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ABSTRACT

Fontan circulation is generally characterized by high central venous pressure, low cardiac 
output, and slightly low arterial oxygen saturation, and it is quite different from normal 
biventricular physiology. Therefore, when a patient with congenital heart disease is 
selected as a candidate for this type of circulation, the ultimate goals of therapy consist of 
2 components. One is a smooth adjustment to the new circulation, and the other is long-
term circulatory stabilization after adjustment. When either of these goals is not achieved, 
the patient is categorized as having “failed” Fontan circulation, and the prognosis is dismal. 
For the first goal of smooth adjustment, a lot of effort has been made to establish criteria 
for patient selection and intensive management immediately after the Fontan operation. 
For the second goal of long-term circulatory stabilization, there is limited evidence of 
successful strategies for long-term hemodynamic stabilization. Furthermore, there have been 
no data on optimal hemodynamics in Fontan circulation that could be used as a reference 
for patient management. Although small clinical trials and case reports are available, the 
results cannot be generalized to the majority of Fontan survivors. We recently reported the 
clinical and hemodynamic characteristics of early and late failing Fontan survivors and their 
association with all-cause mortality. This knowledge could provide insight into the complex 
Fontan pathophysiology and might help establish a management strategy for long-term 
hemodynamic stabilization.
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INTRODUCTION

The Fontan operation is a definitive palliative procedure for patients with complex cyanotic 
congenital heart disease (CHD) who are not suitable for biventricular repair, including 
those with tricuspid atresia, univentricular heart, or hypoplastic left heart syndrome.1) 
The introduction of the Fontan operation dramatically improved both the prognosis and 
quality of life for patients with complex cyanotic CHD.2) 3) However, because of their unique 
hemodynamics, long-term morbidity and mortality in these patients are still high compared 
to those who underwent biventricular repair.4) 5) The causes of morbidity after the Fontan 
operation include heart failure (HF), arrhythmia,6) protein losing enteropathy (PLE),7) 8) 
pulmonary arteriovenous fistulae (PAVF),9) thromboembolism,10) 11) renal dysfunction,12) and 
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Fontan-associated liver disease (FALD).13) 14) These conditions are now considered major 
determinants of post-operative outcome for long-term Fontan survivors.15)

Our objective was to help post-Fontan patients adapt smoothly to their unique 
hemodynamics and to keep this adaptation optimal to avoid future complications. However, 
the definition of “optimal” with regard to Fontan hemodynamics is unclear, and we know 
little about late Fontan hemodynamics or its impact on Fontan pathophysiology, including 
the prognosis. In this review, we include recent data to focus on hemodynamic issues and 
their association with Fontan pathophysiology and prognosis, which has not been addressed 
in detail in the existing Fontan literature.

CHARACTERISTICS OF FONTAN HEMODYNAMICS

The primary characteristics of Fontan hemodynamics is a lack of subpulmonary ventricle,1) 16) 
which automatically lead to high central venous pressure (CVP). This creates additional 
driving pressure for the pulmonary circulation and diminished cardiac preload for 
the systemic ventricle (SV), resulting in chronically low cardiac output (CO). These 2 
consequences are considered inevitable in CHD patients with Fontan circulation. Mild but 
significant low arterial blood oxygen saturation (SaO2) is also a major hemodynamic feature, 
which probably results from intrapulmonary ventilation-perfusion mismatch17) as well as the 
development of veno-venous collaterals.18) All of these abnormal conditions are ultimately 
associated with reduced exercise capacity.17) 19)

Thus, pathophysiologic complications after the Fontan operation consist mainly of the 
following 3 conditions: 1) multi-end-organ congestion due to high venous pressure, 2) 
chronic HF due to low CO, and 3) mild but significant hypoxia. With an elevated CVP, low CO 
can result in low systemic arterial blood pressure, leading to low systemic perfusion pressure 
(PP). Often, the pressure difference between the systemic blood pressure and CVP is an 
indicator of PP for multiple end organs.20)

One of the main goals of the circulatory system is to supply sufficient oxygen and other vital 
substances to the organs. Accordingly, the maintenance of adequate oxygen content and PP is 
crucial. To accomplish this goal, the circulatory system in Fontan patients appears to adjust 
to the inconvenient Fontan hemodynamics through the following adaptations commonly 
observed in patients with HF: 1) raising systemic artery resistance (Rs), and 2) redistributing 
CO to vital organs, such as the brain and heart, with increased oxygen content (hemoglobin 
concentration) to compensate for limited CO.20) 21)

“BETTER” FONTAN HEMODYNAMICS

In general, Fontan circulation would be ideal if the hemodynamics was closer to that of a 
normal person, i.e., hemodynamics without an inappropriately high or low CVP and with 
sufficiently high Rs to maintain PP without significant hypoxia (Figure 1).

Possible causes of elevated CVP include pre-capillary factors, like stenosis of the Fontan 
route and high pulmonary artery resistance (Rp), and post-capillary factors, like systolic and/
or diastolic SV dysfunction and atrioventricular valve (AVV) impairment. In addition, excess 
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water retention, development of aorto-pulmonary collaterals,22) and inappropriately high CO 
could also be responsible for high CVP.23)

On the other hand, because low CO situation might be inevitable due to the lack of a 
subpulmonary ventricle, adaptive mechanisms for inappropriately high Rs and redistribution 
of the limited CO might be essential for better hemodynamics, as mentioned above. In 
this regard, the autonomic nervous system and neurohormonal activation could play an 
important role in regulation of systemic vascular tone.21) However, these compensatory 
adaptations result in a vicious cycle in HF patients, for instance, worsening HF due to 
sympathetic nervous activation, and this could potentially occur in Fontan patients, leading 
to poor prognosis.12) 24) Thus, these essential compensatory adaptations and the maintenance 
of adequate Fontan circulation, even if the hemodynamics seems “optimal,” are contradictory 
issues that should be addressed in these patients.

“FAILING” FONTAN CIRCULATION

Although the term “failing” has been frequently quoted in the literature, the definition 
remains unclear in certain settings.25) 26) In general, major hemodynamic abnormalities, 
such as high CVP, low CO, and low SaO2, characterize “failing” Fontan hemodynamics. This 
pathophysiology is often accompanied by systolic and/or diastolic SV dysfunction with or 
without AVV dysfunction. In addition, because serious post-operative complications, such 
as supraventricular arrhythmias, PLE, PAVF, and thromboembolic problems often coexist, 
adaptive mechanisms for maintaining both “appropriate” Rs and the redistribution of 
limited CO might lead to “failing” and unacceptable pathophysiology. Furthermore, the 
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recent concept of failure can include additional non-cardiac end-organ impairments, such as 
FALD,13-15) 27) renal dysfunction,12) 27-29) glucose metabolic abnormalities,30) and even bone and 
nutritional problems.31) 32) Hepato-renal pathophysiology, in particular, has a strong impact 
on morbidity and mortality in these patients.14) 29) Thus, these emerging pathophysiologic 
situations make the definition of “failing” more complex.

A clinical phenotype-based classification system for patients with Fontan failure has 
been proposed, and it includes the following types:33) type I for those with reduced 
ejection fraction (EF), type II for those with preserved EF, type III for those with normal 
hemodynamics, and type IV for those with abnormal lymphatics. However, it can be difficult 
to determine the appropriate type of failure for a given clinical presentation, as a significant 
portion of failing patients have overlapping phenotypes8) or a lack of established “normal” 
Fontan hemodynamics. In addition, there is no clear evidence of a significant association 
between Fontan hemodynamics and long-term outcomes, including mortality.

PROGNOSIS OF FONTAN HEMODYNAMICS

Knowing the prognosis of Fontan hemodynamics can guide clinicians when managing 
these patients. Although there have been a few studies addressing “optimal” or “normal” 
hemodynamic characteristics in Fontan patients, the prognosis of Fontan hemodynamics 
remains unclear.34)35) We recently clarified the association between distinct differences in 
some hemodynamic variables and their effects on all-cause mortality between early (0.5 to 5 
years) and late (≥15 years) Fontan survivors.23)

CVP
High CVP had an adverse impact on mortality in early and late Fontan survivors (Figure 2A). 
According to the receiver operating characteristics (ROC) curve, the cutoff value for mortality 
was 14 mmHg in both groups.

SaO2

Low SaO2 had an adverse effect on mortality in early and late survivors (Figure 2B). According 
to the ROC curve, the cutoff value for mortality in early and late survivors was 93% and 92%, 
respectively.

End-diastolic systemic ventricular volume index (EDVI)
Large EDVI had an adverse effect on mortality only in early Fontan survivors, with a cutoff 
value of 108 mL/m2. However, this association was not observed in late Fontan survivors 
(Figure 3A).

EF of the systemic ventricle (SV)
As in the association between EDVI and mortality, low EF had an adverse effect on mortality 
only in early Fontan survivors, with a cutoff value of 43% (Figure 3B).

CO/cardiac index (CI)
Based on Cox's hazard model, the CI had no impact on mortality in early Fontan survivors. 
However, a high CI predicted an adverse effect on mortality in late Fontan survivors (odds 
ratio [OR], 0.51; 95% confidence interval [95% CI], 0.26–0.99; p=0.048).23) Interestingly, 
the association with mortality was U-shaped in early and late Fontan survivors, with nadir CI 
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values of 4.3 L/min/m2 and 2.6 L/min/m2, respectively (Figure 4A-C). Thus, high CO does not 
always indicate favorable physiology in Fontan circulation. Expectedly, low CO was associated 
with poor outcome in both groups.

As described below, the associations between Rp and Rs and mortality were similar to the 
associations with CI.

Pulmonary artery resistance (Rp)
Although it might be difficult to accurately estimate Rp in the Fontan pulmonary 
circulation,36)37) there is no established methodology for measuring Fontan Rp other than 
conventional estimation with catheterization. Using this catheterization-based calculation, 
Rp had no significant impact on mortality in early or late Fontan survivors according to the 
Cox's hazard model. Although the associations were not significant, a low Rp seemed to be 
associated with high mortality (Figure 5A).

Systemic artery resistance (Rs)
Although Rs had no significant impact on mortality in early or late Fontan survivors, the 
association with mortality was also U-shaped, as observed with Rs (Figure 5B).

According to our recent data, we summarize our findings as follows: 1) high CVP and 
low SaO2 are closely associated with poor outcome regardless of the follow-up period, 2) 
SV dysfunction adversely affects mortality only in early survivors, and 3) the CI gradually 
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Figure 2. (A) Effect of CVP on all-cause mortality in early and late Fontan survivors. High CVP has a significant adverse impact on mortality in both groups of 
survivors. The right upper figures show that Fontan survivors with high CVP (≥14 mmHg) have a high mortality. (B) Effect of arterial blood SaO2 on all-cause 
mortality in early and late Fontan survivors. Low SaO2 has a significant adverse impact on mortality in both groups of survivors. (A) and (B) are modified from 
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decreases as Fontan survivors age,38) showing a fixed U-shaped association with mortality.23) 
This implies that optimal CO gradually decreases, at least during a follow-up period of 15 
years after the Fontan operation, and that high CO is not always favorable in late Fontan 
survivors. Thus, in addition to the traditional failing Fontan phenotype characterized by 
high CVP and low CO, we have recognized a new failing Fontan hemodynamic phenotype 
characterized by high CVP, inappropriately high CO, and low SaO2.23) 33)

Interestingly, this new failing hemodynamic phenotype consists of preserved SV function; 
more importantly, patients with this phenotype have even higher mortality than those with 
the traditional failing phenotype.23) Low Rp and Rs, especially inappropriately low Rs, might 
be major causes of high CO. Advanced FALD could be responsible for low Rs,23)33)39-41) and 
FALD-associated development of PAVF exacerbates the failing conditions due to hypoxia-
induced dilatation of the systemic arteries42) that further increases CO with preserved cardiac 
preload and SV function. Thus, this FALD-associated pathophysiology, rather than low Rp 
itself, could be responsible for the high mortality in patients with high CVP and high CO.23)
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Figure 3. (A) Effect of end-diastolic volume of the SV (EDVI, mL/m2) on all-cause mortality in early and late Fontan survivors. Large EDVI has a significant adverse 
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HEMODYNAMICS OF CLINICALLY “EXCELLENT” FONTAN 
SURVIVORS
From the mortality point of view, preserved SV function, low CVP, and high SaO2 with a CI 
of approximately 4.3 L/min/m2 best characterize “optimal” hemodynamics in early Fontan 
survivors, whereas low CVP and high SaO2 with a relatively low CI of approximately 2.6 L/min/
m2 might be characteristic of the same in late Fontan survivors. However, it is still unclear 
whether these hemodynamic characteristics are equivalent to those of clinically “excellent” 
Fontan survivors. In this regard, knowing the Fontan hemodynamics in clinically “excellent” 
long-term survivors could help guide clinicians to better manage other Fontan patients.

We previously and arbitrarily defined “excellent” post-operative Fontan patients (n=18) as 
those without any unexpected hospitalization or all-cause mortality during a ≥15-year post-
operative follow-up period. Additionally, we compared their hemodynamic variables to those 
of non-excellent survivors (n=43).38)

According to our data on “excellent” Fontan survivors, the CVP increased slightly at post-
operative year 5, then gradually decreased to a value of 10 at the end of the 15-year follow-
up (mmHg). The CI continued to decrease during the entire follow-up period with a final 
value of 2.6 L/min/m2 15 years after the operation. Additionally, Rs increased steadily to 
compensate for decreasing CO and to maintain sufficient systemic PP, while Rp steadily 
decreased to preserve ventricular preload. The final mean values for Rp and Rs were 
approximately 1.2 U·m2 and 30 U·m2, respectively. Thus, Fontan hemodynamics changes 
significantly over time.38) In addition, we should be aware that, because these hemodynamic 
values depend on the anesthetic condition during catheterization, i.e., general or local 
anesthesia, these values should be compared under the same condition.

When assessing SV function in “excellent” survivors, the indexed end-diastolic volume 
decreased immediately after surgery, then stabilized for the rest of the follow-up period, with 
a mean value of approximately 70 mL/m2. The EF for the SV also seemed to be stable for the 
entire follow-up period, with a mean value of approximately 55%. Additional hemodynamic 
characteristics for “excellent” survivors included a high SaO2 of approximately 94% without 
significant AVV regurgitation.38)

Importantly, low CVP and improved atrioventricular function independently predicted 
“excellent” long-term Fontan survival. Late post-operative CO in “excellent” survivors could 
be equivalent to the “optimal” CO for late survivors.

Based on our analyses of Fontan hemodynamics, including all-cause mortality and 
“excellent” long-term outcomes, “optimal” Fontan hemodynamics are characterized in 
Table 1. In early survivors, low CVP without hypoxia, preserved SV function, and high CO are 
important factors for “optimal” hemodynamics. In excellent late survivors, a relatively low CO 
of approximately 2.6 L/min/m2 is a common feature in addition to low CVP without hypoxia.
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HEMODYNAMICS-BASED MANAGEMENT FOR PATIENTS 
WITH FONTAN CIRCULATION
According to the associations of Fontan hemodynamics with all-cause mortality, the 
following subgrouping might be clinically beneficial for managing failing hemodynamics. 
One failing group consists of patients who cannot smoothly adjust to Fontan circulation 
during the early phase after the operation, and the other failing group consists of those 
who cannot maintain Fontan circulation because of pathological interactions between the 
cardiovascular system and non-cardiac end-organs and/or cardiovascular dysfunction due 
to long-lasting Fontan-associated insults to end-organs.23)25)43) Although clinically relevant 
arrhythmias increase in incidence over time in Fontan patients and constitute another 
major failing phenotype,44) 45) we focus on hemodynamic management. Additionally, this 
arrhythmia-induced failure is extensively described elsewhere.46)

We should also be aware that the management strategy for patients with failing 
hemodynamics might not be applicable to those without hemodynamic failure.

Patients without hemodynamic failure
There is no established management strategy for non-failing Fontan patients. In our 
“excellent” long-term Fontan survivors, the use of diuretics gradually decreased. Only one 
patient (8%) continued receiving diuretics, while 5 patients (39%) received angiotensin 
converting enzyme inhibitors or angiotensin receptor blockers (ACEI/ARBs).38) Of note, 
50% of the survivors were not taking any cardiac medication. We have to be careful when 
introducing new interventions to stable survivors because Fontan patients without any 
major complications rarely experience clinical events.47) It might be better to avoid any new 
intervention that is not yet justified in Fontan patients.

Patients with hemodynamic failure
We proposed a new simple hemodynamics-based classification for failing Fontan patients 
that might be helpful for hemodynamic management regardless of the incidence of major 
complications.23)

High CVP with low CO
This is the traditional phenotype for Fontan failure. In general, circulation in these patients 
is unable to adjust to the Fontan circulation during the early post-operative phase. This 
maladaptation is mainly due to cardiopulmonary problems that include SV dysfunction, AVV 
impairment, high Rp, and/or markedly high Rs.
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Table 1. Comparison of “optimal” hemodynamics and systemic ventricular function in early, late and excellent Fontan survivors
Goals Free from all-cause mortality Excellent survivors
Follow-up (years) Early survivors (0.5–5) Late survivors (≥15) Late survivors (≥15)
CVP (mmHg) The lower, the better 10
Arterial SaO2 (%) The higher, the better 94
CI (L/min/m2) ≈4.2 ≈2.6 2.6
EDVI (mL/m2) The smaller, the better - ≈70
EF of the SV (%) The higher, the better - ≈55
CI = cardiac index; CVP = central venous pressure; EDVI = end-diastolic systemic ventricular volume index; EF = ejection fraction; SaO2 = oxygen saturation; SV = 
systemic ventricle.
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Thus, hemodynamic management could be focused on these cardiopulmonary problems. 
Combined with appropriate water balance, conventional HF medications, such as ACEI/
ARBs, β blockers, and aldosterone antagonists,48) 49) could be effective for managing systolic 
SV dysfunction. Additionally, re-synchronization therapy for ventricular dyssynchrony can be 
used.50-52) Furthermore, valvuloplasty or mechanical valve replacement should be considered 
in patients with AVV dysfunction.53) 54) When patients have relatively high Rp, pulmonary 
vasodilators can be effective in select patients.55) These options are summarized in Figure 6.

When these management strategies fail, patients might be eligible for cardiac 
transplantation.56) 57)

High CVP with high CO
This failing hemodynamic phenotype is not well recognized nor is the detailed 
pathophysiology well understood.23)27)33-35) This failure group often consists of long-term 
adult Fontan survivors because the phenotype can develop after a period of stabilized Fontan 
circulation due to multiple end-organ dysfunction, such as FALD. This hemodynamic 
phenotype is mainly characterized by inappropriately low Rs,23) 34) resulting in an even 
higher CO to maintain PP, which remains low.23) In addition, PAVF often develops,23) further 
exacerbating the secondary hypoxia,42) which is another characterizing feature of this failure 
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For systemic ventricular systolic dysfunction, conventional anti-HF strategies might be successful. In addition, 
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ACEI = angiotensin converting enzyme inhibitor; AOP = aortic pressure; ARB = angiotensin II receptor blocker; AVV 
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PTA = percutaneous transluminal angioplasty; RP = respiratory pump; Rp = pulmonary artery resistance; Rs = 
systemic artery resistance; S/IVC = superior vena cava/inferior vena cava.
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group. Furthermore, the prognosis of this group is worse than that of traditional failing 
Fontan patients,23) and the condition can ultimately lead to hepatorenal syndrome.58)

Thus, conventional HF management for systolic SV dysfunction can exacerbate these 
failing hemodynamics, and a different management strategy is required. In this phenotype, 
pulmonary artery dilators might not be successful, because Rp is often already low enough 
for adequate pulmonary circulation,23) and the dilators can further dilate the systemic artery. 
In this phenotype, it might be important to increase Rs to maintain effective PP. In addition 
to oxygen therapy for the coexisting hypoxia, arterial vasoconstrictors, such as α agonists, 
norepinephrine, and vasopressin, might be effective. If necessary, the use of ACEI/ARBs and/
or β blockers should be reduced to regain systemic arterial constriction. Although short-
term hemodynamic stability can be achieved,58) the long-term efficacy of these strategies 
is unknown, and we should be aware that this management strategy is only feasible in 
patients with preserved SV systolic function and adequate AVV function. These options are 
summarized in Figure 7.

Pathophysiologic interactions between the cardiovascular system and advanced non-
cardiovascular end-organ dysfunction play major roles in this failing phenotype. For 
instance, the influence of liver cirrhosis on the cardiovascular system39-41) 59) can cause cardiac 
transplantation to not be a suitable treatment option. Therefore, it is important to determine 
the optimal timing for cardiac transplantation,57) and more importantly, much effort should 
be made to avoid development of this failing phenotype.
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Finally, although information on management of failing Fontan patients has accumulated 
on a case-by-case basis60-73) and based on small randomized controlled trials,74-80) this data 
cannot be generalized to the majority of Fontan patients, especially those with failing 
hemodynamics. In addition, we now realize that Fontan hemodynamics changes significantly 
over time, as patients develop12) multiple end-organ interactions. A significant shift occurs 
in the major determinants of morbidity and mortality from cardiac factors to non-cardiac 
factors as patients age,38) even though the majority of Fontan survivors are still in their 20s or 
30s. Thus, much more research is needed to establish long-term management strategies with 
a broader perspective of Fontan pathophysiology as a multi-organ disease.
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