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Abstract: Pediatric brain tumors have surpassed leukemia as the leading cause of cancer-related death
in children. Several landmark studies from the last two decades have shown that many pediatric
brain tumors are driven by epigenetic dysregulation within specific developmental contexts. One of
the major determinants of epigenetic control is the histone code, which is orchestrated by a number
of enzymes categorized as writers, erasers, and readers. Bromodomain and extra-terminal (BET)
proteins are reader proteins that bind to acetylated lysines in histone tails and play a crucial role in
regulating gene transcription. BET inhibitors have shown efficacy in a wide range of cancers, and a
number have progressed to clinical phase testing. Here, we review the evidence for BET inhibitors in
pediatric brain tumor experimental models, as well as their translational potential.

Keywords: BET inhibitor; epigenetics; pediatric brain tumors; diffuse intrinsic pontine glioma;
medulloblastoma; ependymoma; embryonal tumor with multilayer rosettes; atypical teratoid
rhabdoid tumor

1. Introduction

Pediatric brain tumors are the most common solid tumor in children, and are the
leading cause of cancer-related death [1]. Several aggressive pediatric brain tumors, such
as medulloblastoma (MB), high-grade glioma (HGG), ependymoma (EPN) and atypical
teratoid/rhabdoid tumors (ATRTs), are defined by epigenetic dysregulation that has been
shown to reflect disordered developmental processes that occur in susceptible cell types
and along specific spatio-temporal patterns [2,3]. In the context of normal development,
epigenetic mechanisms allow for transcriptional control independent of DNA sequence,
and are crucial components of cell differentiation and specialization [4–6]. The most widely
studied mechanisms include DNA methylation and histone modifications, both of which
are commonly co-opted in pediatric brain tumor pathogenesis.

Histones are the fundamental building blocks of chromatin and assemble in octamers,
around which DNA is wrapped to form the nucleosome [7]. Each histone has an amino
acid tail that extends from the nucleosome and is enriched in positively charged residues,
such as lysine and arginine, that are subject to post-translational covalent modifications that
have dramatic impacts on chromatin accessibility [8,9]. At least 16 of these modifications
have been described to date and include lysine acetylation, lysine and arginine methylation,
serine and threonine phosphorylation, and lysine ubiquitination or sumoylation [10,11].
Specific enzymes, known as “writers” and “erasers”, are responsible for catalyzing the
transfer of these marks, while “reader” proteins are involved in recognition of the marks to
recruit other protein complexes involved in transcriptional control.

Histone lysine acetylation is one of the most well-studied histone post-translational
modification (PTM) and decreases the positive charge of histones leading to a relaxed
chromatin conformation associated with greater levels of transcription [12,13]. Histone
acetylation writers (histone acetyltransferases, or HATs), erasers (histone deacetylases, or
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HDACs) and readers (bromodomains, BRDs) have been well characterized and each has
been implicated in the pathogenesis of a wide range of cancers [14–19]. Over 60 bromod-
omains have been identified in humans, occurring in over 40 proteins (each containing
between 1–6 BRDs) [20]. One important class of bromodomains are the bromodomain
and extra terminal (BET) family, that is made up of BRD2, BRD3, BRD4, and BRDT [21].
Each BET protein is characterized by two tandem bromodomains (BD1 and BD2) in their
N-terminal region and a C-terminal extra-terminal domain [22,23]. In particular, BRD4
plays a key role in RNA polymerase II dependent transcription through the recruitment of
the positive transcription elongation factor complex (P-TEFb) and the Mediator complex to
promoter regions [24,25]. Through this activity, BRD4 serves as a critical transcriptional
coactivator at regions of hyperacetylation (e.g., enhancers or super-enhancers) and medi-
ates expression of key transcription factors, such as c-MYC [26,27]. Since the discovery
of small molecule BET inhibitors in 2010, their activity has been demonstrated in a wide
range of transcriptionally addicted human cancers. Here we will review the rationale and
translational potential for BET inhibitors in pediatric brain cancers.

2. BET Protein Structure and Function

There are four BET proteins, which in humans are referred to as bromodomain-
containing protein 2 (BRD2), bromodomain-containing protein 3 (BRD3), bromodomain-
containing protein 4 (BRD4), and bromodomain testis associated protein (BRDT). BRD2/3/4
are all ubiquitously expressed, while BRDT is limited to male germ cell tissue. In central
nervous system (CNS) tissue, specifically, BRD2/3/4 have all been found to be highly
expressed, although expression levels can vary depending on cell-type and spatial location
(Figure 1A). BET proteins (particularly BRD2 and BRD4) have also been found to be highly
expressed in the developing mouse brain (Figure 1B). Inhibition, via genetic knockout or
inhibitor treatment, has been linked with diverse phenotypes, including cerebellar ataxia,
seizures, and autism-like behaviors [28–30].

BET proteins are comprised of two N-terminal bromodomains (BD1, BD2), an extrater-
minal domain (ET), and a C-terminal domain (CTD). Each bromodomain contains four
alpha helices separated by a variable loop region. This forms a hydrophobic pocket that
anchors to acetylated lysine residues via a conserved asparagine residue. The BD1/BD2
amino acid residues critical for acetylated lysine binding are highly conserved across BET
proteins; however, there are substantial differences between BD1 and BD2 active sites,
which confer functional differences and the ability to chemically target selectively [31].
The BET extra-terminal domain (ET) is able to recruit other chromatin-regulating proteins,
such as NSD3, JMJDs, and CHD4 [32]. The C-terminal domain (CTD) is present only
in BRD4 and BRDT, and is responsible for recruitment of the positive elongation factor
(P-TEFb) [33]. BET proteins utilize these unique structural elements to read acetylated
histones at cis-regulatory elements, such as promoters and enhancers, and serve as tran-
scriptional coactivators. Indeed, one of the main mechanisms by which BET inhibitors
exhibit anti-cancer effects is through targeting super-enhancer driven oncogenes, such as
c-MYC [27].
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Figure 1. BET protein expression in the central nervous system. (A) Human bulk RNA expression 
from the GTex database, clustered by brain tissue type [34] (B) Single-cell RNA sequencing atlas of 
the developing mouse brain showing ubiquitous BRD4 expression throughout cell types of the 
developing central nervous system [35,36]. 

3. BET Inhibitors 
Small molecule inhibitors of BET bromodomains were first discovered in 2010 by two 

groups, based on a thienotriazolodiazepine (JQ1) and benzotriazolodiazepine (I-BET151) 
scaffold, respectively [37,38]. They were shown to potently inhibit bromodomain binding 
to acetylated lysine residues, resulting in displacement of BRD4 from nuclear chromatin. 
Both compounds selectively inhibit BET bromodomains over other bromodomain classes, 
although neither discriminates between BD1/BD2 within each BET protein nor between 
BRD2/BRD3/BRD4/BRDT. These compounds have demonstrated impressive pre-clinical 

Figure 1. BET protein expression in the central nervous system. (A) Human bulk RNA expression
from the GTex database, clustered by brain tissue type [34] (B) Single-cell RNA sequencing atlas
of the developing mouse brain showing ubiquitous BRD4 expression throughout cell types of the
developing central nervous system [35,36].

3. BET Inhibitors

Small molecule inhibitors of BET bromodomains were first discovered in 2010 by
two groups, based on a thienotriazolodiazepine (JQ1) and benzotriazolodiazepine (I-
BET151) scaffold, respectively [37,38]. They were shown to potently inhibit bromodomain
binding to acetylated lysine residues, resulting in displacement of BRD4 from nuclear
chromatin. Both compounds selectively inhibit BET bromodomains over other bromod-
omain classes, although neither discriminates between BD1/BD2 within each BET protein
nor between BRD2/BRD3/BRD4/BRDT. These compounds have demonstrated impres-
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sive pre-clinical efficacy in a variety of cancer models, including BRD4–NUT fusions
NUT-midline carcinoma (NMC), acute myeloid leukemia (AML), medulloblastoma, breast
cancer, and lung cancer [39–41]. In the last decade, several “clinical-grade” pan-BET in-
hibitors with improved pharmacokinetic profiles have been developed (Table 1). From the
initial diazepane-based JQ1 and I-BET151, a variety of scaffolds with potent BET inhibitory
properties have been employed successfully. Clinical trials with these agents have shown
that thrombocytopenia is an important and common dose-limiting toxicity of pan-BET
inhibitors [42].

Table 1. BET inhibitors in clinical development.

Agent Selectivity Phase Disease Focus; Comments Structure

ABBV-075 Pan-BET I Solid tumors, AML, multiple
myeloma, myelofibrosis
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Table 1. Cont.

Agent Selectivity Phase Disease Focus; Comments Structure

NEO2734 Pan-BET and P300 I/II Hematologic malignancies, solid tumors
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More recently, BD2 selective BET inhibitors, such as ABBV-744, have been developed
with the goal to narrow anti-neoplastic selectivity and reduce off-target hematologic tox-
icities [43,44]. Another exciting development has been in the field of targeted protein
degradation. In 2015, three BET proteolysis-targeting chimeras (PROTACs) were discov-
ered: dBET1, MZ1, and ARV-825 [45–47]. Proteolysis-targeting chimeras (PROTACs) are
bifunctional small molecules that include a “warhead” ligand that recruits a protein of
interest, linked to an E3 ligase ligand, that induces target ubiquitination and subsequent
proteasomal degradation. In some settings these compounds have shown enhanced po-
tency in cancer cell lines compared to their parental inhibitors, paving a new strategy for
targeting BET proteins in select malignancies.

4. BET Inhibitors in Pediatric Brain Tumor Models
4.1. Medulloblastoma

Medulloblastoma is the most common embryonal brain tumor occurring in childhood,
and accounts for approximately 6.5% of all pediatric brain tumors. Several landmark
studies, published in 2006–2011, used genomic profiling to identify distinct molecular sub-
groups, which were summarized in a 2012 consensus report designating four subgroups
(WNT, SHH, Group 3, Group 4) [48–52]. In 2017, three independent groups also used DNA
methylation analysis, which recently has been demonstrated to have exquisite discrim-
inatory power in the diagnosis of CNS tumors, to further subclassify medulloblastoma
subtypes [53–55]. Each medulloblastoma subgroup has unique underlying biology, which is
reflected in differences in patient outcomes and treatment responses. These subgroups have
subsequently been incorporated into the 2016 and 2021 updated World Health Organization
(WHO) Classification of Tumors of the Central Nervous System [56,57].

Treatment for medulloblastoma is aggressive and includes surgical resection, radi-
ation therapy, and chemotherapy. While these treatments have led to five-year overall
survival rates over 80%, they can lead to significant treatment-related toxicities, and pa-
tients with higher risk features can have survival rates as low as 20% [58]. One subgroup
that is associated with a poor prognosis is Group 3 medulloblastoma, which are often
metastatic at diagnosis and tend to be refractory to therapy or have late recurrence. Molec-
ularly, Group 3 tumors often have MYC amplification or high MYC expression, and high
MYC expression has been reported to be an independent risk factor for poor outcome in
medulloblastoma [59].
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Several groups have reported promising findings of BET inhibition in MYC-amplified
medulloblastoma. The BET inhibitor JQ1 potently decreases cell viability of MYC-amplified
medulloblastoma cell lines, causes G1 arrest and apoptosis, and downregulates MYC-
targets, as well as MYC transcription itself [60,61]. Furthermore, JQ1 treatment shows
in-vivo efficacy with decreased tumor growth and prolonged survival in both flank and
cerebellar orthotopic models of Group 3 medulloblastoma (Table 2). JQ1 has also been
shown to induce cellular senescence and suppress transcriptional programs associated with
poor prognosis in medulloblastoma patients [62].

BET inhibition has also been shown to be a promising strategy in SHH-driven medul-
loblastoma. Canonical hedgehog (Hh) signaling occurs via binding of Hh ligands to the
PTCH1 transmembrane protein, which leads to the cessation of PTCH1′s role in repressing
the G protein coupled receptor Smoothened (SMO) [63]. Activation of SMO leads to posi-
tive regulation of the GLI zinc-finger transcription factors, leading to the expression of a Hh
transcriptional program that regulates proliferation and cell specification [64]. Aberrant Hh
signaling has been associated with several cancers, including basal cell carcinoma, medul-
loblastoma, and pancreatic cancer [65,66]. BRD4 has been shown to be critical in GLI1 and
GLI2 transcription via direct promoter occupation using a mouse 3T3 Gli-luciferase reporter
cell line [67]. This interaction can be significantly disrupted with JQ1 treatment, providing
a biological rationale for BET inhibition in SHH-driven medulloblastoma. Indeed, JQ1
decreases proliferation and viability of SHH-driven medulloblastoma cell lines in-vitro and
in-vivo, even when mutations conferring these cell lines to SMO inhibitor resistance are
present. The BET inhibitor I-BET151 has also been studied, and was found to significantly
attenuate HH activity in the Light2 reporter cell line [68]. Furthermore, I-BET151 decreases
growth and viability of a murine derived (Ptch1+/−) medulloblastoma cell line in-vitro,
decreases GLI1 transcription, and decreases tumor growth in-vivo.

Several synergistic drug combinations with BET inhibitors have also been investigated,
with particular focus on cell cycle inhibitors. In 2019, Bandopadhayay et al. used a func-
tional genomic approach including CRISP/Cas9-mediated loss of function and ORF/cDNA
rescue screens to identify key regulators of BET inhibitor response and resistance [69].
They found that resistant cells express transcriptional programs associated with neuronal
differentiation, while still maintaining proliferative potential. They also demonstrated
that CDK4/CDK6 inhibition delays the acquisition of BET inhibitor resistance, and the
combination of JQ1 with LEE01 (a CDK4/6 inhibitor) improved survival, compared to
monotherapy in flank and orthotopic xenograft models of MYC-driven medulloblastoma.
The CDK2 inhibitor Milcilib also synergizes with JQ1 in Group 3 medulloblastoma in-vivo
and in-vivo models [70]. From a mechanism standpoint, combination treatment with
JQ1 + Milcilib targets MYC expression, as well as MYC stabilization, respectively; the latter
being a known effect of CDK2 inhibition through suppression of MYC residue S62 phospho-
rylation. Through these mechanisms, combination treatment was found to be significantly
more effective than either JQ1 or Milcilib monotherapy in downregulating MYC target
expression in Group 3 medulloblastoma models.

4.2. Diffuse Intrinsic Pontine Glioma

Diffuse intrinsic pontine glioma (DIPG), now referred to as diffuse midline glioma,
H3 K27-altered in the 2021 WHO classification, is a lethal brainstem tumor occurring in
childhood. Radiation is the only proven therapeutic, despite dozens of chemotherapeutic
trials over the last decades, and it only confers a survival advantage of approximately
three months [71]. In 2012, a breakthrough was made when several groups reported that
over 80% of DIPG tumors harbor a unique lysine-to-methionine mutation (K27M), the H3
histone tail [72,73]. Subsequent work showed that this mutation leads to widespread loss
of the repressive H3K27me3 mark through inhibition of the poly-comb repressor 2 complex
(PRC2) [74]. Importantly, there are some genomic regions where PRC2 activity is retained
and even increased [75].
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ChIP sequencing studies have shown that in DIPG, the pathogenic H3K27M mutation
colocalizes with acetylated H3K27, RNA polymerase II, and BRD2/BRD4 at sites of active
transcription [76]. Treatment with JQ1 impairs the growth and viability of DIPG cell lines,
with RNA sequencing demonstrating specific targeted effects at genes with BRD2/BRD4
promoter occupancy. Furthermore, 10 days of JQ1 treatment was found to significantly
prolong survival in a DIPG mouse orthotopic (brainstem) patient derived xenograft model.
Nagaraja et al. found similar promising findings with JQ1 treatment in a panel of H3K27M
mutant DIPG cell lines, while a H3WT glioblastoma cell line (SU-pcGBM2) showed little
response [77]. Transcriptomic analysis after JQ1 treatment showed downregulation of genes
associated with central nervous system development, such as NTRK3, ASCL1, and MYT1.
Lentiviral shRNA knockdown of BRD4 in two DIPG models decreased tumor growth and
prolonged survival after mouse orthotopic brainstem injections with lentiviral-modified
and control cell lines.

Drug combinations with BET inhibitors have also been investigated in DIPG. Wiese
et al. examined JQ1 with the CREB binding protein (CBP) inhibitor ICG-001 [78]. CBP’s
main function is as an acetyltransferase which regulates H3K27 acetylation, although it
also recruits transcription factors and serves a scaffolding role in multi-unit transcriptional
complexes [79]. The authors found that JQ1 + ICG-001 treatment synergistically inhibited
DIPG proliferation and invasion potential in DIPG cell lines. RNA sequencing showed
that JQ1 downregulated a significant proportion of super-enhancer regulated genes, while
surprisingly ICG-001 monotherapy led to an upregulation of these genes. Combination
therapy was able to reverse this subset of SE-associated genes which were inadvertently
increased with ICG-001 treatment. Another study used H3K27M/PDGFB expressing NSCs
as a DIPG model, and showed that JQ1 synergized with the EZH2 inhibitor EPZ6438
(tazemetostat) in-vitro and in-vivo [80]. Taylor et al. showed that targeting the NOTCH
pathway with the γ-secretase inhibitor MRK003 also synergized with JQ1 in 2/3 DIPG cell
lines tested [81].

Recently, high-throughput chromosome conformation capture (Hi-C) has been used to
characterize the 3-dimensional chromatin structure of DIPG cells [82]. This technology en-
ables mapping of tumor-specific regulatory networks, as well as enhancer hijacking events.
The BET inhibitor BMS986158 and the BET degrader dBET6 were found to significantly
perturb the micro- and macro-chromatin interactions of DIPG cells, and these findings
were uniformly more pronounced with dBET6 treatment. This study suggests one possible
advantage of targeted protein degradation over catalytic inhibition in this context.

4.3. Ependymoma

Ependymoma is a brain tumor that occurs in both children and adults and arises from
ependymal cells lining the ventricular system and spinal canal. Ependymoma is the third
most common brain tumor in childhood, and can arise anywhere along the craniospinal
axis; although in children they tend to occur more commonly in a supratentorial (ST) or
posterior fossa (PF) location [83]. Diagnosis of ependymoma is made histologically with
three distinct histologic grades (Grade I, II, and III), although prognostic utility is debated
given inter-observer variability and the advent of molecular stratification [84]. Standard
of care involves maximum safe surgical resection with post-operative radiotherapy [85].
The role of chemotherapy is controversial, although it is commonly used in patients under
18 months of age to delay radiation and there are ongoing efforts to understand if there are
benefits to adjuvant and/or maintenance chemotherapy regimens for select patients [86].

In a landmark 2015 study, Patjler et al. used DNA methylation and transcriptomic
profiling to identify at least nine clinically and biologically relevant distinct subgroups,
which have had major implications in the official WHO classification [87]. Supratento-
rial ependymomas are made up of ST-sub-ependymoma and two subgroups, defined by
characteristic oncogenic fusions (YAP1 and RELA). Of note, RELA ependymomas have
been renamed in the most recent WHO classification to ZFTA-fusion positive with the
recognition that C11orf95/ZFTA fusions can occur with non-RELA partner genes, such
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as MAML2/3, NCOA1/2, MN1, or CTNNA2 [88–90]. Posterior fossa ependymomas are
comprised of PF-sub-ependymoma and two subgroups, denoted group A (PFA, associated
with EZHIP overexpression and poor clinical outcome) and group B (PFB, associated with
relatively favorable prognosis). Spinal ependymomas are made up of SP-sub-ependymoma,
SP myxopapillary ependymoma, and SP ependymoma. A recent study by Bockmayr et al.
demonstrated that SP myxopapillary ependymoma is molecularly comprised of two dis-
tinct subgroups, MPE-A and MPE-B; with the former being associated with significantly
higher relapse rate and decreased progression-free survival [91].

Work by Mack et al. used H3K27ac ChIP-seq to identify enhancers and super-
enhancers in a cohort of 42 primary intracranial ependymomas [92]. They found that
genetic knockout of super-enhancer regulated genes impaired growth of ependymoma
cell lines in-vivo, which provided a rationale for trialing BET inhibition as a therapeutic
strategy. They subsequently showed that JQ1 inhibited the growth of two ependymoma
cell lines, one PF-A and the other ST-ZFTA. Another group tested the CNS-penetrant BET
inhibitor OTX-015 in three ependymoma cell lines (two PFA, one ST (subgroup not speci-
fied)) and similarly found it to be effective with sub-micromolar IC50 values in three-day
viability assays [93]. They found that in-vivo treatment prolonged survival in 1/2 of the
PFA intracranial patient-derived xenograft models tested.

4.4. Embryonal Tumor with Multilayer Rosettes (ETMR)

ETMR is a rare, aggressive CNS embryonal tumor occurring primarily in children
younger than three years of age [94]. It was first recognized as a distinct molecular diag-
nosis after studies identified a unique recurrent microRNA amplification of C19MC on
chr19q13.42 in a subset of primitive neuroectodermal tumors, including embryonal tumors,
with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, medulloepithe-
lioma and supratentorial primitive neuroectodermal tumors (sPNET) [95–97]. Treatment
of ETMR involves maximum safe surgical resection, and given the young age at diagno-
sis craniospinal irradiation is typically contraindicated (although local radiation is often
used) [98]. High-dose chemotherapy protocols using agents with known embryonal activ-
ity, such as cyclophosphamide, vincristine, methotrexate, etoposide, cisplatin, carboplatin,
and thiotepa, are often used [99]. However, given the rarity of the disease no standardized
treatment protocol has been established yet. Despite these intensive treatment regimens
prognosis remains dismal, with reported five-year survival rates between 0–30%.

In 2019, Sin-Chan et al. comprehensively profiled over 80 primary ETMR samples
using global methylation, SNP, transcriptional, and miRNA profiling [100]. Through this
analysis they uncovered a C19MC-LIN28A-MYCN feed forward oncogenic circuit. LIN28A
had previously been found to be highly expressed in ETMR, and is a pluripotency factor and
RNA-binding protein important to neural development. LIN28A has also been implicated
in the pathogenesis of many advanced human malignancies, including ovarian carcinoma,
germ cell tumors, and Wilms’ tumor [101]. The authors hypothesized that this C19MC-
LIN28A-MYCN core regulatory circuit could be targeted by BET protein inhibition, and,
indeed, found that treatment with JQ1S (the active isomer of JQ1) led to a reduction in
viability of ETMR cell lines, and qRT-PCR and western blot showed downregulation of
MYCN and LIN28A.

4.5. Atypical Teratoid/Rhabdoid Tumor (ATRT)

ATRT is a rare, highly aggressive brain tumor of early childhood [102]. Biallelic inacti-
vation of SMARCB1, a core member of the SWI/SNF (also known as BAF) chromatin remod-
eling complex, is the core genetic driver event in the vast majority of cases [103,104]. While
ATRT has been shown to have a “quiet genome” with few other identifiable pathogenic
alterations, this genetic simplicity belies the clinical aggressiveness of these tumors and the
difficulties in finding effective targeted therapeutics [105]. Recent studies have used tran-
scriptomics and DNA-methylation to group ATRT into three distinct subgroups: ATRT-TYR,
ATRT-SHH, and ATRT-MYC [106–108].
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ATRT expresses high levels of c-MYC, and ChIP-sequencing shows that SMARCB1
loss leads to significant enrichment of MYC chromatin occupancy at transcriptional start
sites (TSS), compared to normal embryonic stem cells [109]. Genetic knockdown of c-
MYC decreases ATRT cell growth in-vivo and prolongs survival of mouse PDX models
in-vivo, providing a rationale for BET inhibition in this malignancy. Indeed, JQ1 treatment
significantly decreases c-MYC transcription, as well as MYC-driven stemness programs
regulated by SOX2, Nanog and OCT4 in ATRT. Furthermore, JQ1 treatment significantly
prolongs survival in orthotopic xenograft mouse models.

Table 2. Findings from pre-clinical studies of BET inhibitors in pediatric brain tumor models.

Tumor In-Vivo Cell Line/Model BET Inhibitor Notable Findings Citation

MB MB002, Group 3 MB JQ1

JQ1 was effective in broad panel of MB cell
lines, induced apoptosis and G1 cell cycle

arrest. RNA sequencing showed decreased
MYC and MC-target expression. Orthotopic

xenograft (cerebellar) showed increased
survival with JQ1 treatment

Bandopadhayay, [60]

MB HD-MB3, MYC amplified
Group 3 MB JQ1

JQ1 effective in broad panel of cell lines,
inducing apoptosis and G1 cell cycle arrest.
Caused decreased MYC and MYC-targets’

expression, and affected components of p53
and cell cycle pathway. Flank xenograft study

showed decreased tumor growth and
prolonged survival

Hennsen et al. [61]

MB DAOY, MYC-driven MB JQ1

JQ1 effective in MB cell lines, induced
apoptosis and cell cycle arrest. They also

showed that it induced cellular senescence, and
that transcriptional programs suppressed by
treatment are associated with adverse risk in
MB patients. Flank xenograft study showed

decreased tumor growth

Venkataraman
et al. [62]

MB

MED1-MB,
SMO-WT/SMO-D477G-MB

(autochthonous derived from
Ptch+/−; Tpr53−/− and

Ptch+/−; lacZ
mice, respectively

JQ1

JQ1 decreased proliferation and viability of
SHH-driven MB in-vitro and in-vivo (flank and
cerebellar models used), even when cell lines

had SMO inhibitor resistance mutations

Tang et al. [67]

MB Murine Ptch+/− MB model I-BET151

I-BET151 decreased SHH-driven MB growth
in-vivo, and decreased Gli1 expression.

I-BET151 was effective in decreasing tumor
growth in-vivo (subcutaneous)

Long et al. [68]

MB D458 and MB002, MYC
driven MB JQ1 + LEE01

CDK4/CDK6 inhibition delayed development
of BET inhibitor resistance. Combination of JQ1

with LEE01 (a CDK4/6 inhibitor) improved
survival in flank and orthotopic xenograft
models of MYC-driven medulloblastoma

Bandopadhayay, [69]

MB GTML2 (murine derived
Group 3 MB) and MB002 JQ1 + Milcilib

JQ1+ CDK2 inhibitor synergized to induce
apoptosis and cell cycle arrest. Combination
treatment in-vivo extended survival in two

orthoptic (cerebellar) models of Group 3 MB

Bolin et al. [70]

DIPG SF8628 JQ1
JQ1 impaired DIPG growth and viability

in-vivo, and improved survival in an
orthotopic mouse PDX model (brainstem)

Piunti et al. [76]

DIPG SU-DIPG-VI and SF7761 BRD4 shRNA

JQ1 decreased growth of DIPG cell lines and
downregulated genes associated with CNS

development. Lentiviral shRNA knockdown of
BRD4 extended survival of mice bearing two
different orthotopic (brainstem) DIPG models

Nagaraja et al. [77]

DIPG N/A (no in-vivo data) JQ1 + ICG-001

BET + CBP inhibition synergized to decrease
growth and viability of DIPG cell lines, and

preferentially downregulated
super-enhancer genes

Wiese et al. [78]

DIPG H3K27M/PDGFB
expressing NSCs JQ1 + Tazemtostat

BET + EZH2 inhibition was a synergistic
combination in H3K27M/PDGFB

transformed NSCs
Zhang et al. [80]



Pharmaceuticals 2022, 15, 665 10 of 16

Table 2. Cont.

Tumor In-Vivo Cell Line/Model BET Inhibitor Notable Findings Citation

DIPG N/A (no in-vivo data) JQ1 + MRK003
BET inhibition + NOTCH inhibition synergized
in 2/3 DIPG models to induce apoptosis and

cell death
Taylor et al. [81]

DIPG N/A (no in-vivo data) BMS986158,
dBET6

BET inhibition and degradation significantly
altered the chromatin architecture of DIPG via

Hi-C analysis, although the effect was more
pronounced with BET degradation

Wang et al. [82]

Ependymoma N/A (no in-vivo data) JQ1
JQ1 inhibited proliferation and viability of one
supratentorial (H.EP1) and one PF-A (H.612)

ependymoma cell line
Mack et al. [92]

Ependymoma EPP-MI and EPV-FL-MI (PFA) OTX015

OTX015 induced apoptosis and cell cycle arrest
in two PFA and one ST (subtype not specified)

models of ependymoma. In-vivo OTX015
extended survival of the EPP-MI orthotopic

intracranial PDX model, but had no
improvement in the EPP-FL-MI model

Servidei et al. [93]

ETMR N/A (no in-vivo data) JQ1S (active
isomer of JQ1)

JQ1S decreased growth and viability of ETMR
cell lines in-vivo, and downregulated MYCN

and LIN28A expression
Sin-Chan et al. [100]

ATRT MAF-737 JQ1

JQ1 potently inhibited viability of ATRT (MYC
subtype) cell lines, and decreased transcription

of c-MYC targets and c-MYC itself. JQ1
prolonged survival in an orthotopic (cerebellar)

ATRT model

Allimova et al. [109]

ATRT = atypical teratoid rhabdoid tumor, DIPG = diffuse intrinsic pontine glioma, ETMR = embryonal tumor
with multilayer rosettes, MB = medulloblastoma.

5. BET Inhibitors in the Clinic
5.1. BET Inhibitors in CNS Malignancies

Despite the development of several clinical grade BET inhibitors, few have demon-
stratable CNS penetrance. While JQ1 is brain penetrant and has widely been used in
the pre-clinical setting, it’s poor pharmacokinetic properties (namely short half-life) have
precluded translation. One CNS penetrant BET inhibitor that has been well characterized
is OTX015/MK-8628/Birabresib, which was shown to be effective in glioblastoma (GBM)
pre-clinical models [110]. This led to a Phase IIa trial in patients with recurrent glioblastoma
(NCT02296476). Twelve patients were enrolled, and the drug was well tolerated with
pharmacokinetic studies demonstrating biologically active levels; however, all patients
progressed with a median progression-free survival of two months and the trial was termi-
nated [111]. BMS-986378/CC-90010 is an orally bioavailable, CNS-penetrant BET inhibitor
that is currently being evaluated in clinical trials. A phase I trial of CC-90010 in patients
with advanced solid tumors and relapsed/refractory non-Hodgkin’s lymphoma enrolled
a total of 69 patients, of whom 10 had high-grade gliomas (NCT03220347). There was
an overall response rate of 2.9% (n = 2), with 8.8% (n = 6) of patients achieving stable
disease [112]. One patient with a progressive grade II diffuse astrocytoma had a com-
plete response (CR). There are two ongoing studies of CC-90010 in high-grade glioma,
including a phase I trial to evaluate the CNS penetration of CC-90010 in patients with
progressive/recurrent astrocytoma, anaplastic astrocytoma or GBM (NCT04047303), as
well as a Phase Ib study of CC-90010 in combination with temozolomide and radiation in
patients with newly diagnosed GBM (NCT04324840).

5.2. BET Inhibitors in Pediatrics

In 2019, the first pediatric trial of BET inhibition opened (NCT03936465) investigating
the inhibitors BMS-986158 (Arm 1) and BMS-986378/CC-90010 (Arm 2). The primary
aims of the trial are to determine toxicities and recommended phase II doses for these
agents, while secondary outcomes include: (a) efficacy, (b) pharmacokinetics, and (c) a
host of pharmacodynamic and predictive biomarkers. Patients must be <21 and able
to swallow intact pills. Each arm has two cohorts, one being with unselected biology



Pharmaceuticals 2022, 15, 665 11 of 16

(relapsed/refractory solid tumors or lymphoma for Arm 1, CNS tumors for arm 2) and the
other enriched for predictive biology. Eligibility for this second criterion includes: MYCN
amplification or high copy number gain, MYC amplification or high copy number gain,
translocation involving MYC or MYCN, translocation involving BRD4 or BRD3, BRD4
amplification or high copy number gain, and/or histologic diagnosis of NUT midline
carcinoma (NMC).

The state of BET inhibitor development in pediatric oncology was recently summa-
rized at a strategy forum organized by ACCELERATE, in collaboration with the European
Medicines Agency (EMA) and the US Food and Drug Administration (FDA) [113]. Given
that most adult trials of pan-BET inhibitors have been challenged by similar issues (narrow
therapeutic index, due to thrombocytopenia, modest anti-tumor activity as monother-
apy), it was agreed that opening additional trials to study pan-BET inhibitors, other than
BMS-986158 and BMS-986378/CC-90010, was not a worthwhile strategy. Agents with
unique properties, such as BDII-selectivity, dual targets e.g., BET/p300, or improved CNS
penetrance were highlighted as areas of particular interest worthy of further investigation.

6. Conclusions

The discovery and development of BET inhibitors was a landmark finding in cancer
epigenetics, and many drugs in this class have advanced to clinical trial stages. Results
to date have mostly been mixed, with modest anti-tumor activity and relatively narrow
therapeutic index, due to hematologic dose-limiting toxicities. However, there is strong bio-
logical and pre-clinical rationale for testing BET inhibitors in pediatric brain tumors, given
the common thread of epigenetic dysregulation. The ongoing trial of BMS-986378/CC-
90010 in relapsed/refractory pediatric CNS tumors will be highly informative to assess the
promise of BET inhibitors in this patient population. Based on experience from experimen-
tal models and adult clinical trials, it is likely that monotherapy alone will not be sufficient
and, therefore, continued research dedicated to investigating synergistic combinations with
BET inhibitors will be critical.
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