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Background: There remains a significant proportion of deaths due to pneumococcal

pneumonia in infants from low- and middle-income countries despite the marginal

global declines recorded in the past decade. Monitoring changes in pneumococcal

carriage is key to understanding vaccination-induced shifts in the ecology of

carriage, patterns of antimicrobial resistance, and impact on health. We longitudinally

investigated pneumococcal carriage dynamics in PCV-13 vaccinated infants by collecting

nasopharyngeal (NP) samples at 2-weekly intervals from birth through the first year of life

from 137 infants. As a proof of concept, 196 NP samples were retrieved from a subset

of 23 infants to explore strain-level pneumococcal colonization patterns and associated

antimicrobial-resistance determinants. These were selected on the basis of changes

in serotype and antibiogram over time. NP samples underwent short-term enrichment

for streptococci prior to total nucleic acid extraction and whole metagenome shotgun

sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference

genomes for the extraction of pneumococcal and non-pneumococcal bacterial reads.

Pneumococcal contigs were aligned to the Antibiotic Resistance Gene-ANNOTation

database of acquired AMR genes. In silico pneumococcal capsular and multilocus

sequence typing were performed.

Results: Of the 196 samples sequenced, 174 had corresponding positive cultures

for pneumococci, of which, 152 were assigned an in silico serotype. Metagenomic

sequencing detected a single pneumococcal serotype in 85% (129/152), and

co-colonization in 15% (23/152) of the samples. Twenty-two different pneumococcal
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serotypes were identified, with 15B/15C and 16F being the most common non-PCV13

serotypes, while 23F and 19A were the most common PCV13 serotypes. Twenty-six

different sequence types (STs), including four novel STs were identified in silico. Mutations

in the folA and folP genes, associated with cotrimoxazole resistance, were detected in

89% (87/98) of cotrimoxazole-non-susceptible pneumococci, as well as in the pbp1a

and pbp2x genes, in penicillin non-susceptible ST705215B/15C isolates.

Conclusions: Metagenomic sequencing of NP samples is a valuable

culture-independent technique for a detailed evaluation of the pneumococcal component

and resistome of the NP microbiome. This method allowed for the detection of novel

STs, as well as co-colonization, with a predominance of non-PCV13 serotypes in this

cohort. Forty-eight resistance genes, as well as mutations associated with resistance

were detected, but the correlation with phenotypic non-susceptibility was lower

than expected.

Keywords: nasopharyngeal, Streptococcus pneumoniae, pneumococcal conjugate vaccine, serotypes, shotgun

metagenomic sequencing, resistance determinants, multilocus sequence typing

INTRODUCTION

Streptococcus pneumoniae (the pneumococcus) is a frequent
bacterial cause of infections such as bacterial pneumonia,
otitis media, meningitis, sinusitis, and bacteraemia in young
children, and is a major cause of morbidity and mortality (1–
4). Globally, pneumococcal pneumonia was responsible for an
estimated 393,000 deaths in children <5 years of age in 2015
(5). Asymptomatic pneumococcal nasopharyngeal (NP) carriage
is common among infants, a reservoir for transmission and
precedes the development of infections (6). Pneumococci are
classified into nearly 100 serotypes, based on the antigenic
specificity of the polysaccharide capsule (7, 8). Children are often
sequentially colonized by multiple different serotypes (9, 10), and
may be co-colonized by different pneumococcal serotypes at the
same time (11).

Immunization with the pneumococcal conjugate vaccine
(PCV) has substantially reduced NP carriage and invasive
pneumococcal disease caused by serotypes represented in the
vaccine (12, 13). In addition, the introduction of PCV has
resulted in a reduction in antimicrobial resistant pneumococci
amongst circulating strains due to the inclusion of serotypes
associated with high antibiotic resistance in the conjugate
vaccine (14). However, non-vaccine-serotypes have emerged
among both carriage and disease-causing isolates, and are
increasingly associated with antimicrobial resistance (15, 16).
Increasing pneumococcal resistance to different classes of
antibiotics, including beta-lactams, macrolides, tetracyclines, and
cotrimoxazole, has compromised the effectiveness of antibiotics
to treat pneumococcal infections (17).

Pneumococci are most commonly identified from carriage
and disease samples using bacterial culture followed by
phenotypic and genotypic characterization of the isolates (18, 19).
The Quellung method, based on antisera reactions, is currently
the gold standard for pneumococcal serotyping, but requires
viable isolates in pure culture. To detect colonization with

multiple serotypes, typing of many individual (often identical)
pneumococcal colonies from each NP sample is required (20).
Microarrays are able to detect co-colonization by all known
pneumococcal serotypes, and depending on the microarray panel
used, and targets included, may provide additional information
on virulence and resistance determinants present. This method
is however limited and cannot provide information on genes
not included in the array (21, 22). Sequential multiplex PCR
assays are increasingly used for serotyping, and can be done
directly on the NP sample, however, this is relatively laborious,
costly, and limited to serotypes targeted by the PCR (23). None
of these methods are able to provide a more detailed, strain-
level characterization, important for pneumococci, as capsular
switching often results in different serotypes within the same
lineage (24).

Metagenomic approaches, where the collective genomes of
all organisms recovered directly from a sample are sequenced,
is a high-throughput approach to investigate the members
of a microbial community in an ecological niche, and
represents an alternative to culture-dependant methods for
microbial characterization (25). In this study, we explored the
use of shotgun metagenomic sequencing to characterize the
pneumococcal component of the NP, including identification
of co-colonization with multiple serotypes and antimicrobial
resistance, among PCV-vaccinated children participating in a
South African birth cohort.

MATERIALS AND METHODS

Study Population and Sampling
Children were enrolled in a longitudinal birth-cohort study,
the Drakenstein Child Health Study (26), in the Western
Cape Province of South Africa. NP swabs were collected every
second week from birth through the first year of life, from
137 infants during 2012–2013 (10). Infants received 2+1 doses
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of 13-valent pneumococcal conjugate vaccine (PCV13) at 6
weeks, 14 weeks, and 9 months according to the national
immunization program in South Africa. Details of the study
population and sampling have been previously described (26).
The study was approved by the University of Cape Town,
Faculty of Health Sciences Human Research Ethics Committee
(Reference numbers 401/2009 and 235/2016). Written informed
consent was obtained from mothers.

Identification and Antimicrobial
Characterization of Pneumococci
The collected NP swabs were immediately placed into 1ml skim
milk-tryptone-glucose-glycerol (STGG) medium, transported on
ice within 2 h of collection, and stored at −80◦C for batch
processing within a week. A 10 µl aliquot of the NP-STGG was
inoculated onto a blood agar plate (Oxoid Columbia base with
5% sheep blood) containing gentamicin (5µg/ml) and incubated
overnight at 37◦C, in 5% CO2. Presumptive pneumococcal
isolates were identified as previously described (27); only
a single pneumococcal isolate was selected for conventional
characterization from each sample. All serotypes were initially
deduced by sequetyping and subsequently confirmed by
Quellung, as previously described (28, 29).

Susceptibility to penicillin (assessed using oxacillin disc),
erythromycin, and cotrimoxazole were assessed using the disc
diffusion method, and interpreted using Clinical and Laboratory
Standards Institute (CLSI) guidelines (30). Penicillin minimum
inhibitory concentrations (MICs) were determined using the
E-test method (bioMérieux, Marcy I’Etoile, France), according
to the manufacturer’s instructions. Intermediate and resistant
pneumococcal isolates were collectively regarded as non-
susceptible.

Broth Enrichment of NP Samples for
Pneumococci
In order to explore the utility of metagenomic sequencing
to detect colonization with multiple serotypes and identify
antimicrobial-resistance determinants in this exploratory study,
a total of 196 NP-STGG samples were purposively selected from
a subset of 23 of the 137 infants described above. These samples
were selected based on changes in pneumococcal serotype and
antibiogram over time identified using phenotypic methods.
For the purpose of comparison and longitudinally assessing
colonization dynamics with other potential pathogens, 22 out
of 196 samples from a subset of 23 infants which were culture
negative for S. pneumoniae, were also included. The NP-STGG
samples were enriched as previously described, with minor
modifications (31). Briefly, 200 µl of an NP-STGG sample was
transferred to 6ml Todd-Hewitt Broth (without antibiotics),
containing 0.5% yeast extract and 17% fetal bovine serum. The
liquid culture was incubated at 37◦C with 5% CO2, without
shaking for 6 h. The culture was then centrifuged at 9,000 rpm
for 10min at 4◦C. Total nucleic acid extraction was performed
on the collected pellet using the QIAsymphony SP automated
platform (Qiagen, Hilden, Germany) with the QIAsymphony
Virus/Bacteria Mini Kit (Cat. No. 931036) following the

manufacturer’s instructions. Nucleic acid concentrations and
purity were determined using the NanoDrop R© ND-100 (Thermo
Fishers Scientific, Waltham, USA). The purified nucleic acid was
stored at−20◦C and sequenced within a month.

Metagenomic DNA Sequencing, Assembly
and in silico Typing
Total nucleic acid was subjected to shotgun sequencing on the
MiSeq platform using the MiSeq Reagent Kit v3 (600-cycle)
(Illumina, San Diego, USA) at the J. Craig Venter Institute,
Rockville, USA. Metagenomic DNA sequencing protocols and
the pipeline used to assemble the reads and evaluate the assembly
have been previously described (31). Reads were assembled using
metaSPAdes (32), and aligned to the created serotype nucleotide
database using BLASTn, with an identity over 98% considered
a match (31). In addition, assembly-based in silico multi-locus
sequence typing (MLST) was performed using LOCUST as
previously described (33, 34).

Serotypes identified by Quellung/sequetyping (29), were
compared to in silico serotypes identified from metagenomic
sequences. Culture-based and metagenomic-assigned serotypes
were considered concordant if the serotype detected by
Quellung/sequetyping was detected by shotgun sequencing
(either as a single serotype or amongst co-colonizing
serotypes detected).

Phylogenetic Tree Construction
A phylogenetic tree of pneumococcal genomes was constructed
to assess strain relatedness. Assembly-based (metaSPAdes
assembler) variant calling (32), was performed using The
Northern Arizona Single Nucleotide Polymorphism Pipeline
(NASP) (35). All completed pneumococcal genomes available
on the NCBI database were included in the NASP run and the
S. pneumoniae R6 genome (Accession number AE007317) was
used as reference genome. The aligned base calls for each of
the core variant positions identified by NASP were used for the
construction of the maximum likelihood tree (36).

Analysis of Genetic Determinants of
Antimicrobial-Resistance
Pneumococcal contigs (contigs that mapped to reference
pneumococcal genome R6) were compared to the Antibiotic
Resistance Gene-Annotation (ARG-ANNOT) database by
BLAST alignment (37). Results were filtered using ≥90%
sequence identity over 80% of the sequence length of the
reference antibiotic-resistance gene as cut-offs. The pbp,
folA [encoding dihydropteroate synthase (DHPS)], and folP
[encoding dihydrofolate reductase (DHFR)] gene mutations
associated with resistance to beta-lactams, trimethoprim,
and sulfonamides, respectively, were investigated by manual
local alignment, as the ARG-ANNOT database does not
automatically detect these mutations. The ARG-ANNOT
database only included the pbp1a (JN645776) and pbp1b
(AF101781) genes of wild-type pneumococcal strains. Therefore,
local alignments of the pbp1a (JN645776.1), pbp2x (JN645706.1),
pbp2b (DQ056780.1), folA_R6 (Gene ID 4442919), and folP_R6
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(Gene ID 4443057) were performed using BLASTn (80% identity
and 60% gene length coverage).

For each individual, and for each of the genes, sequences from
the longitudinal samples were aligned with Multiple Alignment
using Fast Fourier Transform (MAFFT) (38). Aligned sequences
were viewed and translated to amino acids in AliViewer (version
1.18.1) for active site mutation analysis. The transpeptidase
domains of the pbp1a, 2x, and 2b, from the wild type S.
pneumoniae R6 strain were used as references. Phylogenetic
trees were constructed with Molecular Evolutionary Genetic
Analysis software (MEGA version 7.0.26) using a neighbor-
joining method and bootstrapping 1000 replicates. pbp1a
(JN645776.1), pbp2x (JN645706.1), and pbp2b (DQ056780.1)
were used as reference gene sequences in the construction of the
phylogenetic trees.

RESULTS

Participant Characteristics
A subset of 196 NP samples from 23 infants was selected for
shotgun sequencing to investigate the pneumococcal population
structure. The number of NP samples selected for sequencing
ranged from 4 to 21 samples per infant (average of 8.5 samples);
selected samples and age at sampling (average 14.9 weeks)
for each of the infants is shown in Figure 1. Thirteen of the
infants were males (57%). The mean birth weight was 3.0 kg

(range, 2.4–3.8 kg) with only one preterm infant. Eight infants
were HIV exposed (born to HIV-infected mothers), but were
HIV-uninfected.

Metagenomic Sequencing Results
The average number of reads per sample was 13 million (ranging
from 80 thousand to 93 million reads per sample) despite
low input DNA concentrations (data not shown). The average
number of microbial reads per sample that mapped to the R6
pneumococcal reference genome was 4.5 million (range, 141
reads−32 million reads per sample) with an average coverage of
308.53X (range, 0.01X−2239.71X).

In silico Serotypes and Sequence Types
Of the 196 samples sequenced, 174 had a corresponding
positive pneumococcal culture. Shotgun sequencing detected
pneumococcal reads in all 174 samples, however, 15 samples
had no reads covering the required genomic regions (cps,
housekeeping genes, and core variant positions identified by
the NASP) of the pneumococcal genomes and were therefore
excluded from further analyses. In silico serotypes using shotgun
sequencing were assigned in 96% (152/159) of the remaining
samples and serotypes were assigned in 93% (148/159) of
samples by both Quellung/sequetyping and shotgun sequencing.
The concordance between Quellung/sequetyping and shotgun
in silico typing was 86% (127/148) (Supplementary Table 1).

FIGURE 1 | This figure indicates the number of samples selected for metagenomic sequencing and serotype assignments for the 196 nasopharyngeal (NP) samples

selected from 23 infants (shown in rows 1 to 23). None of the infants were colonized until 4 weeks of age. Small blue circles represent the NP samples that were

collected but not included for shotgun metagenomic sequencing. Large circles (colors represent serotype group) represent the collected NP samples selected for

shotgun metagenomic sequencing. Split circles represent samples with co-colonization with multiple serotypes. in silico serotypes are displayed for samples selected

for shotgun metagenomic sequencing. (-) NP sample not collected. (nt) Non-typeable.
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FIGURE 2 | A maximum likelihood whole genome phylogenetic tree of pneumococcal isolates recovered from 23 infants. Bootstrap values are shown on each branch

and the scale bar represents the number of SNPs. Circles with the same color represent longitudinal samples from the same infant. Numbers in brackets indicate the

age in weeks at each time-point. The sequence type (ST) detected in each sample is shown as a number, followed by the associated serotype. Serotypes indicated in

red were among co-colonizing strains and had genomes with lower coverage than the other co-detected strain. Five out of 15 samples that had low reads mapping to

pneumococcal genomes are indicated in blue text. NT, Non-typeable. Completed pneumococcal genomes available on the NCBI database were included and the R6

genome was used as a reference. The samples clustered according to ST but not serotype. Persistent colonization with the same genotype was common.

Co-colonization with two (n = 22) or three (n = 1) different
serotypes was detected in 15% (23/152) of the samples from ten
infants using shotgun sequencing. The bioinformatic analyses
of these 23 samples produced highly reliable and reproducible
alignment results with high read mapping counts, negating
the possibility of mosaic loci from other Streptococcus species.
Since Quellung/sequetyping typing was only performed on a
single colony per sample, co-colonization was not detected using
this method.

Non-PCV13 serotypes were more commonly detected
than PCV13 serotypes (Figure 1). Twenty-two different
pneumococcal serotypes were identified in silico, with 15B/15C
(n = 49), 16F (n = 21), 10A (n = 21), 13 (n = 14), and 21
(n = 12) being the most common non-PCV13 serotypes,
and 23F (n = 9), and 19A (n = 8) being the most common
PCV13 serotypes. Serotypes and STs identified are shown in
Supplementary Table 2. MLST was assigned in 89% (142/159) of
the samples representing 26 different MLST profiles (Figure 2).

Frontiers in Public Health | www.frontiersin.org 5 September 2020 | Volume 8 | Article 543898

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Manenzhe et al. Pneumococcal Colonization Dynamics in a Birth Cohort

FIGURE 3 | Shotgun sequence-derived molecular sequence type and resistome (from direct sequencing of NP swabs), and phenotypic antimicrobial susceptibility

results (from pneumococcal isolates) in 159 out of 196 NP samples obtained from 23 infants (assigned 1 to 23, top row). (A) in silico sequence types (STs) and

associated serotypes detected in longitudinal NP samples from each infant. (B) pbp gene mutations and associated penicillin phenotypic susceptibility profiles; light

blue color indicates wild-type pbp genes; the dark blue color indicates detected mutations within or close to the conserved motifs for the pbp genes.

(C) Macrolide-resistance genes and associated erythromycin phenotypic susceptibility profiles; the dark blue color indicates detected resistance genes. (D) folA and

folP gene mutations and associated cotrimoxazole phenotypic susceptibility profiles; light blue color indicates wild-type folA and folP genes; dark blue color indicates

detected mutations, in folA and folP, that reduce the affinity of trimethoprim or sulfamethoxazole. (E) Detected tetracycline resistance gene; dark blue color indicates

detected resistance gene. Gray color in (B–E) indicates that no genes were detected.

Eleven STs (non-PCV13-related: ST868715B/15C, ST564713,
ST73456C, ST408816F, ST1085421, ST1067316F, ST1060515A,
and ST88387C; and PCV13-related: ST205923F, ST206219A,
and ST1082319F) have previously been described only in South
Africa, while five STs associated with non-PCV13 serotypes
(ST206810A, ST345016F, ST335831, ST19919B, and ST39338) had
not been previously described in Africa. In addition, four novel
STs (ST1379515B/15C, ST1379734, ST1379823B, and ST1379921)
were identified (Figure 2 and Supplementary Table 2).

Antimicrobial-Resistance Determinants
Phenotypic antibiotic susceptibility profiles were determined for
the 159 pneumococcal isolates obtained from samples included
for this analysis (39). Overall, 18% (29/159), 17% (28/159), and
61% (98/159) of the isolates were non-susceptible to penicillin,
erythromycin, and cotrimoxazole, respectively.

Using in silico analyses, a total of 48 acquired antimicrobial-
resistance (AMR) genes were identified from pneumococcal
contigs in 20 samples collected from 10 infants (Figure 3).
The AMR genes detected included macrolide-lincosamide-
streptogramin B resistance (MLSB) (msrD, mefA and ermB),
and tetracycline resistance (tetM) genes (Figure 3). The average
sequence length coverage across the reference genes was 99%
(range, 81–100%) while the average sequence depth was 160X
(range, 1–411X).

Phenotypic non-susceptibility to erythromycin was detected
in 18% (28/159) isolates (Figure 3). Among the 28 samples
from which these isolates were obtained, genes predicted to
confer macrolide non-susceptibility were detected in 39% (11/28)
samples [msrD and mefA (n = 9), mefA (n = 1), and ermB

(n = 1)] from three infants. In addition, macrolide resistance
genes were detected in a further six samples, from five infants,
from which erythromycin-non-susceptible pneumococci were
not cultured (Figure 3); two of these samples had co-colonization
with multiple serotypes.

Pneumococcal pbp genes were analyzed for mutations
associated with beta-lactam resistance. No indels were identified
in any of the extracted pbp gene sequences, but multiple amino
acid changes were identified at various positions within the
transpeptidase domains. Concordance between penicillin non-
susceptibility and the presence of resistance conferringmutations
was low (52%, 15/29). Interestingly, resistance conferring
mutations were also identified among 14 penicillin susceptible
strains (Figure 3). Pneumococcal strains with penicillin MICs
between 0.064 and 8.0µg/ml commonly carried mutations
within the transpeptidase domains of the pbp1a and pbp2b
genes, but not in pbp2x (Supplementary Figure 1), compared
to the wild-type pneumococcal strain R6. pbp point mutations
known to contribute to beta-lactam resistance are shown in
Supplementary Table 3. The S351A and P432T point mutations
which are within or close to the conserved motifs of the pbp1a
gene were identified in penicillin-non-susceptible ST705215B/15C

(n = 9), ST36135B (n = 1), and ST206810A (n = 1) isolates
from four infants (Figure 3 and Supplementary Table 3). Amino
acid substitution H394L, in the pbp2x gene, was only identified
among PCV13 serotypes 23F (n = 9), 19A (n = 4), and
6A (n = 2), from four infants, irrespective of penicillin
susceptibility (Supplementary Table 4). These serotypes (23F,
19A, and 6A) had identical amino acid sequences of the
transpeptidase domain of the pbp2x gene despite having different
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STs (Supplementary Figure 3). Pneumococcal strains identified
in this study had a higher divergence in the transpeptidase
domain sequences of the pbp1a and pbp2x genes than in the
pbp2b gene (Supplementary Figures 2–4).

Ninety-eight out of 159 (61%) isolates were phenotypically
non-susceptible to cotrimoxazole (Figure 3). The folA (I100L)
and folP (6-bp insertion in the region encoding amino acid 58 to
67) gene mutations, known to confer resistance to cotrimoxazole
(40, 41), were detected in 89% (87/98) of the samples from
which the non-susceptible isolates were obtained (Figure 3 and
Supplementary Table 4). Combinations of resistance mutations
including I100L plus R59P60 (n = 45), and I100L plus S62Y63 (n
= 24) were commonly detected (Supplementary Table 4).

DISCUSSION

This study explored the use of shotgun metagenomic sequencing
as an alternative approach to culture-based testing to investigate
pneumococcal NP colonization and associated antimicrobial-
resistance determinants, in a South African birth cohort. We
were able to derive pneumococcal serotypes and sequence types,
and to identify co-colonization and antimicrobial-resistance
determinants directly from shotgun sequence data. Since NP
samples from apparently healthy individuals generally have
low numbers of bacterial cells, we used short-term broth
enrichment, which has previously been shown to successfully
enrich streptococci (31). Since antibiotics may select for resistant
strains, the current study used broth enrichment without
antibiotics to encourage growth of all S. pneumoniae present
without selective pressure (42).

There was complete concordance between detection of
pneumococcal sequences and positive culture for pneumococci.
However, of the 174 culture positive samples sequenced, 15
samples produced poor sequence read mapping to the reference
pneumococcal genomes, despite good overall read counts.
These 15 samples were excluded from further analyses as
they were likely other Streptococcus species, which would have
been enriched in culture, but map poorly to the reference
sequences used, despite having high read counts. There was
good correlation (86%) between conventional typing methods
and shotgun sequencing in assigning pneumococcal serotypes.
Discordant serotype results were predominantly from samples
where only one serotype was identified by shotgun sequencing,
and were therefore not due to detectable co-colonization.
Both Quellung and sequetyping are not infallible in assigning
pneumococcal serotypes (23). Discordant serotypes between
conventional and in silico typing were likely due to the
increased resolution on shotgun sequencing over conventional
methods, which may be less specific (43). Shotgun metagenomic
sequencing produced robust serotyping results, based on
sequence coverage and depth, but this technique is, at present,
relatively expensive, time consuming, and computationally
intensive for routine typing (44). Whole-genome sequencing
of cultured pneumococcal isolates produces reliable serotyping
results and can generate additional genetic information, but is
typically performed on single isolates, and may thus fail to detect

co-colonization, or exclude samples with non-viable bacteria
(45). On the other hand, microarray techniques which may or
may not require a culture-enrichment step have the potential
to detect multiple serotypes within a sample, however, this
technique can only detect serotypes and other genetic elements
included in the array, and can be technically challenging to
distinguish closely related serotypes (46).

Eleven percent (17/159) of the samples produced good
alignments of most alleles, but could not be assigned a multilocus
sequence type due to a lack of resolution at all the loci necessary
for typing. This was observed in four out of 23 samples
where co-colonization with multiple serotypes was detected,
and in samples with low estimated sequencing coverage (31).
Bioinformatic analyses indicated this was due to low read depth
or coverage of certain alleles, primarily at the terminal nucleotide
positions which are needed for assigning a locus identity. In
samples where sequence types were assigned, we observed a
strong association between certain pneumococcal serotypes and
multilocus sequence types. However, serotypes 15B/15C (ST7052,
ST8687, and ST13795) and 16F (ST4088 and ST3450/ST10673)
were associated with multiple STs. Serotypes 15B/15C and 16F
were the predominant serotypes detected in our cohort, and
highly prevalent serotypes tend to be more diverse (47). No other
ST was associated with more than one serotype, in line with
previous observations (48).

Shotgun sequencing detected co-colonization with multiple
serotypes in 15% of the samples; these would have been difficult
or laborious to detect using the Quellung method, since multiple
colonies would have to be tested individually, or pooled colonies
tested with multiple reagents (45). This rate of co-colonization
was lower than that reported in Malawi among children aged
0–13 years (40%, 46/116) (49), but comparable to that reported
among children <2 years of age in Tehran (17%, 225/1302) (50).
In the current study, serotype 19A isolates (from two infants)
were only detected using shotgun sequencing (and not culture),
in samples with multiple serotypes. Detection of circulating
serotype 19A is important in epidemiological studies, since 19A
is included in the PCV13 administered to infants. Culture-
dependent techniques are biased to detect the most abundant
serotype in a sample and are likely to miss co-colonization with
less abundant serotypes (51). Carriage of multiple pneumococcal
serotypes is also important since it provides an opportunity for
horizontal gene transfer, which is one of the most common
mechanisms driving pneumococcal evolution (52).

Eleven STs identified in this study, including ST205923F,
ST206219A, and ST1082319F, matched other STs which have
only been described among isolates from South Africa, and
may therefore be endemic. These strains are associated with
serotypes included in the PCV13, which is currently administered
in the South African schedule, and which all infants in this
study received. Five STs identified here are reported for the first
time in an African country. Additionally, four novel STs were
identified, namely: ST1379515B/15C, ST1379734, ST1379823B,
and ST1379921.

The AMR genes identified by pneumococcal resistome
analysis were msrD, mefA, ermB, and tetM. Macrolide-
resistance genes (msrD, mefA, or ermB), predicted to confer
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resistance, were detected in 11/28 samples with erythromycin-
non-susceptible pneumococci. Acquired AMR genes were not
detected in the remaining samples, and the resistance observed
could be due to other mechanisms of macrolide resistance
not investigated here (53). The frequency of msrD or mefA
was higher than that of ermB, and this is in contrast to what
has been reported in other studies (54, 55). TetM gene was
detected in eight samples but this could not be associated with
phenotypic resistance as isolates in this study were not tested for
susceptibility to tetracycline, since it is not routinely used to treat
pneumococcal infections.

A high proportion of cotrimoxazole-non-susceptibility (61%,
98/159) was observed in pneumococcal isolates present in
samples included for shotgun sequencing. Cotrimoxazole, which
is a combination of trimethoprim and sulfamethoxazole, inhibits
folic acid biosynthesis, and non-susceptibility to this drug is
conferred by the acquisition of mutations in folA and folP (40).
The majority of cotrimoxazole-non-susceptible isolates (81%) in
the current study possessed the I100L amino acid substitution
in DHFR, and this mutation has been shown to be sufficient
to confer high-level cotrimoxazole resistance (40, 41). The most
common insertions detected in DHPS led to the duplication
of R58P59 and S62Y63 in 56 and 27% of cotrimoxazole-non-
susceptible isolates, respectively. These insertions have been
shown to confer low-level cotrimoxazole resistance (40, 41).
Most instances (71/86) of high-level cotrimoxazole resistance
observed were due to both folA I100L substitution and folP
insertion, and this has been previously described (56). Lack of
associations in other isolates might be due to other mechanisms
of resistance or loss of expression of the detected mutations
(Supplementary Table 4) (56).

Pbp genes code for the penicillin-binding proteins (PBPs)
which are essential for cell envelope bio-synthesis and are
the target for beta-lactam antibiotics (57). Gene mutations
occurring within or close to the pbp-conserved motifs within the
transpeptidase domain are known to confer resistance to beta-
lactams (58). Amino acid alterations in pbp1a, pbp2b, and pbp2x
have been shown to be the most reliable markers for beta-lactam-
resistance in pneumococci (59). A higher level of variation in
the transpeptidase domain sequences of pbp1a and pbp2x, than
in pbp2b was observed (Supplementary Figures 2–4). The pbp1a
and pbp2x genes flank the capsule (cps) locus, which is prone to
frequent recombination events (60), and recombination events
involving the cps locus and one or both pbp1a and/or pbp2x genes
have been observed (61). This could account for the higher level
of variation observed in the pbp1a and pbp2x genes among the
strains in this study.

In total, 29 out of 159 (18%) pneumococcal isolates were
phenotypically non-susceptible to penicillin. Concordance
between penicillin non-susceptibility and the presence of
resistance conferring mutations was observed in 52% of
the isolates. No known resistance conferring mutations
were identified in the remaining penicillin non-susceptible
strains, and the resistance observed may be due to the
combination of other pbp and/or non-pbp mutations which
may confer resistance in pneumococci (62). The presence
of resistance conferring mutations among the 14 penicillin

susceptible strains may indicate the poor predictability of
these mutations for phenotypic resistance. Only P432T (in
pbp1a) and T338P (in pbp2x) mutations were associated
with phenotypic penicillin non-susceptibility in this study
(Supplementary Table 3). The P432T and T338Pmutations were
detected in all nine penicillin-non-susceptible, ST705215B/15C

isolates, from two infants. The P432T mutation, which is
close to the 428SRN430 conserved motif (59), and the T338P
mutation, occurring within the active 337STMK340 motif
(63), decrease beta-lactam-binding affinity of PBP1a and
PBP2x, respectively. The contribution of other mutations to
penicillin non-susceptibility among our strains was unclear
(Supplementary Table 3).

This study was limited by a small sample size and the use
of metagenomic sequencing in samples obtained from a larger
population is warranted. NP samples were enriched using broth
culture without antibiotics which may have favored the growth of
other bacteria over pneumococci, leading to low sequence reads
counts and the inability to assemble the pneumococcal genomes
in these samples.

CONCLUSION

This study indicated the utility of direct metagenomic
sequencing of NP samples to privide in-depth understanding
of pneumococcal carriage and antimicrobial resistance
determinants. There was complete concordance between
culture and shotgun sequencing, with a high concordance
between in silico and conventional serotyping, indicating a
predominance of non-PCV13 serotypes in this cohort. This
approach was also able to identify co-colonization. Serotypes
endemic to South Africa, several not reported locally before,
and four novel serotypes were also identified. There was
however a poor correlation between phenotypic antimicrobial
non-susceptibility and the detection of certain resistance
determinants. This technique will contribute to understanding
increasing vaccine failure rates, by providing stain-level data
for vaccine design strategies which are effective in controlling
carriage, preventing invasive disease, and limiting the potential
spread of resistance.
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