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Mechanism-Based Disease Progression Model
Describing Host-Pathogen Interactions During the
Pathogenesis of Acinetobacter baumannii Pneumonia

John K. Diep1,2, Thomas A. Russo2,3 and Gauri G. Rao1,2*

The emergence of highly resistant bacteria is a serious threat to global public health. The host immune response is vital for
clearing bacteria from the infected host; however, the current drug development paradigm does not take host-pathogen
interactions into consideration. Here, we used a systems-based approach to develop a quantitative, mechanism-based
disease progression model to describe bacterial dynamics, host immune response, and lung injury in an immunocompetent
rat pneumonia model. Previously, Long-Evans rats were infected with Acinetobacter baumannii (A. baumannii) strain 307-0294
at five different inocula and total lung bacteria, interleukin-1beta (IL-1b), tumor necrosis factor-a (TNF-a), cytokine-induced
neutrophil chemoattractant 1 (CINC-1), neutrophil counts, and albumin were quantified. Model development was conducted in
ADAPT5 version 5.0.54 using a pooled approach with maximum likelihood estimation; all data were co-modeled. The final
model characterized host-pathogen interactions during the natural time course of bacterial pneumonia. Parameters were
estimated with good precision. Our expandable model will integrate drug effects to aid in the design of optimized antibiotic
regimens.
CPT Pharmacometrics Syst. Pharmacol. (2018); .

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Previous studies have performed simulations

using published literature values to describe host-

pathogen interactions. Modeling the time course

of measured biomarkers of the infectious process

using a systems-based approach remains largely

unexplored.
WHAT QUESTION DID THIS STUDY ADDRESS?
� Can we develop a mechanism-based model to quan-

titatively describe the host-pathogen interactions during

the pathogenesis of bacterial pneumonia using an

immunocompetent rat pneumonia model of infection in

the absence of treatment?

WHAT DOES THIS STUDYADD TO OUR KNOWLEDGE?
� The mechanism-based disease progression model
describes the time course of A. baumannii pneumonia
and host-pathogen interactions by characterizing the
interplay among bacterial dynamics, host immune
responses, and lung injury.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� The mechanism-based model can be used to integrate
the contribution of the host immune system for designing
in vivo antibiotic PK/PD studies. The model can be ex-
panded to incorporate additional mechanistic details pro-
viding an in-depth understanding of the underlying biology
of pneumonia and enabling the model-based development
of antibiotics and design of novel treatment regimens.

Lower respiratory tract infections are the third most com-
mon cause of death worldwide.1 Bacterial pneumonia is an
acute lower respiratory tract infection caused by bacteria
such as Acinetobacter baumannii (A. baumannii). The
global emergence of multidrug resistant gram-negative bac-
teria combined with a dwindling drug pipeline complicates
the selection and design of effective antibiotic therapy.2

Current translational research primarily optimizes existing
antibiotics against these hard-to-treat pathogens using in
vitro and in vivo infection pharmacokinetic (PK) and phar-
macodynamic (PD) models of drugs and bacteria. In vitro
models of infection include static time-kill, dynamic one-
compartment, and hollow-fiber systems; in vivo infection
models typically utilize neutropenic mice.3,4

However, current preclinical translational designs and
models fail to take the host immune response, which is key
to initiating bacterial clearance and clinical outcome, into
account. The interaction between the invading bacterial
pathogen and host innate immune system is the principal
pathway for elimination of virulent extracellular gram-
positive and gram-negative pathogens from the lung, tip-
ping the immune balance toward inflammation. Toll-like
receptor-4, pattern recognition receptors present on host
alveolar macrophages and bronchial epithelial cells, recog-
nizes lipopolysaccharide, a pathogen-associated molecular
pattern present on the outer membrane of gram-negative
bacteria, and dictates the natural progression of bacterial
pneumonia.5 This receptor-mediated signaling plays a
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crucial role in the innate immune responses that ensue by
activation of nuclear factor-jB (NF-jB). The NF-jB signal-
ing pathway in macrophages regulates the expression of
pro-inflammatory cytokines, such as tumor necrosis factor-a
(TNF-a) and interleukin-1b (IL-1b), to initiate the inflamma-
tory response, and the subsequent recruitment of polymor-
phonuclear leukocytes to the lungs.6–8 Resident alveolar
macrophages and recruited neutrophils are essential in the
host defense against bacterial pneumonia.9,10

As the clinical outcome of patients with pneumonia depends

on the interplay among bacterial virulence, drug effect, and

host immune response, integrating host-pathogen interactions

into the design and optimization of antibiotic treatment regi-

mens is important. Mathematical modeling provides a means

to incorporate and evaluate the impact of the immune

response on the evolution and resolution of bacterial infec-

tion. Previous mathematical models of infection have explored

the role of the immune response in infection.11–15 However,

given the complexity of the immune response and the lack of

measured immune components, these studies are largely

theoretical in nature.
High-quality, quantified immune response time course

data would facilitate the development of more mechanistic

systems models.16 A quantitative systems-based approach

has the potential to provide a comprehensive mechanistic

understanding of host-pathogen interactions during the

pathogenesis of bacterial pneumonia and assist in the

design of therapeutic optimization studies. Thus, the objec-

tive of our study was to develop a mechanism-based model

to quantitatively describe the interactions among (i) bacte-

rial dynamics, (ii) the host immune response, and (iii) lung

injury in an immunocompetent rat pneumonia model of

infection. This base model can be expanded to include the

effects of antibiotics on the host-pathogen interactions.

METHODS
Pathogenesis data
We previously conducted bacterial pneumonia studies in

immunocompetent rats.17 In brief, a clinical isolate of A.

baumannii (strain 307-0294) was introduced into the lungs

of Long-Evans rats via intratracheal instillation. Rats were

challenged with five different initial inocula: 7.00 3 106,

5.76 3 107, 3.50 3 108, 4.32 3 108, and 7.65 3 109 colony

forming units (cfu)/mL, with 18 animals per inoculum. Dur-

ing the time course of infection, terminal sampling was

performed and rats were euthanized at 3, 6, 24, 48, 72, and

168 hours postinoculation for bronchoalveolar lavage fluid

(BALF) and lung explants. Three animals were euthanized

at each time point. The total lung bacterial burden was

quantified as the sum of bacteria in the lung homogenate

and BALF. The host immune response in the lung was

quantified by measuring IL-1b, TNF-a, cytokine-induced neu-

trophil chemoattractant-1 (CINC-1), and neutrophil counts in

BALF (neutrophil counts not measured in the 7.65 3 109

cfu/mL inoculum group). Lung injury was assessed by mea-

suring BALF albumin concentrations, which represent vascu-

lar leakage into the alveolar spaces.17,18

Model development
A mechanism-based disease progression model was devel-
oped to describe the time courses of:

i. Bacterial dynamics: bacterial replication, natural death, and clear-
ance by neutrophils;

ii. Host immune response: bacterial stimulation of pro-inflammatory
cytokines and stimulation of neutrophil recruitment by pro-
inflammatory cytokines; and

iii. Lung injury: albumin leakage dependent on pro-inflammatory cyto-
kine expression.

The model was based on acute processes during the
pathogenesis of bacterial pneumonia.

Modeling was performed using ADAPT5 version 5.0.54.19

The model was developed using a pooled approach (na€ıve
pooled data module) with maximum likelihood estimation.
Samples from multiple animals in each inoculum group
were pooled, and all data were comodeled. Simultaneously
modeled data included: five different inocula with six differ-
ent disease progression biomarkers per inoculum; (i) bacte-
rial burden; (ii) IL-1b, (iii) TNF-a, and (iv) CINC-1
expression; (v) neutrophil recruitment; and (vi) albumin
leakage. The residual variance models were defined as:

Vi5 r11 r2 � Yið Þ2

where Vi is the error variance at the ith observation, r1 and
r2 are variance model parameters, and Yi is the fitted value
of the observation. A separate variance model was used for
each biomarker. For biomarkers in the logarithmic domain
(bacterial burden and neutrophils), the variance models
were defined as:

Vi5r3
2

where Vi is the error variance of the ith log(observation) and
r3 is a variance model parameter. A bottom-up approach
was used for model development where individual compo-
nents were added one after another. Various mechanism-
based disease progression models were proposed, fitted,
and compared. When transit compartments were included,
the number of transit compartments was optimized by per-
forming model discrimination after evaluating a range of one
to five compartments. Selection criteria during model devel-
opment were based on visual inspection of the fitted curves,
goodness-of-fit plots, sum of squared residuals, the Akaike
information criterion, and standard errors (SE%) of the esti-
mated parameters. Overall r2 for each of the different inocula
was calculated for each biomarker by pooling the observed
vs. predicted values.19

RESULTS
Model structure
The schematic of the mechanism-based disease progres-
sion model is shown in Figure 1. Intra-tracheal bacterial
(CFU) challenge activates the NF-jB pathway, which sub-
sequently triggers a pro-inflammatory immune response
and production of IL-1b and TNF-a. Both pro-inflammatory
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cytokines play a vital role in the recruitment of neutrophils

(N) to the lungs. The TNF-a recruits neutrophils by stimulat-

ing lung epithelial cells to secrete chemokines, such as

CINC-1. The pro-inflammatory response is regulated by

anti-inflammatory cytokines (ACs). An overactive pro-

inflammatory response damages the lung epithelial-

endothelial permeability barrier resulting in BALF albumin

(ALB), a measure of lung injury.

Bacterial dynamics
CFU dynamics were described by:

dCFU
dt

5kg � CFU2CFU � N � kdN1NS1 � kdNS11NS2 � kdNS2ð Þ; (1)

CFU 0ð Þ5 CFU0

where CFU is bacterial concentration in cfu/mL, kg is the

first-order rate constant for bacterial growth, N is the num-

ber of neutrophils, NS1 and NS2 represent neutrophil sig-

naling, kdN is the second-order rate constant for bacterial

killing by neutrophils, kdNS1 and kdNS2 are second-order rate

constants for bacterial killing by neutrophil signaling, and

CFU0 is the initial bacterial burden.

Host immune response
IL-1b and TNF-a expression were described using indirect

response models20 with capacity-limited stimulation by bac-

terial burden (CFU). AC was included as an unobserved

variable also characterized by an indirect response model

with capacity-limited stimulation by CFU. AC acts by inhibit-

ing the rate of production of both IL-1b and TNF-a. The

expression of these cytokines was described as:

dIL21b
dt

5kin IL21b � 11
Smax CFU IL � CFU
SC50 CFU IL1CFU

2 IAC IL � AC
� �

2 kout IL21b � IL21b;
(2)

IL21b 0ð Þ5 IL21b0

dTNF2a
dt

5kin TNF2a � 11
Smax CFU TNF � CFU
SC50 CFU TNF 1CFU

2 IAC TNF � AC
� �

2 kout TNF2a � TNF2a;

(3)

TNF2a 0ð Þ5 TNF2a0

dAC
dt

5kin AC � 11
Smax CFU AC � CFU
SC50 CFU AC1CFU

� �
2kout AC � AC; (4)

AC 0ð Þ5AC0

where IL-1b, TNF -a, and AC are cytokine concentrations in
pg/mL, kin i is the zero-order production rate constant of
the cytokine, kout i is the first-order loss rate constant of the
cytokine, Smax CFU i is the maximum stimulatory effect of
bacteria on cytokine expression (capacity constant),
SC50 CFU i is the bacterial concentration at which half-
maximal effect is achieved (sensitivity constant), IAC i is the
scaling factor for the inhibitory effect exerted by AC on the
pro-inflammatory cytokine expression, and IL-1b0, TNF -a0,
and AC0 are cytokine concentrations at baseline. The
system was assumed to be at steady-state at time zero,
yielding estimates of kin IL21b, kin TNF22a, and kin AC (sec-
ondary parameters) as IL-1b0 � koutIL21b= 12 IAC IL � AC0ð ÞÞð ,
TNF -a0 � kout TNF2a= 12 IAC TNF � AC0ð ÞÞð , and AC0 � kout AC ,
respectively.

Figure 1 Schematic of the mechanism-based disease progression model incorporating bacterial burden (CFU), proinflammatory cyto-
kines (interleukin-1beta (IL-1b), tumor necrosis factor-a (TNF-a), and cytokine-induced neutrophil chemoattractant 1 (CINC-1)), an anti-
inflammatory cytokine (AC), neutrophils (N), neutrophil signaling (NS1 and NS2), and albumin (ALB). Shaded compartments indicate
measured components. Open and solid boxes represent stimulatory and inhibitory effects. The model is described by Eqs. 1–11 with
parameters defined in Table 1.
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CINC-1 chemokine expression was described by:

dCINC21
dt

5STNF2a � TNF2a2 kout CINC21 � CINC21; (5)

CINC21 0ð Þ5 CINC210

where CINC-1 is the CINC-1 concentration in pg/mL,

STNF2a is the scaling factor for the stimulatory effect of

TNF-a on CINC-1 expression, kout CINC21 is the first-order

loss rate constant of CINC-1, and CINC-10 is the CINC-1

concentration at baseline.
Neutrophil recruitment was described using an indirect

response model with linear stimulation by IL-1b and CINC-

1 on the rate of production of N. Transit compartments

were included to capture the time delay between CINC-1

expression and neutrophil recruitment. Neutrophil dynamics

were described by:

dLag1
dt

5kslag � CINC212 kslag � Lag1; Lag1 0ð Þ5 0 (6)

dLag2
dt

5kslag � Lag12 kslag � Lag2; Lag2 0ð Þ5 0 (7)

dN
dt

5kin N � 11SIL21b N � IL21b1SCINC21 � Lag2
� �

2koutN � N; N 0ð Þ5 N0

(8)

where Lag1 and Lag2 are transit steps, kslag is the first-

order transit rate between steps, (slag51=kslag is the mean

transit time of each transit step), N is the number of neutro-

phils, kin N is the zero-order production rate constant of

neutrophils, kout N is the first-order loss rate constant of

neutrophils, SIL21b N and SCINC21 are scaling factors for

stimulatory effect of IL-1b and CINC-1 on neutrophil recruit-

ment, and N0 is the neutrophil count at baseline.
Neutrophil signaling was modeled using transit compart-

ments and described by:

dNS1
dt

5ksNS � N2 ksNS � NS1; NS1 0ð Þ5 0 (9)

dNS2
dt

5ksNS � NS12 ksNS � NS2; NS2 0ð Þ5 0 (10)

where NS1 and NS2 are transit compartments, and ksNS is

the first-order transit rate between steps (sNS51=ksNS is the

mean transit time).

Lung injury
Albumin leakage was characterized using an indirect

response model with linear stimulation by IL-1b on rate of

production, described as:

dALB
dt

5kin ALB � 11SIL21b ALB � IL21b
� �

2kout ALB � ALB; (11)

ALB 0ð Þ5 ALB0

where ALB is albumin concentration in mcg/mL, kin ALB is

the zero-order production rate constant of albumin, kout ALB

is the first-order loss rate constant of albumin, SIL21b ALB is

the scaling factor for stimulatory effect of IL-1b on albumin

leakage, and ALB0 is the baseline albumin concentration.
Baseline values of all disease progression biomarkers

were fixed to experimental values (Table 1) and were com-

parable to previous studies performed in Long-Evans

rats.17,21,22 The initial bacterial burdens (CFU0) were fixed

to the initial inocula (7.00 3 106, 5.76 3 107, 3.50 3 108,

or 4.32 3 108) except for the 7.65 3 109 cfu/mL inoculum,

which was fixed to 1.00 3 109 cfu/mL. This was based on

the assumption that the high bacterial load introduced intra-

tracheally did not completely seed, as suggested by the

data (Figure 2a (v); 0 and 3 hours). The variance parame-

ters r1 and r2 were fixed to 0.01 and 0.10 for IL-1b, TNF-a,

CINC-1, and ALB residual variance models. For CFU and

N residual variance models, r3 was fixed to 0.30.

MODEL RESULTS

The schematic for the final model is shown in Figure 1;

final parameter estimates are reported in Table 1. The

observed pooled data and model fits are shown in Figure 2.

Disease progression with an initial inocula of 7.00 3 106

and 5.76 3 107 cfu/mL (low inocula; Figure 2a–f (i–ii)

was markedly different from 3.50 3 108, 4.32 3 108, and

7.65 3 109 cfu/mL (high inocula; Figure 2a–f (iii–v).

Therefore, the sensitivity constants (SC50 CFU i parameters)

acting on stimulation of IL-1b, TNF-a, and AC by CFU were

allowed to differ between low and high inocula.

Bacterial dynamics
Model fits of total lung bacterial burden are shown in

Figure 2a (overall r2 0.85). Time to maximum predicted

CFU ranged from �3 to 6 hours for the low inocula

(Figure 2a (i-ii)) and from �14 to 18 hours for the high

inocula (Figure 2a (iii–v)). All inoculum groups resulted in

a trend toward bacterial eradication by 168 hours. The esti-

mated bacterial growth rate constant kg was 0.327 h21

(3.95% SE), and bacterial killing rates by neutrophils and

neutrophil signaling, log10kdN , log10kdNS1, and log10kdNS2,

were 27.71, 27.48, and 27.00 (0.05%, 0.06%, and 0.33%

SE), respectively (Table 1).

Host immune response
Model fits for pro-inflammatory cytokines IL-1b and TNF-a
are shown in Figure 2b,c (overall r2 0.48 and 0.60). As the

initial bacterial inoculum increased, the expression of the

pro-inflammatory cytokines grew in magnitude and was pro-

longed. Maximal IL-1b stimulation ranged from �5 to 11

hours for low inocula (Figure 2b i–ii) and �22 to 30 hours

for high inocula (Figure 2b (iii–v)). IL-1b concentrations

returned to baseline values by �24 hours for low inocula

and �72 hours for high inocula. The estimated Smax CFU IL

was 94.7 (5.46% SE), and the log10SC50 CFU IL values were

7.21 and 8.89 (0.43% and 0.35% SE) for low and high inoc-

ula (Table 1). Maximal TNF-a stimulation ranged from �4

to 10 hours and returned to baseline by �24 hours for low

inocula (Figure 2c (i–ii)) and �72 hours for high inocula

(Figure 2c (iii–v)). The estimated Smax CFU TNF was 64.2

(5.14% SE), and the log10SC50 CFU TNF values were 8.06
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and 8.20 (0.27 and 0.43% SE) for low and high inocula
(Table 1).

Figure 2d shows the model fits of CINC-1 chemokine
expression (overall r2 0.57). Maximal CINC-1 stimulation
ranged from �5 to 11 hours and returned to baseline by
�24 hours for low inocula (Figure 2d (i–ii)) and �72 hours
for high inocula (Figure 2d (iii–v)). The estimated STNF2a

was 4.12 h21 (12.4% SE).
The predicted time course of the anti-inflammatory

cytokine AC is shown in Figure 3. AC expression was
predicted to increase with increasing inocula, and maxi-
mal stimulation ranged from �5 to 9 hours for low inocula
(Figure 3 i–ii) and �24 to 32 hours for high inocula

(Figure 3 iii-v). AC concentrations returned to baseline by
�24 hours for low inocula and �72 hours for high inocula.
The estimated Smax CFU AC was 57.9 (6.08% SE) and
the log10SC50 CFU AC values were 8.96 and 8.92 (1.10%
and 0.67% SE) for low and high inocula (Table 1). AC inhib-
ited IL-1b and TNF-a production with IAC IL and IAC TNF

estimates of 6.48 3 1024 (226% SE) and 0.02 (0.01% SE)
mL/pg.

Model fits of neutrophil counts are shown in Figure 2e
(overall r2 0.60). Neutrophils peaked between �6 and 11
hours for low inocula (Figure 2e (i–ii)) and between �27
and 35 hours for high inocula (Figure 2e (iii–v)). The
magnitude was greater for low inocula; therefore, SIL21b N

Table 1 Parameter estimates for the mechanism-based disease progression model

Parameter Description Estimate SE%

Bacterial dynamics

kg (h-1) Firstt order rate constant for net bacterial growth 0.327 3.95

log (kdN (cells-1 h-1)) Second order rate constant for bacterial killing by N 27.71a 0.05

log (kdNS1 (cells-1 h-1)) Second order rate constant for bacterial killing by NS1 27.48a 0.06

log (kdNS2 (cells-1 h-1)) Second order rate constant for bacterial killing by NS2 27.00a 0.33

CFU0 (cfu/mL) Initial bacterial burden -b Fixedc

Host immune response

kout IL21b (h-1) First order loss rate constant for IL-1b 0.122 3.68

Smax CFU IL Capacity constant for CFU stimulating IL-1b 94.7 5.46

log (SC50 CFU IL (cfu/mL)) Sensitivity constant for CFU stimulating IL-1b (low/high inoc) 7.21/8.89a 0.43/0.35

IAC IL (mL/pg) Scaling factor for IL-1b inhibition by AC 6.48 3 10-4 226

IL-1b0 (pg/mL) Baseline IL-1b concentration 48 Fixedc

kout TNF2a (h-1) First order loss rate constant for TNF-a 0.205 6.14

Smax CFU TNF Capacity constant for CFU stimulating TNF-a 64.2 5.14

log (SC50 CFU TNF (cfu/mL)) Sensitivity constant for CFU stimulating TNF-a (low/high inoc) 8.06/8.20a 0.27/0.43

IAC TNF (mL/pg) Scaling factor for TNF-a inhibition by AC 0.02 0.007

TNF -a0 (pg/mL) Baseline TNF-a concentration 20 Fixedc

kout AC (h-1) First order loss rate constant for AC 0.101 6.18

Smax CFU AC Capacity constant for CFU stimulating AC 57.9 6.08

log (SC50 CFU AC (cfu/mL)) Sensitivity constant for CFU stimulating AC (low/high inoc) 8.96/8.92a 1.10/0.67

AC0 (pg/mL) Baseline AC concentration 48 Fixedc

kout CINC21 (h-1) First order loss rate constant for CINC-1 1.75 12.5

STNF2a (h-1) Scaling factor for CINC-1 stimulation by TNF-a 4.12 12.4

CINC-10 (pg/mL) Baseline CINC-1 concentration 30 Fixedc

kslag (h-1) First order transit rate for N recruitment delay by CINC-1 0.044 4.80

kin N (cells/h) Production rate constant for N 6.61 3 105 17.8

kout N (h-1) First order loss rate constant for N 1.12 16.3

SIL21b N (mL/pg) Scaling factor for N stimulation by IL-1b (low/high inoc) 2.52 3 10-2/6.51 3 10-3 10.3/9.55

SCINC21 (mL/pg) Scaling factor for N stimulation by CINC-1 4.93 3 10-4 11.3

N0 (cells) Baseline N count 28,230 Fixedc

ksNS (h-1) First order transit rate for NS 6.36 3 10-3 6.3

Lung injury

kin ALB (mcg/mL/h) Production rate constant for ALB 1,012 7.9

kout ALB (h-1) First order loss rate constant for ALB 0.705 8.08

SIL21b ALB (mL/pg) Scaling factor for ALB stimulation by IL-1b 9.77 3 10-4 4.83

ALB0 (mcg/mL) Baseline ALB concentration 125 Fixedc

AC, anti-inflammatory cytokine; ALB, albumin; high inoc, 3.50 3 108, 4.32 3 108, and 7.65 3 109 cfu/mL initial inocula; CFU, bacterial burden; CINC-1,

cytokine-induced neutrophil chemoattractant-1; IL-1b, interleukin-1b; low inoc, 7.00 3 106 and 5.76 3 107 cfu/mL initial inocula; N, neutrophil; NS, neutrophil

signaling; TNF-a, tumor necrosis factor-a.
aParameter reported as log10 transformed estimate.
b7.00 3 106, 5.76 3 107, 3.50 3 108, 4.32 3 108, or 1.00 3 109 cfu/mL.
cParameter fixed to experimental values and comparable to previous studies.21,22
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was allowed to differ between low and high inocula.
The SIL21b N estimates were 2.52 3 1022 and 6.51 3

1023 mL/pg (10.3 and 9.55% SE) for low and high inoc-
ula. The estimated SCINC21 was 4.93 3 1024 mL/pg
(11.3% SE; Table 1).

Lung injury
Model fits of albumin are shown in Figure 2f (overall r2

0.51). As the initial bacterial inoculum increased, the
increased IL-1b expression resulted in increased and pro-
longed albumin leakage. Albumin concentrations peaked

Figure 2 Disease progression time course of bacterial burden (a; CFU); interleukin-1b (b; IL-1b), tumor necrosis factor-a (c; TNF-a),
and cytokine-induced neutrophil chemoattractant-1 (d; CINC-1) expression; neutrophil recruitment (e; N); and albumin leakage (f; ALB)
during A. baumannii pneumonia at an initial inoculum of 7.00 3 106 (i), 5.76 3 107 (ii), 3.50 3 108 (iii), 4.32 3 108 (iv), and 7.65 3
109 (v) cfu/mL. Symbols indicate observed pooled data (where each observed data point represents data quantified in the terminal
sample obtained from a different animal), and lines indicate model fits based on the mechanism-based disease progression model in
Figure 1. N was unobserved for the 7.65 3 109 cfu/mL inoculum.
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from �7 to 12 hours for low inocula (Figure 2f (i–ii)) and

�25 to 30 hours for high inocula (Figure 2f (iii–v)). Con-

centrations returned to a baseline of 1,504 mcg/mL beyond

24 hours for low inocula and 72 hours for high inocula,

which was different from the initial baseline concentration

(125 mcg/mL) as both kin ALB and kout ALB were estimated

parameters (Table 1). Estimates of kin ALB, kout ALB , and

SIL21b ALB were 1,012 mcg/mL/h (7.9% SE), 0.705 h21

(8.08% SE), and 9.77 3 1024 mL/pg (4.83% SE),

respectively.

DISCUSSION

Pneumonia caused by multidrug resistant gram-negative

pathogens has a higher propensity for lung injury, systemic

dissemination, sepsis, and ultimately mortality.23 The devel-

opment of pneumonia is the result of complex interactions

between the infecting pathogen and host immune system

that modulate the early and late innate immune responses

and disease progression.24 Although antibiotics have been

used for over 6 decades, the combined impact of the viru-

lence factors of the invading pathogen, bacterial inoculum,

and the innate pulmonary host defense system have been

overlooked. The emerging discipline of quantitative systems

pharmacology allows for the integration of experimentally

measured host-pathogen interaction data into current

model-based PK/PD approaches. Some current mathemati-

cal models describe the dynamic and continuous nature of

interactions between the host immune system and invading

pathogen as a network of discrete states with conditions for

transition between these discrete states.25 These models

are unable to capture the continuous dynamics of disease

progression. A lack of quantitative time course immune data

in the patient population of interest has necessitated the use

of values published in the literature. Few models have

attempted to evaluate host immune response to bacteria

using in vivo data with published immune response data.15,25

Modeling the time course of relevant biomarkers of host-

pathogen interactions evaluated in vivo using a systems-

based approach to understand the critical determinants of the

underlying pathogenesis of pneumonia remains largely unex-

plored. Here, we have developed a mechanism-based model

that quantitatively describes the time course of interactions

between bacterial dynamics, host innate immune response,

and lung injury using an immunocompetent rat pneumonia

model of infection.
In this model, in the absence of antimicrobial treatment,

bacterial dynamics reflects the net effect of replication and

host immune response mediated bactericidal activity. Neu-

trophils are largely responsible for bacterial killing via

phagocytosis as well as signaling to recruit other immune

cells, such as dendritic cells, natural killer cells, and macro-

phages.26,27 Activated neutrophils also release extracellular

traps, which contain antimicrobial proteins bound to a DNA

scaffold.28 The model was able to describe bacterial

dynamics based on these mechanisms. The estimated bac-

terial growth rate constant (kg : 0.327 h21; representing net

replication) was comparable to previous studies modeling

A. baumannii.29,30 As neutrophils were the only measured

immune cells, transit compartments were used to represent

neutrophil signaling. Transit compartments serve as place-

holders for these natural antibacterial processes to be

quantified in future studies.16 Incorporation of bacterial

Figure 3 Model-predicted time course of the empirical anti-inflammatory cytokine (AC) compartment during A. baumannii pneumonia
at an initial inoculum of 7.00 3 106 (i), 5.76 3 107 (ii), 3.50 3 108 (iii), 4.32 3 108 (iv), and 7.65 3 109 (v) cfu/mL.
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killing processes by both neutrophils and neutrophil signal-
ing allowed the model to capture the overall time course of
bacterial burden. Smith et al.12 evaluated different models
of innate immune response to pneumococcal pneumonia;
model simulations of bacterial burden agreed better with
the observed data after addition of monocyte-derived mac-
rophage recruitment compared to neutrophil response
alone.

Activation of NF-jB in alveolar macrophages results in
increased expression of IL-1b and TNF-a. These early pro-
inflammatory cytokines stimulate production of chemokines,
such as CINC-1, that help recruit neutrophils to the lungs
through chemotactic migration.31 Indirect response models
have been previously used to capture pro-inflammatory
cytokine dynamics in inflammatory diseases.32,33 In the cur-
rent study, indirect response models with bacterial stimula-
tion of cytokine production captured the early upregulation
of IL-1b and TNF-a, characteristic of bacterial pneumonia.
Expression of the chemokine CINC-1 closely followed TNF-
a and was captured with direct stimulation by TNF-a.
An indirect response model adequately captured the result-
ing neutrophil recruitment with stimulation by IL-1b and
CINC-1.

Anti-inflammatory cytokines, such as IL-10 regulate the
inflammatory response to help prevent a “cytokine storm”
and the related sequelae of acute lung injury, and sepsis as
a consequence of pro-inflammatory cytokine overproduc-
tion.34–36 Hence, an empirical anti-inflammatory cytokine
was introduced as an unobserved model component to
help regulate the inflammatory responses by inhibiting the
production of TNF-a and IL-1b. Although unmeasured, the
model simulated profiles were close to reported IL-10 BALF
concentrations in Long-Evans rats with pulmonary inflam-
mation due to gastric aspiration.21,22 Inclusion of the inhibi-
tory effect on TNF-a production was necessary to capture
TNF-a expression dynamics, and IAC TNF was estimated
with good precision (0.007% SE). However, the anti-
inflammatory cytokine was predicted to have a lesser inhibi-
tory effect on IL-1b production (IAC IL: 6.48 3 1024 mL/pg,
IAC TNF : 0.02 mL/pg), and IAC IL was imprecisely estimated
(226% SE) as the anti-inflammatory cytokine may not have
had a significant impact on IL-1b expression in our animal
models. IL-10 is known to regulate TNF-a at multiple levels
and may inhibit TNF-a production more potently.37,38 All
other model parameters were estimated with good preci-
sion (Table 1).

The host immune response was distinctly different
between low and high inocula. The time to maximum IL-1b
expression and return to baseline was delayed for high
inocula infection burdens. The time to maximum TNF-a and
CINC-1 expression was similar for low and high inocula;
however, expression was prolonged for high inocula infec-
tions. Interestingly, neutrophil recruitment was earlier and in
greater numbers for low inocula. Allowing the SC50 CFU i

and SIL21b N model parameters to differ between high and
low inocula enabled co-modeling of the five different infec-
tion burdens. The observed differences and the need for an
infection burden threshold may be due to the complexity of
the immune system as there are multiple pattern recogni-
tion receptors and signaling cascades interconnected by

crosstalk, redundancy, and feedback.39 Different inocula
may produce host immune responses with differing magni-
tudes and temporal relationships between immune compo-
nents or invoke alternative signaling pathways to those
measured in the present study.40,41 Gauthier et al.41 evalu-
ated the effect of cyclosporine H, a neutrophil formyl pep-
tide receptor antagonist, on neutrophil recruitment to the
lungs during murine pneumococcal pneumonia. Neutrophil
counts were significantly reduced in high (107 cfu) but not
low (106 cfu) inoculum infections, suggesting the involve-
ment of other chemo-attractants that are activated by a low
but not high bacterial burden. Conversely, chemokine-
neutralizing antibodies, anti-keratinocyte chemoattractant,
and anti-macrophage-inflammatory protein-2, significantly
reduced neutrophil counts in low but not high inoculum
infections due to other pathways that are activated by
higher bacterial burdens to compensate for the inhibited
chemokines.41

High IL-1b expression levels have been linked to acute
lung injury.42–44 Using albumin as an indicator of increased
pulmonary permeability and injury, our model successfully
captured lung injury dynamics with an indirect response
model stimulated by IL-1b. As the bacterial burden
increased, the pro-inflammatory response was augmented,
resulting in increased and prolonged lung injury. The pre-
dicted baseline albumin concentration after 7 days was
�10-fold greater compared to the initial concentration
(1,504 vs. 125 mcg/mL), suggesting long-term changes in
lung pathology, which may be even more evident with
higher bacterial inocula.

In the present study, anti-inflammatory and neutrophil sig-
naling variables were unobserved model components.
Future studies that measure additional biomarkers, such as
IL-10, myeloperoxidase released by activated polymorpho-
nuclear leukocytes,45 and macrophages would help validate
these model components. Currently, the measurement of
immune biomarkers at the site of infection (i.e., the lungs)
requires terminal sampling; novel sampling techniques
enabling longitudinal sample collection from the same ani-
mal in order to reduce variability in observations would help
address this limitation. Another limitation of the rat infection
model is that the bacterial pneumonia in this rodent species
is self-limiting even at the highest evaluated inoculum. Addi-
tionally, there are differences in lung physiology and dis-
ease progression biomarkers between rats and humans.
Future studies using in vivo infection models that are more
susceptible to human pathogens, with lung pathology simi-
lar to humans (i.e., guinea pigs), would better facilitate clini-
cal translation.

As increased host-pathogen interaction data becomes
available with advances in “omics” technologies, systems
biology approaches can aid in the parsimonious analysis of
heterogeneous disease pathogenesis data by modeling the
dynamics of these complex signaling networks to identify
potential targets and predict behavior.46–48 Bacterial patho-
gens have evolved strategies to manipulate and dampen
the host immune response. The growing interest in under-
standing the molecular and cellular mechanisms of infec-
tious processes has presented the appropriate opportunity
to bridge the gap between microbiology and immunology.
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Synergy between these fields will enable the design of new

strategies to treat infectious processes like the discovery of

new target antigens and development of novel adjuvant

therapies.28 Development of immunomodulating therapies

requires detailed mechanistic knowledge of the immune

system and host-pathogen interactions to elucidate which

immune pathways to enhance and which to suppress.
To the best of our knowledge, this is the first mechanism-

based disease progression model describing the time

course of host-pathogen interactions during A. baumannii

pneumonia using quantitative data on bacterial dynamics,

host immune responses, and lung injury in the absence of

treatment. This animal model can be extended by incorpo-

rating the PK/PD of antibiotics of interest and additional

host-pathogen interaction biomarkers. Quantitative systems

pharmacology modeling can be performed using a step-

wise approach49 to characterize the interplay between bac-

terial dynamics, host immune responses, and lung injury.

The resulting PK/PD/disease progression model incorporat-

ing mechanistic details will provide an in-depth understand-

ing of the underlying biology of pneumonia and truly enable

the model-based development of antibiotics and design of

novel treatment regimens.
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