below. First, transcript was made from each of the DNA tem-
plates mentioned above using the SP6 RNA polymerase. The synthetic
mRNAs were then precipitated with ethanol and collected by centrifu-
gation using a Hitachi R10H rotor. Each mRNA (usually 30–35 lg)
was washed and transferred into a translation mixture. The translation
reaction was performed in the bilayer mode [19] with slight modifica-
tions. The translation mixture that formed the bottom layer consisted
of 60 A260 units of the wheat germ extract (CellFree Sciences) and
2 lg creatine kinase (Roche Diagnostics K.K., Tokyo, Japan) in 25 ll
of SUB-AMIX� (CellFree Sciences). The SUB-AMIX� contained (fi-
nal concentrations) 30 mM HEPES/KOH at pH 8.0, 1.2 mM ATP,
0.25 mM GTP, 16 mM creatine phosphate, 4 mM DTT, 0.4 mM sper-
midine, 0.3 mM each of the 20 amino acids, 2.7 mM magnesium ace-
tate, and 100 mM potassium acetate. One hundred twenty-five
microliters of the SUB-AMIX� was placed on the top of the translation
mixture, forming the upper layer. After incubation at 26 �C for 17 h, the
synthesized proteins were confirmed by SDS–PAGE.

2.5. Purification using DNA column
To purify, 50 ll of the translational mixture was loaded onto 20 ll of

DNA-conjugated column (GE Healthcare). The column was first
washed three times with 100 ll of wash buffer (20 mM Tris–HCl, pH
7.8, 200 mM NaCl, 2 mM MgCl2, and 1 mM DTT), and then the pro-
teins (DBtag or DBtag-fusion protein) were eluted with an elution buf-
fer (20 mM Tris–HCl, pH 7.8, 500 mM NaCl, 2 mM MgCl2, and
1 mM DTT).

2.6. Preparation of protein microarray using agarose/DNA microplate
Agarose gel solution containing 0.2% agarose (SeaKem Gold, Taka-

ra Bio Inc., Otsu, Japan) in 20 mM Tris–HCl, pH 7.8, 2 mM MgCl2,
and 1 mM DTT was melted, and subsequently 1 mg/ml (final concen-
tration) salmon sperm DNA (Sigma–Aldrich Corp, MO, USA) was
added. Before the gel solidified, 600 or 400 ll of the agarose gel/DNA
mixture was spread on a slide glass (Asahi Glass, Japan) or a Lab-
Tek II Chamber slide (one-well, Nalge Nunc International Co.), respec-
tively to form a thin layer (0.5–0.6 mm). The agarose/slide-coated glass
was used within 1 day. Approximately 10 nl of each translational mix-
ture per 0.2 mm2 (�500 lm in diameter) was then directly spotted on
the slide glass by using the MultiSPRinter� spotter (Toyobo Bio
Instruments, Tsuruga, Japan) according to the instruction manual.
After spotting, the microplate was soaked in the wash buffer for
15 min and immediately used for assay. The microplate was washed
with the wash buffer described above or detergent buffer [20 mM
Tris–HCl, pH 7.8, 2 mM MgCl2, 1 mM DTT and 5% Tween-20
(Sigma–Aldrich Corp.) or 5% NP-40 (Nakarai Tesque, Inc., Kyoto,
Japan)]. During making of the microplate and the assay, the microplate
was kept in a Tupperware box containing wet papers to prevent it from
drying. Dried microplate could not use for the functional analysis of
proteins.
2.7. Detection and inhibition of autophosphorylation activity of the
DBtagged human protein kinases on the microplate

DBtag-fusion proteins were directly spotted on the agarose/DNA-
coated glass plate as described above. The microplate was then cov-
ered with a kination solution made of 50 mM Tris–HCl, pH 7.8,
100 mM NaCl, 10 mM MgCl2 and 0.1 mM DTT, 10000 Ci/ll
[c-32P] ATP, 0.05% DMSO and incubated for 30 min at 37 �C.
For inhibition assay, staurosporine in a DMSO solution (at the indi-
cated final concentration) was added to the kinase solution. After
washing three times with the wash buffer, the microplate was ana-
lyzed by Typhoon 9400 imaging system (GE Healthcare). Image-
Quant (ver. 5.2) in the imaging system was used for quantitative
analysis of each spot.

2.8. Detection of protease activity on the microplate
Biotin protein ligase (BirA, Genbank Accession no. NP_312927) was

cloned from the Escherichia coli strain JM109 by PCR and then in-
serted into a pEU vector [5]. A tobacco etch virus protease (TEVcs)
recognition site, ENLYFQG, was inserted between the DBtag and
the biotin ligase recognition site GLNDIFEAQKIEWHE (biotin liga-
tion site: bls). As a negative control, we created another construct
where the SARS protease recognition site (SAcs), PPQTSIT-
SAVLQSGFRKMAFPSGKV [23], was inserted between the DBtag
and bls instead of the TEVcs. The attB1-PAK2-bls-attB2 fragment
was amplified by PCR with attB primers and reconstructed by Gate-
way system (Invitrogen Corp., CA, USA). DNA template of DBtag-
PAK2-bls was constructed by the ‘‘split-primer’’ PCR described above.
Non-biotinylated or biotinylated DBtag-TEVcs-bls, DBtag-SAcs-bls
and DBtag-PAK2-bls proteins were synthesized using the cell-free sys-
tem containing the synthetic BirA and without or with 500 nM biotin,
respectively. After translation, the mixtures were incubated with 10 lg/
ml of Alexa488-labeled streptavidin (Invitrogen Corp.) at 26 �C for
30 min and immobilized on the microplate as described above. The
microplate was covered with TEV protease or caspase solution
[20 mM Tris–HCl, pH 7.8, 200 mM NaCl, 2 mM MgCl2, 1 mM
DTT, and 2 U/ll TEV protease (Invitrogen) or 17.4 ng/ll caspase 3
(human, Sigma–Aldrich Corp.)], and incubated for 30 min at 26 �C.
After washing with the washing buffer, the microplate was analyzed
by Typhoon 9400 imaging system.

2.9. Detection of protein–protein interaction on the microplate
We used MGC clones of UBE2N (Accession no. NM_003348,

MGC5063) and UBE2V1 (NM_022442, MGC8586). DBtag-UBE2N-
bls and bls-UBE2V1 proteins were obtained according to the methods
described above, and incubated for 30 min at 26 �C. Then they were
mixed with Alexa488-STA (10 lg/ml) and then immobilized on the
microplate as described above. The microplate was washed with 1·
PBS buffer for 20 min, and was analyzed by Typhoon 9400 imaging
system.
3. Results

3.1. Arabidopsis HY5 (DBtag) strongly binds to commercially

available DNA column

DNA technology has progressed dramatically to meet the

requirements of genetic engineering and genome projects.

For example, chemically synthesized or modified DNAs have

been widely used in DNA sequencing, PCR amplification and

DNA microarrays. This inspired us to apply the DNA tech-

nology to comprehensive protein analysis. Several types of

conserved DNA-binding domains have been found in tran-

scription factors and nuclear hormone receptors. One of them

is the bZIP domain. As described previously, the Arabidopsis

HY5 transcription factor having a bZIP domain was synthe-

sized in good quality and quantity in the wheat germ cell-free

system [5]. We thus examined whether the synthesized HY5

protein could bind to a DNA-conjugated column purchased

from a commercial source. Interestingly, the HY5 protein
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bound to the column and was eluted at a high salt concentra-

tion (500 mM) (Fig. 1A). Furthermore, the eluted protein

appeared as the major band on a SDS–PAGE because most

of the endogenous proteins in the mixture were washed out

with a 200 mM salt solution. This suggested the possibility

of using this DNA-binding tag to purity recombinant pro-

teins. We also found that, among 35 human nuclear hormone

receptors tested, only HY5 bound to and was recovered from

the DNA-conjugated column (data not shown). Since the

HY5 bound to a microsatellite sequence (CA or CAA repeat)

that is the highest repeat sequence in eukaryotic genome,

microsatellite-binding protein may function as DNA-binding

tag.

In order to investigate whether the HY5 protein was capable

of purifying recombinant proteins, the HY5 DNA-binding

domain (henceforth called DBtag) was fused with the green

fluoresce protein (GFP), human CaMK2d, human glycogen

synthase (GS), and human MST2 (see Fig. 1B), and the fusion

proteins were synthesized in the wheat germ cell-free system

and subjected to purification. The four fusion proteins were

all purified to high quality at a high salt concentration

(500 mM NaCl, lane 3 in Fig. 1C) and through DNase treat-

ment (lane 4). On average, the purity and recovery rates of

those fusion proteins were approximately 70% and 50%,

respectively. In addition, the untagged forms of these proteins

were recovered by TEV protease treatment (lane 5) because

they contained a TEV cleavage site between the DBtag and

the target protein. Taken together, these results proved that

the HY5 protein was able to function as a DNA-binding tag

to purify the target proteins.
Fig. 2. Immobilization and purification of DBtag-fusion proteins on agarose/
fusion proteins on the microplate before and after washing. (B) Only DBtag
other tagged GFPs and the untagged GFP. (C) DBtag-GFP and RFP (untagg
The DBtag-GFP was immobilized on the microplate, while the RFP was wa
upper spot) and DBtag-GFP (lower spot) were spotted on the microplate. T
treatment (5% Tween-20 and 5% NP40 panels), while the GFP was washed
3.2. Newly designed agarose/DNA microplate for the

immobilization and purification of DBtag-fusion proteins

Miniaturized and arrayed assay systems are indispensable

tools for large-scale and high-throughput biochemical analy-

ses. Among them, microarrays are especially powerful tools

because they are economic, and also because of the speed by

which they could be used to interpret gene functions [2]. In

the process of developing a protein microarray, we designed

a new microplate that carries a thin layer of agarose gel con-

taining DNA (agarose/DNA microplate) to immobilize and

purify the DBtagged proteins on the microplate (Fig. 2A).

We hypothesized that a DBtag-fusion protein would be immo-

bilized on the agarose/DNA microplate and the other proteins

would washed out. To test our hypothesis, we fused 6· histi-

dine, GST, streptavidin, and DBtag to the N-terminal end of

GFP to produce His-GFP, GST-GFP, STA-GFP, and

DBtag-GFP, respectively. Those tagged GFPs were then spot-

ted in an array on an agaraose/DNA microplate. Consistent

with our hypothesis, subsequent washing of the plate removed

all the spots except those of the DBtag-GFP (Fig. 2B). Fluo-

rescence from the red fluorescence protein (RFP), which was

used as a marker endogenous protein, was found to be dif-

fused, and was removed by washing (Fig. 2C). This result sug-

gested that the endogenous proteins from the cell-free system

would most likely wash out. Also the DBtag can immobilize

the GFP fusion even by treatment of high-concentration deter-

gent buffer (5% Tween-20 or 5% NP-40) (Fig. 2D). Quantifica-

tion of the DBtag-GFP spots after wash revealed that 25 ± 8%

(average ± S.D.) of spotted DBtag-GFP remained immobi-

lized on the microplate. This indicates that approximately
DNA microplate. (A) Schematic diagram showing immobilized DBtag-
-GFP was immobilized on the microplate, while washing removed all
ed) were mixed together and the mixture was spotted on the microplate.
shed out and no RFP fluorescence was observed. (D) GFP (untagged,
he DBtag-GFP was immobilized on the microplate by 5% of detergent
out and no GFP fluorescence was observed.
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160 pg of DBtag-GFP was immobilized, which compares

favorably to existing method [2]. The concentration of the

DBtag-GFP in the spot was calculated as16 pg/nl (see Section

2.6). This result suggested that the DBtagged proteins could be

immobilized and purified on the microplate.

3.3. Functional analysis of DBtag-human protein kinases on the

agarose/DNA microplate

Next, we investigated whether we could detect the autophos-

phorylation activity of DBtagged protein kinases immobilized

on the microplate. Out of a large number of protein kinases

that are known to exhibit autophosphorylation activity [22],

we selected 11 human protein kinases, which had exhibited

autophosphorylation in an earlier experiment (data not

shown). The selected kinases were synthesized as DBtag-fusion

proteins using the wheat germ cell-free system and were then

spotted in an array on an agarose/DNA microplate. After

the plate was washed, a drop of [c-32P] ATP containing reac-

tion mixture was applied on each spot, and the plate was incu-

bated at 37 �C for 30 min. Fig. 3 shows the results of a typical

autophosphorylation assay where all 11 human protein kinases

on the microplate showed positive activity. The background

phosphorylation activity was very low (see DBtag spots on

Fig. 3). The low-level contaminants detected in the test were

attributed to be due to the endogenous wheat germ proteins.

To investigate the possibility of using this autophosphoryla-

tion assay for inhibitor screening, the kinase assay was carried

out in the presence of staurosporine, a widely used protein ki-

nase inhibitor [24]. The activity of most of the protein kinases

tested was inhibited by staurosporine at a high concentration

(Fig. 3, middle and lower panels). MST2 was especially sensi-

tive to the staurosporine treatment and its activity drastically

decreased to less than 2% of the control value by treatment

with 0.1 lM staurosporine (Fig. 3, middle panel). The activi-

ties of PAK3 and DAPK3 were inhibited by 70% and 80%,
Fig. 3. Detection and specific inhibition of the autophosphorylation
activity of 11 human protein kinases on agarose/DNA microplate. The
DBtagged human protein kinases were analyzed in duplicates. DBtag
indicates the tag protein by itself (control).
respectively, when treated with 0.1 lM staurosporine, and by

97% and 98%, respectively, when treated with 1 lM stauro-

sporine. Eight out of the 11 human protein kinases were inhib-

ited by staurosporine in this microarray assay. However,

staurosporine did not inhibit the kinase activities of CK1g3,

CK2a1, and TTK in our assay. Non-inhibition of CK1 and

CK2 was reasonable because inhibition of CK1 and CK2 by

staurosporine was reported as 163.5 lM and 19.5 lM of

IC50, respectively [25]. To our knowledge about inhibition of

TTK by staurosporine, this is the first report. Our study sug-

gested low sensitivity of TTK to staurosporine. Also stauro-

sporine inhibition from non-tag form proteins synthesized by

the cell-free system indicated the similar data (data not

shown). Together, these results suggest that our newly de-

signed protein microarray could not only immobilize proteins

in active forms but could also be used as a platform for design-

ing assays for inhibitor screening.

3.4. Specific cleavage of DBtag-fusion proteins on the agarose/

DNA microplate by a site-specific protease

We next examined if the immobilized proteins on the micro-

plate could be cleaved by site-specific proteases. For this assay,

we used fluorescence-labeled proteins as substrates, which had

been immobilized on the microplate. A TEV protease recogni-

tion site was inserted between the DBtag and biotin ligation

site (bls) of these test proteins. The substrate proteins were

fluorescence-labeled by co-translationally biotinylating them

in the cell-free protein synthesis and then adding Alexa488-

STA to bind with the biotin (schematically shown in

Fig. 4A). The labeled proteins and non-biotinylated proteins

(negative controls) were mixed with Alexa488-STA and then

the mixture was spotted in an array on a microplate. When

the plate was washed, fluorescence of the non-biotinylated pro-

teins disappeared, which indicated that only biotinylated pro-

teins were labeled with fluorescence (Fig. 4B, middle panel).

When incubated with the TEV protease, the proteins having

the TEV protease cleavage sites lost fluorescence, while the

protein having other protease cleavage sites retained fluores-

cence (Fig. 4B, lower panel). We next used the approach for

detection of caspase-3 (casp3) cleavage. The casp3, a key pro-

tease in apoptosis event, activates PAK2 protein kinase by

cleavage [26]. Like above substrate proteins, the PAK2 was la-

beled with the DBtag and the biotin on bls in N and C-termi-

nals respectively (DBtag-PAK2-bls) and spotted with

Alexa488-STA on the microplate. The microplate was incu-

bated with casp3 and washed. Like the assay of TEV protease

above, fluorescence of DBtag-PAK2-bls lost (Fig. 4C, middle

panel), while DBtag-bls (negative control) or buffer without

casp3 retained fluorescence (middle and lower panels). By

Western blotting, the cleavage of DBtag-PAK2-bls by casp3

was confirmed (data not shown). Thus the lost of fluorescence

indicated the cleavage of the PAK2. The data showed that the

DBtag-protein-bls could function as a good material for sub-

strate screening of protease. Thus these results suggested that

this microarray system could also be used for screening sub-

strate proteins that are specifically cleaved by proteases.

3.5. Detection of a protein–protein interaction on the agarose/

DNA microplate

Next, we investigated whether we could detect a protein–

protein interaction of DBtagged proteins immobilized on the



Fig. 4. Specific cleavage of protein substrates by TEV protease and caspase 3 on agarose/DNA microplate. (A) Schematic diagram showing an
immobilized DBtagged protein labeled with a fluorescence-labeled streptavidin. The fluorescence-labeled region was released by the protease
cleavage, and as a result, the fluorescence was lost upon washing. (B) The biotin-labeled proteins (blue spot: biotinylated-DBtag-TEVcs-bls and light
blue spot: biotinylated-DBtag-SAcs-bls) retained fluorescence on the microarray, while the non-biotin labeled proteins (pink spot: DBtag-TEVcs-bls
and light pink spot: DBtag-SAcs-bls) lost the fluorescence after washing. Four proteins having TEV protease cleavage site (TEVcs, spots indicated in
blue color as biotin-labeled form) lost the fluorescence after the TEV protease treatment. Other proteins, having the cleavage site of SARS virus
protease (SAcs), showed fluorescence (spots indicated in light blue) because they were not recognized by the TEV as substrates. (C) DBtag-bls
indicates DBtag-TEVcs-bls above. Two proteins including PAK2 (lower spot in each panel: DBtag-PAK2-bls labeled with Alexa488-STA) lost the
fluorescence after the caspase 3 (casp3) treatment (‘‘Casp3’’ panel). DBtag-bls proteins (upper spot in each panel: DBtag-bls labeled with Alexa488-
STA) and buffer without the casp3 (‘‘buffer’’ panel) showed fluorescence because they were not recognized by the casp3 as substrates.
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microplate. For this assay, UBE2N and UBE2v1, a heterodi-

mer of ubiquitin-conjugate enzyme (E2) [27], were used. The

DBtag-UBE2N, biotinylating bls-UBE2v1 or DHFR were

mixed with Alexa488-STA and then spotted on the microplate

(Fig. 5, the third from the top). As negative controls, DBtag

protein or bls-DHFR was mixed instead of DBtag-UBE2N

or bls-UBE2v1 respectively (first, second and fourth from the

top). After washing, spots of DBtag-UBE2N and bls-UBE2V1

mixtures indicated the fluorescence of Alexa488-STA, whereas

the fluorescence of DBtag/bls-UBE2v1, DBtag/bls-DHFR,

and DBtag-UBE2N/bls-DHFR mixtures lost. This data

showed that a protein–protein interaction between UBE2N

and UBE2v1 was detected on the microplate. The interaction

was reduced with high salt condition (>200 mM). These results

suggested that this microarray system could also be used for

screening of a protein–protein interaction.
4. Discussion

Several tags such as GST, MBP and polyhistidine have been

widely used as efficiently affinity purification. Although many

transcription factors are known, their use as a DNA-binding

protein tag, however, have not been put into practice [28,29].

The current study demonstrated that the Arabidopsis tran-

scription factor HY5 (and other proteins that bind strongly

to DNA) functions as an affinity tag for the purification and

immobilization of proteins on the newly designed agarose/

DNA microplate.

A method for recombinant protein production includes sev-

eral time-consuming processes such as construction of DNA

template, transformation into the cell. High-throughput pro-

tein production is a key issue for making the protein micro-

array. Although the existing methods using the microarray



Fig. 5. Detection of a protein–protein interaction between UBE2N and UBE2v1 on the agarose/DNA microplate. Four samples [DBtag + biotin-
labeled bls-UBE2v1 + STA(Alexa488), DBtag + biotin-labeled bls-DHFR + STA(Alexa488), DBtag-UBE2N + the bls-UBE2v1 + STA(Alexa488)
and DBtag-UBE2N + the bls-DHFR + STA(Alexa488) from the top in ‘‘spot’’ panel] were spotted with three spots on the microplate. The first,
second and fourth samples lost the fluorescence after washing (‘‘wash’’ panel). The third sample showed the fluorescence in ‘‘wash’’ panel, indicating
a heterodimer as a protein–protein interaction between UBE2N and UBE2v1 proteins. An image from this result was shown in the right panel.
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have mainly used the cell-based method such as yeast or E. coli

cells [2–4], a large number of protein productions by the cell-

based method will definitely be of substantial works. Recently,

the cell-free protein production system using extracts from the

wheat germ or E. coli cells has been used for high-throughput

synthesis of proteins because of the simple and effective meth-

odology (see the review [6]). Furthermore, a fully automated

robot based on the wheat cell-free system, shown in this paper,

could operate a considerable number of protein productions.

In addition, the biotin-labeled protein was used for detection

of the protein–protein interaction and the cleavage of substrate

proteins. Like the biotin labeling with the tag, the reconstruc-

tion of protein design allows wide range applications for the

microarray-based functional analysis. However, using the

cell-based methods, the time-consuming steps such as new vec-

tor construction are needed with every redesign of protein. In

contrast the cell-free system accepts a linearly-rearranged

DNA template produced by the PCR method without the

new vector construction, indicating no requirement of the

time-consuming steps. Thus, the cell-free system seems to be

especially suitable as a protein production method for the

microarray-based functional analysis.

To make practical protein microarray or for analysis by a

surface plasmon resonance (SPR), the polyhistidine tag has

been used for protein immobilization [2,30]. However, the

immobilization carried out after purification of proteins, but

not direct use of crude lysates or mixtures. The requirement

of purification step seems to prevent the protein chip or SPR

from considerable background caused by contaminations of

undesired proteins. On-chip purification based on conven-

tional affinity tags and microarray designs may be tough

works. In addition, amount of the immobilized protein is
important for highly sensitive detection of the functional anal-

ysis. The proteins on solid surface using the polyhistidine tag

were immobilized at below picogram per a spot [2]. Our pro-

tein microarray system was available for on-chip purification

and high amount of immobilized proteins (150 pg per a spot)

because of high affinity of DBtag to genomic DNA and

high-salt condition that dramatically reduced the background

proteins undesired.

One of the most important attributes of a functional protein

microarray is the directionality of proteins immobilized on it

[2]. With today�s technology, however, it is very difficult to

control the directionality, because it requires a molecular-level

control on the microplate. On the other hand, columns or

beads traditionally used for protein purification have been

widely used for functional assays like a pull-down assay,

because they could preserve a three-dimensional space for

proteins to react with molecules. Here, we explored a way to

purify proteins on the microplate by mildly holding the freshly

synthesized proteins in a three-dimensional space. This led to a

protein microarray design in which the agarose gel formed a

scaffold housing the DNAs (DNA–agarose matrix), which in

turn were used for immobilizing the DBtagged proteins. This

design was analogous to a flexible framework known as the nu-

clear matrix inside the nuclei [31]. The DNA framework in the

agarose gel on a microplate was expected to keep a space

around the immobilized proteins in the same way as the col-

umns and beads do. Being a polymer, agarose could also insu-

late the freshly prepared proteins from the air, which we

believe is important for the preservation of protein activity.

As described above, DBtag-fusion proteins synthesized

using the wheat germ cell-free system could be immobilized

on the microplate, and subsequent simple washing with a high



228 T. Sawasaki et al. / FEBS Letters 582 (2008) 221–228
salt buffer reduced the amount of contaminating endogenous

proteins to a very low background. Under this washing condi-

tion, the desired proteins were recovered almost as single

bands on the CBB-stained SDS–PAGE (Fig. 1). In contrast,

when the microplate was washed at a low salt concentration

(<50 mM NaCl), many contaminating endogenous proteins

were observed (data not shown). This high salt washing was

one of the keys to the production of a low-background protein

microarray. In the post-genomic era, comprehensive protein

analysis is one of the most important approaches to the under-

standing of the function of the genomic code. The method we

describe here would allow analyzing target proteins on protein

microarrays without time-consuming protein purification

steps. After protein synthesis, researcher can make their own

protein microarrays. Therefore, we believe that the protein

microarray, which was developed using the wheat germ cell-

free system and the DBtag technique described in this study,

is a powerful tool for the comprehensive analysis of proteins.
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