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ABSTRACT

Biclustering extends the traditional clustering tech-
niques by attempting to find (all) subgroups
of genes with similar expression patterns under to-
be-identified subsets of experimental conditions
when applied to gene expression data. Still the
real power of this clustering strategy is yet to be
fully realized due to the lack of effective and efficient
algorithms for reliably solving the general bicluster-
ing problem. We report a QUalitative BIClustering
algorithm (QUBIC) that can solve the biclustering
problem in a more general form, compared to
existing algorithms, through employing a combina-
tion of qualitative (or semi-quantitative) measures
of gene expression data and a combinatorial optimi-
zation technique. One key unique feature of the
QUBIC algorithm is that it can identify all statistically
significant biclusters including biclusters with the
so-called ‘scaling patterns’, a problem considered
to be rather challenging; another key unique feature
is that the algorithm solves such general bicluster-
ing problems very efficiently, capable of solving
biclustering problems with tens of thousands
of genes under up to thousands of conditions in a
few minutes of the CPU time on a desktop compu-
ter. We have demonstrated a considerably improved
biclustering performance by our algorithm com-
pared to the existing algorithms on various bench-
mark sets and data sets of our own. QUBIC
was written in ANSI C and tested using GCC (ver-
sion 4.1.2) on Linux. Its source code is available at:
http://csbl.bmb.uga.edu/~maqin/bicluster. A server
version of QUBIC is also available upon request.

INTRODUCTION

DNA microarrays provide a powerful means for probing
the functional states of a cell population by allowing
simultaneous observation of mRNA expression patterns
of all their genes collected over time and/or under different
experimental conditions. By comparing the gene expres-
sion patterns under different conditions such as cancerous
versus healthy tissues, one can possibly derive information
about genes associated with a particular cellular condition
(e.g. cancerous cells at a specific developmental stage) or
even specific biochemical pathways. To analyze the com-
plex microarray data, numerous computational tools have
been developed. Among them, clustering of genes based
on the similarities of their expression patterns (co-
expressed genes) using (traditional) clustering strategies
(1–3) represents one of the most popular approaches to
microarray data analyses.
The traditional clustering techniques attempt to, in the

context of microarray data analyses, partition a set of
genes into ‘clusters’ with similar expression patterns
under specified conditions (3), or identify such clusters
from an otherwise unstructured microarray data set (4).
While useful, such clustering algorithms are known to be
inadequate for handling the general gene-expression anal-
yses problems, that often need to identify co-expressed
genes under some (to-be-identified) conditions in contrast
to finding co-expressed genes under all given conditions.
The difficulty in handling the general problem of identify-
ing co-expressed genes is that for any m given conditions,
there are 2m combinations of conditions to consider,
making this general clustering problem much more diffi-
cult to solve.
A popular way to visualize microarray data for gene

expression analyses is to represent the data set as a
matrix with rows representing the genes and columns
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representing the conditions (or the other way around) with
each element of the matrix representing the relative
mRNA abundance of a gene under a specific condition.
So identifying groups of genes in a microarray data set
that share similar expression patterns under to-be-identi-
fied conditions is equivalent to finding submatrices with
similar properties. Partitioning a matrix into submatrices
with approximately the same values was first studied by
Morgan and Sonquist (5) and Hartigan (6). In 2000, Getz
et al. (7) presented a coupled two-way clustering approach
that employs hierarchical clustering to each separate
dimension, and then combines the clustering results
along each dimension in a somewhat problem-specific
manner. It is Cheng and Church (8) who firstly introduced
the concept of ‘direct clustering’, originally proposed by
Hartigan (6), to the field of gene expression data analyses,
and referred it as ‘biclustering’, that is to find subsets of
conditions under which some (to be identified) subsets of
genes have similar expression patterns. Each such subma-
trix is called a ‘bicluster’.
Cheng and Church (8) proposed a quantitative measure,

‘mean squared residue’, essentially a variability measure,
as a guide to search for biclusters in a gene expression data
set, which has been adopted by numerous biclustering
algorithms (9–11). Recent studies suggest that this mea-
sure is useful only for identifying certain classes of
co-expressed genes, but not adequate to detect other tran-
scriptionally co-regulated genes (12–14). Another measure
was proposed lately by Aguilar-Ruiz (15) to deal with
co-regulated genes with ‘scaling patterns’, which, while
more general than the previous measure, was found to
be rather challenging to solve algorithmically. Various
algorithms have been developed, attempting to solve the
biclustering problem as defined either by Cheng and
Church (8) or by Aguilar-Ruiz (15) or variations, includ-
ing the work by Kung et al. (16), Li et al. (17), Reiss et al.
(11), Pedro et al. (18) and Bryan et al. (9,10,19), to name a
few, which has led to a number of publicly available com-
puter servers for biclustering analysis of microarray data.
Among the published biclustering servers, some have
employed combinatorial optimization techniques, such
as SAMBA (14), ISA (20), Bimax (13) and NNN (21). A
common issue with most of the combinatorial techniques
is their high computational complexity, even for the highly
simplified cases like using a 0/1 matrix to represent down/
up regulations in the observed microarray data.
The state of the art is that the existing biclustering algo-

rithms are generally effective in identifying genes of similar
expression values under to-be-identified conditions, but
not effective in identifying gene clusters with similar
expression patterns in general. Here we report a new
biclustering algorithm QUBIC that can effectively and effi-
ciently identify all statistically significant biclusters
(allowing overlaps) that cannot be identified by the exist-
ing biclustering algorithms and beyond, including both
definitions for a biclustering problem given by (8) and
(15), as well as finding both positively and negatively cor-
related expression patterns. We have demonstrated the
effectiveness of the QUBIC program and its computa-
tional efficiency on a number of benchmark data sets, by
comparing it with several salient programs.

METHODS

In our biclustering scheme, we represent the expression
values in a qualitative or semi-quantitative manner so
that we get a new matrix representation of a gene expres-
sion data set under multiple conditions, called a represent-
ing matrix, in which the expression level of a gene under
each condition is represented as an integer value (see
‘Qualitative representation of gene expression data’ sec-
tion for details). We consider that two genes have corre-
lated expression patterns under a subset of conditions if
the corresponding integers along the two corresponding
rows of the matrix are identical. More generally, we
define the similarity level between two genes under a spe-
cified set of conditions to be the number of conditions
under each of which the two genes have the same
(signed) nonzero integer. For applications where identifi-
cation of negatively correlated genes is desired, we gener-
alize the definition in the same way as the above except
that we consider genes with the same corresponding
(nonzero) integers but all with opposite signs. We call a
submatrix of the above matrix ‘feasible’ if each pair of
rows of the submatrix is either (approximately) the same
or the opposite (i.e. the same but with opposite signs
across the entire rows). Now our definition of a bicluster-
ing problem is to find all the optimal feasible submatrices
in a given matrix according to some specified optimization
criteria. It is not hard to see that both definitions of a
biclustering problem given in (8) and (15) are special
cases of our definition. Actually, our definition covers
more than just these two cases as we can see from
Figures 1A and 2A in the Supplementary Data, where
we show two biclustering problems that are more general
than both definitions of (8) and (15). Figure 3A in the
Supplementary Data shows another biclustering problem
in which four biclusters with different expression patterns
are implanted in a background matrix. To the best of our
knowledge, none of the existing biclustering programs are
capable of finding these biclusters.

The key algorithmic idea of our biclustering program is
outlined as follows. For a given representing matrix of a
microarray data set, we construct a weighted graph G with
genes represented as vertices, edges connecting every pair
of genes, and the weight of each edge being the similarity
level between the two corresponding (entire) rows.
Clearly, the higher a weight, the more similar two corre-
sponding rows are. Intuitively, genes in a bicluster should
induce a heavier subgraph of G because under a subset of
the conditions, these genes have highly similar expression
patterns that should make the weight of each involved
edge heavier, comparing to the edges in the background.
But it should be noted that some heavy subgraph may not
necessarily correspond to a bicluster, i.e. genes from a
heavy subgraph may not necessarily have similar expres-
sion patterns because different edges in a subgraph may
have heavier weights under completely different subsets of
conditions (see Figure 5 in the Supplementary Data for
example). It should also be noted that recognizing all
heavy subgraphs in a weighted graph itself is computa-
tionally intractable because identification of maximum cli-
ques in a graph is a special case of this, and the maximum
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clique problem is a well known intractable problem
(NP-hard). So in our solution, we do not directly solve
the problem of finding heavy subgraphs in a graph.
Instead, we built our biclustering algorithm based on
this graph representation of a microarray gene expression
data, and tackle the biclustering problem as follows. We
find all feasible biclusters (I,J) in the given data set such
that min{|I|, |J|} is as large as possible, where I and J are
subsets of genes and conditions, respectively.

Our algorithm consists of two key steps: (i) representing
a microarray data set using a qualitative matrix as out-
lined earlier, and (ii) identifying all biclusters in this matrix
by finding biclusters one-by-one, where for each bicluster,
it starts with the heaviest (unused) edge as a seed to build
an initial bicluster and then iteratively recruits additional
genes into the current bicluster without violating a pre-
specified consistency level (see below).

Qualitative representation of gene expression data

The representing matrix is composed of signed integers
and 0’s, which will be filled based on (i) the decision
regarding if each gene has its expression value changed
or not, i.e. up- or downregulated, or unchanged under
each experimental condition, and (ii) the ranking of
all the upregulating conditions for each gene, based on
the expression values of the gene under these conditions
(a user does not need to preprocess their data, e.g. to
determine the fold-change or compute the log values of
the raw data); and a similar ranking among all downregu-
lating conditions for each gene. Details follow.

Recognition of unaffected expression values. We use the
following method to distinguish those affected expression
values from the background data. For each (gene) row i of
the original expression data matrix with n rows and m
columns, we sort its expression values in the increasing
order as follows:

vi1 . . . vi,s�1vis . . . vi,c�1vicvi,cþ1 . . . vi,m�sþ1vi,m�sþ2 . . . vim,

where c=m/2 and s–1=m� q, where q is a parameter
that can be selected by the user, and its default value in
our program is 0.06. A gene i is deemed to be unchanged
under condition j if and only if its expression value wij

belongs to the interval (vic – di, vic+ di), where di=min
{vic–vis, vi, m–s+1–vic}. The reason that we define the unaf-
fected expression values in this way is given in the
Supplementary Data.

Ranking of regulating conditions. We consider a condition
as a downregulating condition for gene i in the above list
if its value is �vic� di, and as an upregulating condition
if its value is �vic+ di. We now sort all the upregulating
conditions for gene i into the decreasing order of their
corresponding expression values, and use this order as
the rank of each upregulating condition for gene i; we
rank the downregulating conditions in a similar manner
except that we sort the relevant gene-expression values
into the increasing order, and we use this order as the
rank of each downregulating condition for gene i. To dis-
tinguish between up- and downregulating conditions, we
give each upregulating condition a ‘+’ sign and each

downregulating condition a ‘–’ sign. We consider two
genes as oppositely regulated under a subset of conditions
if they have identical nonzero integers column-wise except
with opposite signs.
For practical applications (considering the noisy and

stochastic nature of the real gene-expression data), we typ-
ically use a predetermined range of ranks, say, rank 1, . . .,
10, which is much smaller than the number of conditions,
and then assign multiple conditions with similar expres-
sion values for the same gene i into the same rank. The
specific range of ranks for a particular application has to
be determined using a trial-and-error approach. The
QUBIC program provides the flexibility to allow the
user to select the levels, r, of ranks for both up- and down-
regulating conditions with r’s default value set to be 1. A
basic requirement that needs to be met is that for upregu-
lating conditions, the expression values of rank i should be
higher than those of rank i+1 for all i< r. A similar
requirement needs to hold for the downregulating condi-
tions for each gene. It should be noted that the parameter
r allows QUBIC to distinguish up to r! biclusters with dif-
ferent expression patterns in a provided matrix. We omit
further discussion about this.

Biclustering through finding a heavy subgraph

Consider a representing matrix M with n rows and m
columns as discussed above, representing expression
levels of n genes collected under m conditions, and a cor-
responding weighted graph G with the vertex set V and the
edge set E as introduced earlier. Each edge has a weight
defined as the number of columns under each of which the
two rows (genes) have the same nonzero integer. The basic
biclustering problem is to find a submatrix (I, J) of M,
with I being a subset of rows (genes) and J a subset of
columns (conditions) so that min{|I|, |J|} is maximal and
the consistency level of (I, J) is higher than a prespecified
value c, 0< c <=1.0, which can be set by the user. In our
current program, c is set to be 0.95. The ‘consistency level’
of a submatrix is defined as the minimum ratio between
the number of identical nonzero integers in a column and
the total number of rows in the submatrix.
Intuitively, a bicluster should correspond to a maximal

and connected subgraph of G consisting of heavier edges,
on average, than edges of an arbitrary subgraph not over-
lapping such bicluster subgraphs, whose total edge-weight
is stochastic. Specifically, two genes from the same biclus-
ter should have a heavy edge by nature while two arbitrary
genes may have a heavy edge only by chance. Our biclus-
tering algorithm is built on this observation. The algo-
rithm iterates on a set S of seeds (edges). Initially, S is
set to be the sorted list of edges in G. An edge e= gigj is
considered to be a seed if and only if:

(i) at least one of its genes gi and gj is not in any
previously identified bicluster, or

(ii) gi and gj are in different biclusters B1= (I1, J1)
and B2= (I2, J2) with I1\I2=Ø and w(e)�max
{| I1|, | I2|},

where w(e) is the weight of edge e. The algorithm builds an
initial bicluster (I, J) based on a selected seed, and then it

PAGE 3 OF 10 Nucleic Acids Research, 2009, Vol. 37, No. 15 e101



expands the bicluster along both the vertical and horizon-
tal directions without violating the preset consistency
level, and outputs a bicluster when it cannot be further
expanded. Details follow.

Step 1 (Seeding on the representing graph). If S is empty,
stop; otherwise, check if the first element of S is a seed. If
it is not, remove it from S, and repeat this step; otherwise
use it to create a new bicluster as follows: Find all the
conditions under which the two genes of the seed have
all identical nonzero integer values and set these columns
of the two genes as the current bicluster B=(I, J), and
go Step 2.
Note that the consistency level of the current bicluster is

1.0. The following step attempts to increase min{|I|, |J|} of
the current bicluster by adding additional genes, while
maintaining the consistency level at 1.0.

Step 2 (Expansion while mainlining total column-wise
consistency). Expand the current bicluster B=(I, J)
by adding a new gene (if any) from outside of I which
is most consistent with B, giving rise to a new bicluster
B0=(I0, J0), where I0 is I after adding the new gene and J0

is obtained from J by deleting those columns where the
total consistency is lost. If min{|I0|, |J0|}�min{|I|, |J|}, set
B to B0, then repeat Step 2; otherwise, if the preset consis-
tency level is 1.0, output B and remove the current seed
from S; else go to Step 3.

Step 3 (Expansion allowing less than total
consistency). Expand the current bicluster B by adding
as many columns as possible without having the consis-
tency level of the bicluster go below c as follows: for each
column not in B, if the ratio between the number of iden-
tical nonzero integers in the rows of I and |I| is� c, add
it to J. Let B0=(I0 J0) be the new bicluster and T be the
consensus sequence of B0 consisting of the dominating
elements of the columns of B0, where the dominating ele-
ment is the element with the highest frequency in the
column; add as many rows as possible to B0 such that
each new row has at least |I0|c identical nonzero integers
to those of T. Go to Step 4.
We also include negatively co-regulated genes, if any,

into our biclusters by executing the following step.

Step 4 (Expansion by adding oppositely regulated
genes). Continue to expand the current bicluster B by
adding oppositely regulated genes to it: let T be the con-
sensus sequence of B; add as many rows as possible to B
such that each added row has at least |I0|c identical
nonzero integers but with opposite signs to those of T.
Output B and go to Step 1.
The algorithm has a few unique and strong features

worthy mentioning: (i) if a significant bicluster is being
built but not completed in Step 2 for some reason, leading
to a failure of not recognizing the bicluster, this problem
could be remedied later with multiple chances by using
other edges of the bicluster as seeds; (ii) the algorithm is
able to find biclusters not only of positively co-regulated
genes but also negatively co-regulated genes; (iii) the pro-
gram allows a user to provide a set of seeds and build

biclusters based on the provided seeds. This capability is
included based on the consideration that a biologist may
be interested in finding related genes to a specific set of
genes; and (iv) although the algorithm is greedy in nature,
it does not in general suffer from the issue of getting stuck
in local optima since it uses multiple starting points (seeds)
to find each bicluster. Our application results strongly
indicate this is the case for the program. The pseudo
code of the algorithm is provided in the Supplementary
Data.

Parameters of QUBIC

QUBIC has a number of parameters, namely, the range
r of possible ranks, the percentage q of the regulating
conditions for each gene, the required consistency level
c for a bicluster, the desired number o of the output biclus-
ters, and the control parameter f for overlaps among
to-be-identified biclusters. For each of these parameters,
we allow the user to adjust the default value to provide
some flexibility.

The parameters r and q affect the granularity of
the biclusters. A user can start with a small value of
r (the default value is 1 so the corresponding data
matrix consists of values ‘+1’, ‘–1’ and ‘0’), evaluate the
results, and then use larger values (should not be larger
than half of the number of the columns) to look for fine
structures within the identified biclusters. The choice of q’s
value depends on the specific application goals; that is if
the goal is to find genes that are responsive to local reg-
ulators, we should use a relatively small q-value; otherwise
we may want to consider larger q-values. The default value
of q is 0.06 in QUBIC (this value is selected based on
the optimal biclustering results on simulated data). The
default value of c is 0.95, and o’s default value is 100. In
addition, we have a parameter f to control the level of
overlaps between to-be-identified biclusters (not discussed
in the above algorithm); its default value is set to 1 to
ensure that no two reported biclusters overlap more
than f. QUBIC also provides the option that a user can
skip the step of using ranks to represent the actual gene
expression values to go directly to the biclustering step
on the provided matrix.

RESULTS

We now show the application results of QUBIC first on a
number of benchmark data sets developed by Prelic et al.
(13) and on some simulated data sets constructed by our-
selves. The application results on these data sets indicate
that our program outperforms the existing and popular
biclustering tools, such as SAMBA (14), ISA (20),
BIMAX (13), RMSBE (22) and a hierarchical clustering
method (HCL) in both the identification accuracy and the
computational efficiency. To test the boundaries of our
program, we have constructed simulated data sets with
tens of thousands of genes under thousands of conditions.
The algorithm can find all the embedded biclusters from
such large data sets within several minutes on a desktop
PC workstation. We then applied the algorithm to actual
biological data, and derived a number of new insights
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about these microarray data. For all the tests, we have
used the following parameters: r=1, q=0.06, c=0.95,
o=100, f=1 (unless stated otherwise), and all results are
tested on a 64-bit machine.

Applications on Prelic’s benchmark data sets

We have tested QUBIC on a benchmark set proposed by
Prelic et al. (13), which consists of two types of biclusters,
constant biclusters and coherent biclusters (23). It is easy
to check that both are special cases of our definition of a
bicluster and the details about the construction of the
benchmark sets can be found in (13).

We have compared our algorithm with four existing
algorithms, BIMAX (13), Iterative Signature Algorithm
(ISA) (20), SAMBA (14) and HCL but did not include
three earlier biclustering algorithms, Cheng–Church
method (CC) (8), xMotif (24) and OPSM (12), since
they were shown to have rather low performance accuracy
(below 50%) in recovering implanted biclusters by previ-
ous studies (13,22). In this study, we have used the
BIMAX, ISA and HCL algorithms implemented in
BICAT (25) and the SAMBA algorithm implemented in
EXPANDER (26); both software packages are publicly
available. In addition, we included a recently published
biclustering algorithm RMSBE (22). The parameters for
running these biclustering algorithms were taken either
from their default settings or following the parameters
suggested by the original authors (see the Supplementary
Data on our website at: http://csbl.bmb.uga.edu/�maqin/
bicluster/benchmark.html). Preprocessing and postproces-
sing were performed in a consistent manner with the
previous benchmark study (13).

Overall on the Prelic data sets, we found that QUBIC
has consistently performed the best in the most general
case. It appears that though ISA has the marginal advan-
tage (8%) over QUBIC on the ‘noisy’ case, its perfor-
mance drops up to 90% compared to its performance
without overlaps when the degree of overlap among
coherent biclusters is 10 [see details in Figure 4D in

the Supplementary Data]. A more detailed description of
the methods’ performance on all the Prelic data sets can be
found in Figure 4 in the Supplementary Data.

Applications on our simulated data sets

As discussed earlier, biclusters with scaling patterns were
considered to be a very challenging problem for any of the
existing biclustering algorithm (15). It should be noted
that a bicluster with scaling patterns is a special case of
our definition of biclusters because a bicluster with scaling
patterns in original expression data matrix corresponds to
a bicluster with identical rows in its representing matrix.
Here we consider two scenarios similar to those of Prelic’s
benchmark: (i) matrices with varying levels of noise, and
(ii) matrices with varying degrees of overlap among
the biclusters. We have constructed two sets of gene
expression data, for scenario 1 with scaling patterns.
For scenario 2, we have constructed one set of gene
expression data where the background variation parame-
ter � was set to 0, and all entries of the first (last) two rows
were set to 1 (–1) so that we can simulate the situation
where some transcription factors regulate more than
one transcriptional modules, i.e. all the implanted biclus-
ters shared the first two and the last two genes. Further
construction details can be found in the Supplementary
Data.
On all these biclustering problems, our method achieves

the optimal identification results almost in every case and
always has the best performance among the five programs
listed in the ‘Applications on Prelic’s benchmark data sets’
section. In Figure 1A, we can see that all the methods
except for RMSBE (with accuracy lower than 20%)
achieve almost the optimal identification results. This is
not surprising since the problem given in Figure 1A is not
much different from the previous test case in Figure 4A in
the Supplementary Data. On the more challenging case, as
shown in Figure 1B, we start to see some substantial dif-
ferences in identification accuracies between our and the
other programs. For example, when �=0.25, QUBIC

A B C

Figure 1. Comparison of recovery accuracy of QUBIC with the other five algorithms. The analysis reveals both the effects of increasing noise levels
‘scaling’ (A and B) models and varying degrees of overlapping for ‘constant’ (C) models. Note that the recovery score is calculated similarly to
BIMAX using S�GðMopt, MÞ ¼

1
jMopt j

P
Gopt2Mopt

max
G2M

jGopt\Gj
jGopt[Gj

, where Mopt is the set of implanted biclusters, M is the set of recovered biclusters and G is
for genes sets within the bicluster.
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with r=2 can achieve almost the optimal identification
results (note the accuracy of QUBIC with r=1 is 69%),
while the other programs have rather low identification
accuracies. Specifically, the accuracies by SAMBA, ISA
and RMSBE are all below 50% while BIMAX and HCL
are relatively better, at 72% and 52%, respectively. When
oppositely regulated genes are considered, we see an even
larger difference between our program and the others.
Specifically, we have implanted submatrices (see Figure 3
in the Supplementary Data) having some rows or columns
with their sums being (approximately) zero, QUBIC finds
the implanted submatrices with �99% accuracy while
none of the other programs had better than 40% identifi-
cation accuracy (by HCL). The detailed information
on this is provided as the Supplementary Data on our
website (see the performance results in Figure 6 in the
Supplementary Data).
We have compared our performance with a recently

published program, BUBBLE (19), which is designed to
solve biclustering problems with scaling patterns. We have
tried the same comparisons as above but found that the
BUBBLE program is rather difficult to use and run a large
number of samples using it so we compared our program
with BUBBLE only on three data sets, representing three
different patterns. Overall, QUBIC substantially outper-
forms BUBBLE on all these data sets, and the detailed
performance comparisons are given in Table 9 in the
Supplementary Data.

Computational efficiency of QUBIC

To demonstrate the computational efficiency of QUBIC,
we have generated a number of large gene-expression data
sets ranging from 2000 to 20 000 genes and 1000 condi-
tions (these data sets are available from our website for
download; and further details about these data sets can be
found in the Supplementary Data). We have run our pro-
gram and the other five programs on these large test sets
on a desktop computer (2.66GHz Intel Core, 2 Duo CPU,
and 4 GB memory). Figure 7 in the Supplementary Data
gives the computing time by our program. QUBIC finds
the correct biclusters in a few minutes time, essentially
independent of any parameters used in the program
except for the parameter o while none of the other pro-
grams can solve the identification problem when the
number of genes goes beyond 12 000. We also tested all
the five programs on a real microarray data set with 54 675
transcripts and 18 conditions (an ovarian cancer micro-
array data set generated by our lab, and it will become
available on our website when that paper is published)
(Cui et al., manuscript to be submitted). QUBIC finds
100 biclusters in about 5min.

Applications on global transcriptional data sets

We now evaluate QUBIC on global microarray gene-
expression data collected from two different organisms
(Escherichia coli and yeast). When analyzing the whole
transcriptome microarray data, one challenging problem
is to find the ‘transcriptional modules’, which represent
modular components in the (global) gene regulatory
network, defined as a set of tightly co-regulated genes

along with a set of associated conditions that trigger
the co-regulation (20), making it a natural application
problem for the biclustering methods. It is known that
some transcriptional modules show co-regulations only
under a narrow range of conditions and have weak
global correlations among their gene expression
patterns, therefore not easily detectable by the traditional
clustering methods. In addition, some transcriptional
modules may overlap due to the combinatorial regulation
by multiple transcriptional factors (20), which would
also complicate the use of the traditional clustering tech-
niques. The goal of this exercise is to test the effectiveness
of our biclustering algorithm in identifying such trans-
criptional modules.

Our first test case includes the microarray gene expres-
sion data for 4217 E. coli genes collected under 264 con-
ditions from the M3D database (E. coli array version 4
build 3) (27). The values in the original microarray data
set are log2 values of the fluorescence intensities. The goal
of our analysis is to identify biclusters hidden in the micro-
array data, and study their relationships with known bio-
logical pathways, as defined by the GO functional
classification scheme (28), as well as by the KEGG path-
ways (29) and the ‘EcoCyc’ database (30).

For each identified bicluster, we use the P-value of its
most enriched functional class (biological process) as the
P-value of the bicluster. Specifically, the probability of
having r genes of the same functional class in a bicluster
of size n from a genome with a total of N genes can be
computed using the following hypergeometric function
(31), where P is the percentage of that functional class
among all functional classes of genes encoded in the
whole genome,

PrðrjN, p, nÞ ¼

pN
r

� �
ð1� pÞN
n� r

� �

N
n

� �

For each functional class C, we calculate the P-value of
our current bicluster enriched with C genes as the proba-
bility of selecting at least r genes of the same functional
class in the bicluster, where r is the actual number of
C genes present in the current bicluster. We then use the
smallest P-value among all possible functional classes C as
the P-value of the current bicluster. Clearly, the smaller
the P-value of a bicluster B is, the more likely that B’s
genes are from the same biological process. We have run
the six biclustering algorithms with their default param-
eters on this data set, as introduced in ‘Applications on
Prelic’s benchmark data sets’ section.

To compare the biclustering results by different algo-
rithms, we have applied a clean-up procedure introduced
in Prelic et al. (13) to remove the substantially overlapping
biclusters so that among the survived biclusters, no two
overlap more than 25% of their sizes. For each algorithm,
we calculated the proportion of biclusters that have sig-
nificant P-values (below a pre-selected P-value cutoff)
among the survived biclusters after the clean-up step.
Then, we score each algorithm using the ratio between
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the number of significant biclusters and the number of the
survived biclusters.

Among the six tested algorithms, QUBIC consistently
show the highest enrichment ratios except for the regulon
classification from the ‘EcoCyc’ database. Specifically,
when the P-value cutoff is 0.01, 89% of the QUBIC biclus-
ters show substantial enrichment with GO biological pro-
cesses, 89% of the QUBIC results show significant overlap
with known regulons and 78% enriched in KEGG path-
ways (29). The detailed comparisons with other programs
are given in Figure 2A. Although the performance of
BIMAX (96%) is better than QUBIC for the regulon clas-
sification category, we found that 59% of the QUBIC
biclusters have P-values <10–6 while only 48% of the
BIMAX biclusters have P-values <10–6. This suggests
that individual QUBIC clusters are more significant than
those generated by BIMAX. Indeed, on a case-by-case
basis, the biclusters from QUBIC have higher enrichment
ratios for more functional classes than those by all the
other algorithms (Table 1). As an example, the flagella
assembly pathway in E. coli is known to consist of 38
genes. Out of these genes, one QUBIC cluster includes
33 out of the total of 52 genes in the cluster, which com-
pares to 20 out of 28 by BIMAX, 35 out of 92 by ISA, 22
out of 220 by MSBE and 36 out of 202 by SAMBA. This
comparison highlights the overall better performance by

QUBIC among all the programs in terms of their com-
bined identification sensitivity and specificity.
On our second test, we used a yeast (Saccharomyces

cerevisiae) microarray data set (32). Similar to the E. coli
data analysis, we evaluated each bicluster (after removing
the substantially overlapping biclusters) generated by dif-
ferent algorithms in terms of their functional enrichments
based on GO biological processes, MIPS yeast functional
catagories (33) and KEGG pathways. From Figure 2B, we
can see that QUBIC has the highest functional enrichment
among all the tested algorithms based on the three
classifications.
Through the above comparative analyses on the perfor-

mance of six algorithms, we have shown that QUBIC is
capable of revealing high quality biclusters in both pro-
karyotic and eukaryotic microarray expression data, and
the genes in each bicluster show strong correlations with
known functions and pathways. This study thus suggests
the potential in extracting the substructures of metabolic
and regulatory networks from gene expression data under
multiple conditions using a biclustering method, providing
a new and useful tool for biological pathway and network
reconstruction.
One potential issue with the above P-value based

analysis is that the P-value is bicluster size-dependent,
and hence larger bi-clusters tend to have more significant
P-values. This is clearly not a unique problem to the
biclustering result analysis as other bioinformatics pro-
blems, such as the problem of cis regulatory motif finding,
also face the same issue. Further studies will be carried out
aiming to make our P-value calculation size independent.

Signature identification for cancer subtyping

We now extend the application of our biclustering algo-
rithm to the problem of cancer subtype classification. The
basis of this analysis is that pathways unique to specific
cancer subtypes may get activated across the majority of
the patients of the subtypes, and hence the genes in these
pathways can be possibly used as a signature for specific
subtypes. Apparently this problem can be formulated as a
biclustering problem on microarray gene expression data.
Actually, there have been several studies that used biclus-
tering as part of a larger analysis pipeline to do cancer
subtyping (34).
We have used the leukemia data collected by Armstrong

et al. (35) and searched for biclusters that might be char-
acteristic to different leukemia subtypes (ALL, MLL
and AML). This data set consists of 12 533 probes from
72 patients of different subtypes of leukemia (24 ALL, 20
MLL and 28 AML patients, respectively), which were
produced on Affymetrix U95A oligo-nucleotide arrays.
We did pre-processing based on the experiment back-
ground as detailed in the Supplementary Data.
Using QUBIC, we have identified a total of 192 biclus-

ters in the data set (the parameter o is set to 500 and the
output results are available on our website). We made the
following observations about the predicted biclusters: 17
biclusters contain samples (conditions) from only one
cancer subtype, 89 biclusters have samples from two sub-
types and 86 biclusters from all three subtypes (see

B

A

Figure 2. (A) Proportions of E. coli biclusters that have significant
overlap (P< 0.01) with GO biological processes, KEGG pathways
and experimentally verified regulons. (B) Proportions of yeast biclusters
that are statistically enriched (P< 0.01) in GO biological processes,
KEGG pathway and MIPS functional catalog.
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Figure 8 in the Supplementary Data). Although only 17
biclusters were found to have specificity for a particu-
lar subtype, these biclusters are highly significant and
distinct. Figure 3 gives an example of three selected biclus-
ters that each shows subtype-specificity (BC000, BC002
and BC074). In this example, QUBIC identifies the clas-
sical ‘checker-board’ substructures inside the original
microarray data, where the three selected biclusters each
corresponds to a particular leukemia subtype, with BC000
specific to ALL, BC074 specific to MLL and BC002 spe-
cific to AML (Figure 3).
We found that these subtype-specific biclusters are

informative and in most cases consistent with results
reported in previous studies (35,36). For example, the
MLL cluster (BC071; Figure 3) contains genes involved
in multiple hematopoietic lineages, including PROM1 and
FLT3 in progenitor cells and CCNA1 in myeloid cells,
which were also observed in (35). While some of the
genes in these subtype-specific biclusters may not neces-
sarily make good marker genes for hematopoietic lineages,
others do, such as those that encode proteins critical
for cell-cycle transitions such as CCNA1, CCND3 and
CDK5R1/p35. It is also worth noting that we identified
two negatively regulated genes in BC002. Specifically, the
last two genes (SEPT9 and CCND3) in BC002 are down-
regulated while the other genes in BC002 are upregulated.
This has been observed for CCND3 (36), but the obser-
vation on SEPT9 is new, to the best of our knowledge. We
believe that these three subtype-specific biclusters are
information rich and further analyses could potentially
lead to improved understanding about the molecular
mechanisms underlying these three subtypes.The biclus-
ters that contain samples from more than one subtype
are probably clinically just as informative as the above
subtype-specific biclusters. For example, we have found
that among the resulting biclusters, three biclusters
(BC011, BC040 and BC148) show an opposite trend for
different ALL and AML, and one bicluster (BC025) shows
an opposite trend for MLL and AML. In particular,

within bicluster BC011, samples from ALL patients are
all downregulated, while samples from AML patients
are all upregulated; BC148 shows exactly the opposite pat-
tern to that of BC011 where ALL samples are upregulated
and AML samples are downregulated. These biclusters
would contain candidates of selectively expressed genes

Table 1. Functional enrichments in the biclusters by different programs for E. coli respect to KEGG classes

QUBIC BIMAX ISA MSBE SAMBA

ABC transporters – Organism-specific 6e-08 (61%) 1e-04 (30%) na ns ns
Aminosugars metabolism 2e-04 (18%) na na ns 1e-03 (7%)
Arginine and proline metabolism 4e-03 (12%) na ns 4e-03 (4%) ns
Ascorbate and aldarate metabolism 2e-04 (21%) 2e-03 (22%) na 2e-03 (3%) na
Flagellar assembly 4e-63 (63%) 4e-37 (71%) 8e-57 (38%) 8e-18 (10%) 3e-45 (17%)
Fructose and mannose metabolism na 3e-05 (30%) 2e-03 (40%) 9e-05 (7%) na
Galactose metabolism 2e-07 (50%) ns na na 3e-06 (5%)
Glycerophospholipid metabolism 2e-06 (21%) 9e-03 (22%) na ns na
Nitrogen metabolism na 1e-06 (29%) 3e-05 (6%) ns 2e-06 (7%)
Pentose and glucuronate interconversions 6e-04 (20%) 2e-06 (60%) na ns ns
Phosphotransferase system (PTS) na ns na 2e-03 (7%) 4e-06 (18%)

Pyrimidine metabolism na 7e-05 (36%) na ns 2e-03 (8%)
Ribosome 4e-47 (44%) na na 4e-38 (37%) 2e-43 (23%)
Sulfur metabolism 2e-12 (29%) 1e-10 (11%) 2e-03 (2%) na 3e-09 (4%)

Values represent P-values followed by the enrichment ratios (the number of genes in both class and bicluster/the number of genes in the bicluster).
Each value in bold represents the most significant P-value for each functional class.
na:– functional class not present in the results.
ns: functional class present in the results but not significant at level of 0.01.

Figure 3. Visualization of three biclusters (BC000, BC002 and BC074),
which were selected based on the specificity to certain subtype of leu-
kemia (ALL/AML/MLL). The gene names are given to the right of the
heat-map. Some genes are represented twice since there are cases where
two different Affymetrix probes are used for the same gene.
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for needed molecular targets. Note that this was not pos-
sible using some other biclustering algorithms such as
BIMAX, since BIMAX only deals with binary data
(change versus no-change) (13) as opposed to multiple
data in our analysis.

As a result of biclustering on the cancer data, we have
shown that QUBIC is capable of uncovering genes that
are unique to clinically known subtypes of cancers. Our
future work will be focused on mining the subtype-specific
biclusters, as well as on integration of the program with
additional tools into a classification and characterization
pipeline in support of cancer studies.

DISCUSSION

The biclustering strategy has been widely used in analyses
of gene expression data since it was first proposed in 2000
because it provides a much increased flexibility and ana-
lysis power for identifying co-expressed genes under some
but not necessarily all conditions, compared to the tradi-
tional clustering methods. As of now, most of the existing
biclustering algorithms were designed to solve a rather
special class of the biclustering problem, specifically
attempting to find biclusters that minimize the so-called
mean squared residue value. The QUBIC algorithm has
proven to be a useful tool for analyzing gene expression
data of tens of thousands of genes for discovering complex
relationships among genes and conditions that are difficult
to detect using existing biclustering methods. The high
computational efficiency and the ability to detect subtly
correlated expression patterns among genes under certain
conditions will make QUBIC a powerful tool for analyses
of microarray gene expression data, particularly large data
sets. Furthermore, it can be a useful tool in transcriptional
regulation network prediction.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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