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Methods from non-linear dynamics have enhanced understanding of functional
dysregulation in various diseases but received less attention in diabetes. This
retrospective cross-sectional study evaluates and compares relationships between
indices of non-linear dynamics and traditional glycemic variability, and their potential
application in diabetes control. Continuous glucose monitoring provided data for 177
subjects with type 1 (n = 22), type 2 diabetes (n = 143), and 12 non-diabetic subjects.
Each time series comprised 576 glucose values. We calculated Poincaré plot measures
(SD1, SD2), shape (SFE) and area of the fitting ellipse (AFE), multiscale entropy (MSE)
index, and detrended fluctuation exponents (α1, α2). The glycemic variability metrics
were the coefficient of variation (%CV) and standard deviation. Time of glucose readings
in the target range (TIR) defined the quality of glycemic control. The Poincaré plot indices
and α exponents were higher (p < 0.05) in type 1 than in the type 2 diabetes; SD1
(mmol/l): 1.64 ± 0.39 vs. 0.94 ± 0.35, SD2 (mmol/l): 4.06 ± 0.99 vs. 2.12 ± 1.04,
AFE (mmol2/l2): 21.71 ± 9.82 vs. 7.25 ± 5.92, and α1: 1.94 ± 0.12 vs. 1.75 ± 0.12,
α2: 1.38 ± 0.11 vs. 1.30 ± 0.15. The MSE index decreased consistently from the non-
diabetic to the type 1 diabetic group (5.31 ± 1.10 vs. 3.29 ± 0.83, p < 0.001); higher
indices correlated with lower %CV values (r = −0.313, p < 0.001). In a subgroup of type
1 diabetes patients, insulin pump therapy significantly decreased SD1 (−0.85 mmol/l),
SD2 (−1.90 mmol/l), and AFE (−16.59 mmol2/l2), concomitantly with %CV (−15.60).
The MSE index declined from 3.09 ± 0.94 to 1.93 ± 0.40 (p = 0.001), whereas the
exponents α1 and α2 did not. On multivariate regression analyses, SD1, SD2, SFE, and
AFE emerged as dominant predictors of TIR (β = −0.78, −1.00, −0.29, and −0.58) but
%CV as a minor one, though α1 and MSE failed. In the regression models, including
SFE, AFE, and α2 (β = −0.32), %CV was not a significant predictor. Poincaré plot
descriptors provide additional information to conventional variability metrics and may
complement assessment of glycemia, but complexity measures produce mixed results.

Keywords: variability analysis techniques, continuous glucose monitoring, glucose time series, indices of non-
linear and fractal dynamics, multiscale entropy, Poincaré plots, detrended fluctuation analysis, glycemic control
of diabetes
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INTRODUCTION

Glucose variability (GV), as based on the amplitude of
continuously recorded glycemic profiles, is an essential factor in
the clinical control of diabetes, and high amplitudes in glucose
excursions represent an independent predictor of hypoglycemia
(Monnier et al., 2011). Moreover, GV may be a risk factor for
the development of chronic diabetes complications (Nalysnyk
et al., 2010). Several indices were introduced to measure GV
(Rodbard, 2009), but these classical indices only consider the
amplitude of the glucose signal, i.e., the global variability, and
neglect any time component (Kovatchev and Cobelli, 2016).
A few GV metrics, containing a time component are known.
For example mean of daily differences (Molnar et al., 1972),
mean absolute glucose change (Hermanides et al., 2010; Kohnert
et al., 2013), and continuous overlapping net glycemic action
(McDonnel et al., 2005), but they firmly correlate to the
amplitude-only-based indices. A new metric, glycemic variability
percentage, recently introduced by Peyser et al. (2018), gives
weight to the amplitude as well as the frequency of glucose
fluctuations. However, the limitation of all these indices is
that they emanate from linear analyses methods and thus
fail to measure the complexity or structural variability of
glucose time series. The theory of non-linear dynamics provides
the basis for analysis of structural variability in complex
systems (Schubert, 2013). Consequently, variability analysis of
physiological signals may either comprise evaluation by metrics
from linear or non-linear methods. However, only non-linear
analysis techniques provide access to the dynamics of regulatory
systems.

Several researchers developed multiple measures of variability
to assess the degree and patterns of physiological signal variation
over time intervals in health and disease. Voss et al. (2009)
and Bravi et al. (2011) have identified several domains of
variability including geometric, information, and fractal scaling
domains. We selected measures of non-linear dynamics from
three different variability domains proposed by Bravi et al., 2011).
These include Poincaré plots (Kovatchev et al., 2005; Crenier,
2014), multiscale entropy (Chen et al., 2014; Costa et al., 2002,
2014), and detrended fluctuation analysis (Yamamoto et al.,
2010; Ogata et al., 2012; Khovanova et al., 2013; Thomas et al.,
2015) for the variability analysis of glucose time series (Table 1).
These techniques have recently found application in analyzing
the dynamics of glucose time series from patients with diabetes
mellitus. The results of these studies collectively showed reduced
dynamics of blood glucose variations in patients with diabetes as
compared with non-diabetic subjects (Ogata et al., 2012; Chen
et al., 2014; Crenier, 2014; Costa et al., 2014; Khovanova et al.,
2013; Kohnert et al., 2017).

Beyond traditional estimates of glycemia and glycemic
variability, dynamical measures may enable assessment of several
extrinsic factors and treatment modalities that can modify the
intrinsic dynamics of the glucoregulatory system. However,
whether such factors affect glucose dynamics or which, if any, of
the dynamical measures, could complement traditional clinical
measures of glycemic variability in the assessment of diabetes
control is not known.

Herein, we address these problems by examining glucose
dynamics in type 1 and type 2 diabetes. We compare classical
measures of glycemic variability with indices from different
domains of variability and investigate their interrelationships.
Finally, we evaluate their contribution to the quality of glycemic
control and potential clinical significance.

MATERIALS AND METHODS

Study Design
The present study is a cross-sectional investigation that used
historical data. We conducted a retrospective analysis of
ambulatory continuous glucose monitoring (CGM) profiles
recorded with the second-generation MiniMed CGM system
(Northridge, CA, United States) set at a sampling rate of one
glucose measurement every 5 min. We analyzed the CGM data
using the MiniMed Solution Software (Version 2b, Medtronic
MiniMed) and utilized established measures of glucose dynamics,
glycemic variability, and glycemic control. Study participants
had received glucose sensors placed on their abdomen. We
used a minimum of four blood glucose meter calibrations
per day and a mean duration of 69-h continuous monitoring.
We excluded data not meeting the validity criteria of the
manufacturer (≥three paired sensor/meter readings and mean
absolute difference ≤ 28%).

Study Subjects and Collection of CGM
Data
The CGM data were collected for a total of 177 study participants:
Twenty-two patients with type 1 diabetes (T1D), 143 with type 2
diabetes (T2D), and 12 non-diabetic control subjects (ND). All
subjects participated in the Diabetiva Program (Augstein et al.,
2010), an integrated national diabetes care network. The study
participants entered the type and amount of food consumed into
their logbooks during CGM. The entrance of consumed food
enabled calculation of carbohydrate intake per day, according
to standard tables containing the nutrient composition with
carbohydrate exchange units (Metternich, 2008). Of the T2D
patients 42 had diet alone and of those assigned to oral therapy 63
had received common oral agents only or combinations thereof.

TABLE 1 | Techniques of variability analysis of glucose time series.

Domain Features Indices Feature assumptions

Geometric Poincaré plots
features

SD1,
SD2,
SFE,
AFE

Low dimensional
representation of the
dynamical attractor

Information Multiscale
entropy

MSE The complexity changes
depend on the window
length used

Fractal scaling Detrended
fluctuation
analysis

α1, α2 The SD of the detrended
cumulative time series
has scale-invariant properties

Based on the classification of analysis techniques by Bravi et al. (2011).
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Eighteen patients had insulin plus oral antidiabetes agents, and 20
patients received insulin alone. T1D patients (n = 22) had been
treated with multiple daily insulin injections (MDI) of short-
and long-acting insulin. A subgroup of these patients (n = 10)
switched to continuous subcutaneous insulin injections (CSII).
Patients after CSII are not included in the characteristics of the
total study cohort. Eighty-five percent of all patients had taken
blood pressure lowering medication. Data were not included
in this evaluation if patients had severe diabetes complications
or decompensated glycemic control with glycated hemoglobin
(HbA1c) values > 10% (86 mmol/mol).

The original study had obtained ethical approval and required
no further approval for this retrospective data analysis.

Linear Analysis
As the primary measures of GV, we computed the percentage of
coefficient of variation of glucose (%CV) and standard deviation
(SD) from the data obtained and averaged the data over a 48-
h CGM period (Rodbard, 2011). The glucose exposure metrics
included mean glucose and glycosylated hemoglobin (HbA1c).
To assess the quality of glycemic control, we computed the time
(h/day) in the target range (Rodbard, 2018) and defined a range
of 3.9–8.9 mmol/l as acceptable for clinical practice (Bergenstal
et al., 2013).

Non-linear Analysis
Forty-eight hour CGM profiles obtained during recordings
were used for calculation of dynamical parameters. We applied
the standard Poincaré plot (PCP), which is a scattergram
constructed by locating data points from the CGM time
series on the coordinate plane according to the pairing G(t),
G(t)+1t. G(t) is the glucose level at time t, and 1t is the
time delay, which is a multiple of the sampling time of the
signal. We probed 1t values of 30, 60, and 120 min but
found 1t = 60 min most suitable to represent the PCP
geometry characteristics for our study groups and used the code
created by Crenier (2014) to compute the pairs of coordinates
defining the PCPs. SD1 and SD2 statistics (Brennan et al.,
2001), enabled quantification of the plots. The PCP measures
included the minor axis of the fitting-ellipse (SD1) defined as
the dispersion of data perpendicular to the line of identity and
along the major axis (SD2) of the ellipse. Further PCP-derived
metrics were the shape (SFE) and area (AFE) of the fitting
ellipse calculated as SFE = SD2/SD1 and AFE = π∗SD1∗SD2
(Crenier, 2014). Of note, although SD1 and SD2 quantify
more or less linear rather than non-linear features (Brennan
et al., 2001; Schulz and Voss, 2017), we formally include these
indices here in differentiating them from traditional measures
of global GV.

The analysis of multiscale entropy (MSE) for the CGM
sequences utilized the previously described procedure (Chen
et al., 2014; Costa et al., 2014). This procedure comprised: (1)
derivation of a set of time series from the original glucose signal
on different time scales using the coarse-graining technique,
(2) computation of sample entropy (SampEn) with standard
parameter values for each coarse-grained time series. We chose
the window length m = 2, the sensitivity criterion r = 0.15 times

the SD, and the data length N = 576 within the entire coarse-
grained sequence with the broadest scale factor set at M = 5. Thus,
the length of the coarse-grained data (Humeau-Heurtier, 2015)
at this scale factor contained 115 glucose samples. We calculated
SampEn for the scales 1 to 5, using the mse.c program available at
https://www.physionet.org/physiotools/mse/tutorial/.

The complexity index was defined as the sum of these SampEn
values.

We also analyzed the CGM time series by calculating the
detrended fluctuation analysis (DFA) according to the standard
method, as described by (Yamamoto et al., 2010), which involves
the integration of the time series and dividing it into intervals
of equal size n. Integration of the time series was performed as
follows:

y(k) =
k∑

t−1

[B(i)− Bave]

F(n) is the calculated detrended fluctuation represented as the
root-mean-square fluctuation from the trend summed up for all
boxes (B) with B(i) as each point in the time series and Bave as the
average of the whole series.

F(n) =

√√√√ 1
N

N∑
k=1

[y(k)− yn(k)]2

n: size of the time segments (windows) of the integrated
curve
F(n): the measure of the difference between the integrated
curve and the regression lines
y(k): the value at each individual point of the integrated
curve
yn(k): the value of the regression line at the point
N: the total number of data points

Plots drawn with log F(n) on the y-axis and log(time window)
permitted computation of the α exponents and constructing the
slope of the line relating F(n) to log(time window). Because of the
crossover phenomenon observed in the regression line α (Peng
et al., 1995), we split the regression line into two regions, the
short-term (α1) and long-term (α2) range. Alpha 1 represents the
slope of the regression within 1.25 h calculated as n = 2–16 points
and α2 the slope of the regression over 1.25 h from 16 to 144 data
points.

Statistical Analysis
We categorized the patients into type 1 and type 2 diabetes
and included a control group of healthy participants. We
used one-way analysis of variance (ANOVA) and the t-test
with Bonferroni–Holm correction for control of multiple
pairwise comparisons. The two-tailed paired Student’s t-test
permitted comparison between MDI and CSII data. Variables
are presented as means ± SD and their statistical significance
by a two-tailed test. Diabetes duration is given as median
(25th – 75th) percentile. Spearman’s correlation revealed the
strength of associations between dynamical indices and linear
regression analyses and their associations with conventional
GV measures. Multiple linear regression analysis used a
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core model (standardized regression coefficient denoted by β)
that consisted of the following covariates: age, sex, diabetes
duration, body mass index, carbohydrate intake, and antidiabetic
therapy (CORE MODEL). Antidiabetic therapy was coded:
1 = none, 2 = diet with/without oral agents, 3 = oral
agents with/without insulin and 4 = insulin alone. Stepwise
forward selection identified confounding variables (McNamee,
2005). The variance inflation factor (VIF) and Durbin-Watson
statistic ensured the absence of confounding effects. Results
at p < 0.05 were statistically significant. We applied the
Statistical Package for the Social Sciences software package
(version 17.0; SPSS, Chicago, IL, United States) for statistical
analyses.

RESULTS

Characteristics of Study Subjects
The summary of demographic and clinical characteristics of
the study cohort in Table 2 shows that patients with T2D
were significantly older (65.4 ± 8.2 years) than those with T1D
(43.3± 15.2 years) or the ND control subjects (44.3± 12.4 years),
but the age difference between the T1D and ND group was
not statistically significant. Diabetes duration (years) was shorter
in T2D [7.0 (3.0 – 12.0)] than in T1D [20.5 (14.8 – 29.0)],
and body mass index was higher in T2D than in T1D patients
(30.3 ± 4.8 vs. 25.3 ± 3.9 kg/m2). However, carbohydrate intake
and hemoglobin A1c (HbA1c %) were lower in T2D patients
than in patients with T1D; HbA1c (6.8 ± 1.0 vs. 7.7 ± 0.9),
whereas mean glucose levels did not significantly differ (p = 0.37)
between these two diabetes groups. As expected, the global GV
measured by %CV was markedly higher (p < 0.001) in the group
of T1D patients than in the T2D (36.9 ± 8.6 vs. 20.2 ± 7.4)
and ND (15.7 ± 3.5) groups. Likewise, SD was significantly
higher in the T1D than in the T2D and ND group. Consistent
with the data on glucose exposure and GV, the time spent in
target range was significantly longer (p < 0.001) in the ND
than in the T2D and T1D group (23.4 ± 1.0 vs. 17.4 ± 6.2 vs.
13.2± 3.8).

The Dynamics of CGM Tracings in the
Study Groups
Comparison of sample CGM tracings (Figure 1) obtained from
a non-diabetic control subject (Figure 1A) a patient with
T2D (Figure 1B), and T1D patient (Figure 1C) exemplified
that the selected dynamical indices are capable of expressing
differences in glucose dynamics between individual patients.
Despite well-controlled diabetes, as reflected by HbA1c < 7.0%
and mean glucose values < 9.4 mmol/l, significant glycemic
fluctuations in the CGM time series were evident in the two
diabetic patients. There SD2, AFE, α exponents increased, and
MSE values decreased, indicating altered glucose dynamics as
compared with that of the non-diabetic sample. Note, high PCP
metrics and low MSE index values correlated with large glycemic
fluctuations and loss of the information content of the glucose
signal.

Dynamical Indices in Diabetic Patients
and Non-diabetic Control Subjects
Figure 2 shows that the selected non-linear GV indices in
diabetic patients are significantly different (p < 0.05) from
those in non-diabetic subjects (ND). Moreover, except for SFE,
all other metrics of PCP geometry were higher in T1D than
in patients with T2D (Figures 2A,B). The SFE index did
not differ between the T1D and T2D group 2.51 ± 0.58 vs.
2.26 ± 0.64, p = 0.08). On the contrary, the MSE index values
(Figure 2C) increased significantly (p < 0.001) between groups
when moving from T1D (3.29 ± 0.83) to T2D (3.89 ± 1.19)
and finally to the ND group (5.31 ± 1.10). Lower MSE
indices correlated with higher %CV values (−0.313, p < 0.001).
These changes indicate a loss of complexity in the glucose
time series of diabetic patients. The two DFA α exponents
in Figure 2D were higher in diabetes compared to non-
diabetes, but among both diabetes groups, were higher in
patients with T1D than in those with T2D: α1 (1.95 ± 0.12 vs.
1.75 ± 0.12, p < 0.001) and α2 (1.38 ± 0.11 vs. 1.30 ± 0.15,
p = 0.017).

Correlations Among Indices From
Different Variability Domains
When we investigated the associations between the classical
PCP indices by Spearman’s correlation analysis (Table 3), we
found strong correlations of SD1 and SD2 with the AFE index
(r = 0.776–0.805, p < 0.001 for all). We noticed weak negative
associations between SD1 and SFE (r = −0.167, p = 0.026),
whereas those with SD2 (0.604, p < 0.001 were stronger. The
associations among MSE and the PCP indices were moderate
but inverse for SD1, SD2, SFE, and AFE, (r = −0.432 to −0.564,
p< 0.001), and with the exponent α1 (r =−0.401, p< 0.001) and
α2 (r =−0.385, p < 0.001).

Relationships Between Dynamical
Indices and Conventional Measures of
Global Glucose Variability
Linear regression analysis of dynamical variables against
conventional metrics of glycemic variability (Table 4) indicated
that the PCP descriptors SD1, SD2, and AFE, with the exception
of SFE, have a consistently closer and positive relationship with
%CV (β = 0.78–0.82, p < 0.001) than the DFA α exponents
(β = 0.47 and 0.41, p < 0.001). In contrast, the complexity
index, MSE, has a weak, negative relationship (β = −0.36 and
−0.38, p < 0.001) with %CV and SD. These results clearly show
that numerically higher PCP metrics and DFA exponents relate
to larger glucose fluctuations, whereas lower complexity index
values correlate with higher glycemic variability.

Dynamical Indices as Determinants of
the Quality of Glucose Control
We performed multiple regression analyses to assess the
independent effects of glucose dynamics on TIR as the quality
measure of glycemic control. We included %CV as the
conventional, linear measure of GV and the covariates age, sex
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TABLE 2 | Demographic and metabolic characteristics of diabetic patients and control subjects.

Characteristic Type 1 Diabetes Type 2 Diabetes Non-diabetes P- value

Patients (n) 22 143 12

Sex (male/female) 11/11 91/52 5/7

Age (years) 43.3 ± 15.2 65.4 ± 8.2∗∗∗,+++ 44.3 ± 12.4 <0.001

Diabetes duration (years) 20.5 (14.8 – 29.0) 7.0 (3.0 – 12.0)∗ NA <0.001

Body mass index (kg/m2) 25.3 ± 3.9 30.3 ± 4.8∗∗∗ 27.1 ± 4.1 <0.001

Carbohydrate intake (g/day) 211.8 ± 46.6 138.8 ± 50.7∗∗,+++ 185.6 ± 35.3 <0.001

Glucose exposure

Hemoglobin A1C (%) 7.7 ± 0.9+++ 6.8 ± 1.0∗∗∗,+++ 5.0 ± 0.3 < 0.001

Hemoglobin A1C (mmol/mol) 61 51 31

Mean glucose (mmol/l) 8.0 ± 1.7+++ 7.8 ± 2.0+++ 5.4 ± 0.5 <0.001

Glucose variability

Coefficient of variation (%) 36.9 ± 8.6+++ 20.2 ± 7.4∗∗∗,+ 15.7 ± 3.5 <0.001

Standard deviation (mmol/l) 2.9 ± 0.7+++ 1.6 ± 0.7∗∗∗,+++ 0.9 ± 0.2 <0.001

Quality of glycemic control

Time in target range (h/day) 13.2 ± 3.8+ 17.4 ± 6.2∗,+ 23.4 ± 1.0 <0.001

Data are mean ± SD or median (25th – 75th percentile) values. (NA), not applicable. The groups were compared using analysis of variance (ANOVA) and t-test with
Bonferroni–Holm correction. Differences between the groups: ∗∗p < 0.01, ∗∗∗p < 0.001 vs. type 1 diabetes and +p < 0.05, +++p < 0.001vs. non-diabetes.

FIGURE 1 | Analysis of samples of 48-h continuous glucose monitoring tracings obtained from (A) a non-diabetic control subject (ND), (B) a patient with type 2
diabetes (T2D) on sulfonylurea treatment, and (C) a type 1 diabetic (T1D) patient treated with multiple insulin injections. The columns (from left to right) show the
CGM profiles, detrended fluctuation analysis, and Poincaré plots. The glycemic characteristics and the dynamical indices derived from the glucose time series are
shown in Table 6. Note the increase in the Poincaré indices SD1, SD2, and AFE, the decrease in MSE as well as the increasing short- (α1) and long-term (α2) fractal
scaling exponent when moving from the non-diabetic subject down to the T1D patient.

diabetes duration, body mass index, carbohydrate intake, and
antidiabetic therapy (Supplementary Table 1, see link on this
article). In the fully adjusted regression models (model 2–5, 8) the

dynamical indices were associated with TIR. Out of these, models
2, 3, and 5 achieved an adjusted R2 of 0.39, 0.50, and 0.31 with
SD1 (β = −0.78), SD2 (β = −1.00), and AFE (β = −0.58); %CV
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β = 0.34, 0.47, and 0.11, respectively. The statistical significance
for SD1, SD2, and AFE was p < 0.001. These regression analyses
revealed that SD1, SD2, and AFE were the most powerful
predictor variables of the quality of glycemic control presented
as TIR. SFE (β = −0.29) and α2 (β = −0.32) were also significant
(both p < 0.001) but weaker predictors. The covariates age, sex,
diabetes duration, body mass index, carbohydrate intake, and
antidiabetic therapy, except for carbohydrate intake in model 4
and 8, failed to contribute significantly. MSE (model 6) was not
a significant predictor. In the regression models integrating the
variables AFE, SFE, and α2, %CV failed to contribute to TIR. The
variance inflation factors (≤3.5) and the Durban-Watson statistic
(1.8 – 2.1) confirmed the absence of significant collinearity.

Glucose Dynamics Before and After
Switching From Multiple Daily Insulin
Injections to Continuous Subcutaneous
Insulin Infusions
The transition from multiple daily insulin injections (MDI) to
continuous subcutaneous insulin infusions (CSII) in a subgroup
of 10 patients with T1D, reduced SD1, SD2, and the AFE index
except for SFE (Table 5). The significant reduction by roughly
50% in SD1, SD2, and AFE indicates an overall improvement in
PCP geometry. Whereas the MSE index decreased (3.09 ± 0.94
vs. 1.93 ± 0.40, p = 0.001), the DFA scaling exponents α1
(2.04 ± 0.06 vs. 2.09 ± 0.02, p = 0.05) and α2 (1.43 ± 0.11
vs. 1.57 ± 0.36, p = 0.16) did not significantly vary. These
latter results suggest a further loss of complexity and a
non-significant change in fractal-like behavior of the glucose
time series after initiation of insulin pump therapy. HbA1c
(range 7.3 – 10.3% at baseline) and the mean glucose levels
(range 6.2 – 12.1 mmol/l at baseline) did not significantly
change. As Table 5 further shows, the amplitude-based glucose
fluctuations, measured as %CV and SD, declined markedly
(p = 0.003 and 0.010, respectively). Likewise, the quality of
diabetes control ameliorated, as TIR increased from 13.0 to
17.7 h/day (p = 0.021). This result is consistent with the CGM
profiles in Figure 3, demonstrating lower glycemic amplitudes
and better glycemic control after the commencement of CSII
therapy (Figure 3B).

FIGURE 2 | Comparison of glucose variability indices in non-diabetes (ND),
type 2 (T2D), and type 1 diabetes (TD1) from the geometric, information, and
fractal scaling domains. Analysis of variance (ANOVA) and t-test with
Bonferroni–Holm correction gave the between-group differences as indicated:
∗p < 0.05, ∗∗∗p < 0.001 vs. type 2 diabetes and ++p < 0.01, +++p < 0.001
vs. non-diabetes.

DISCUSSION

Glucose time series may differ in individual diabetic patients
despite comparable HbA1c and mean glucose levels because such
clinical, linear measures are not appropriate to reveal the inherent
dynamics of the glucoregulatory system.

We demonstrate that several indices derived from the
geometric, information, and fractal scaling domains of variability
techniques can characterize the variability of glucose time
series in health and diabetes. Previous studies in the literature
(Yamamoto et al., 2010; Khovanova et al., 2013; Chen et al., 2014;
Costa et al., 2014; Weissman and Binah, 2014), using various
non-linear signal processing techniques, reported that glucose
dynamics appears reduced in patients with diabetes compared
with non-diabetic subjects. However, it is not known whether
the type and severity of diabetes or factors such as age, diabetes

TABLE 3 | Spearman correlation coefficients among measures of glucose dynamics.

Poincaré plot Multiscale Detrended fluctuation

entropy analysis

SD1 SD2 SFE AFE MSE α1 α2

Poincaré plot SD1 (short term) 1

SD2 (long term) 0.872 1

SFE (shape) −0.167 0.604 1

AFE (area) 0.776 0.805 0.365 1

Multiscale entropy MSE −0.432 −0.549 −0.437 −0.564 1

Detrended fluctuation analysis α1 (short term) 0.468 0.454 0.160 0.489 −0.401 1

α2 (long term) 0.270 0.600 0.780 0.433 −0.385 0.236 1

Correlations at the significance level of p < 0.001 are given in bold face; those at p < 0.05 (two-tailed) in regular type face.
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TABLE 4 | Linear regression analysis of indices of glucose dynamics against conventional measures of glycemic variability Coefficient of Variation (%CV) and Standard
deviation (SD).

%CV SD

β R2
adj P-value β R2

adj P-value

Poincaré plot SD1 0.82 0.67 <0.001 0.90 0.81 <0.001

SD2 0.82 0.67 <0.001 0.94 0.88 <0.001

SFE −0.34 0.11 <0.001 −0.44 0.19 <0.001

AFE 0.78 0.60 <0.001 0.86 0.74 <0.001

Multiscale entropy MSE −0.36 0.13 <0.001 −0.38 0.14 <0.001

Detrended α1 0.47 0.22 <0.001 0.43 0.14 <0.001

fluctuation analysis α2 0.41 0.16 <0.001 0.47 0.22 < 0.001

duration, BMI, and carbohydrate intake or antihyperglycemic
therapy may affect the dynamical behavior of glucose time series.
Regarding the natural history of diabetes, immune-mediated
destruction of the pancreatic β-cells leading to an irreversible
loss of the β-cell mass characterizes T1D, whereas in T2D a
progressive decline of β-cell function over time occurs with
rising insulin resistance and deterioration of glucose regulation.
Because of the diverse pathogenic mechanisms, T1D needs
insulin and is difficult to control, but those patients with T2D
are able to manage their disease mostly with a variety of oral
antihyperglycemic agents.

The indices derived from PCP and DFA analysis in the
present study provided qualitatively similar results with respect
to the differentiation of the glucose time series dynamics between
the two types of diabetes, i.e., the values for these indices be
significantly lower in the T2D than in the T1D group but were
lowest in the ND group. In contrast, the complexity index
calculated from MSE is highest in the ND group and lowest in
the T1D group. These data are also compatible with the increase

TABLE 5 | Comparison of dynamic and glycemic measures in type 1 diabetic
patients before and after initiation of continuous subcutaneous insulin infusion
therapy.

Before CSII At 6 months after P-value

initiation of CSII

Dynamic measures

SD1 (mmol/l) 1.66 ± 0.37 0.81 ± 0.19 <0.001

SD2 (mmol/l) 4.37 ± 0.74 2.47 ± 0.90 <0.001

SFE 2.75 ± 0.74 3.07 ± 0.86 0.17

AFE (mmol2/l2) 23.07 ± 7.18 6.48 ± 3.32 <0.001

MSE 3.09 ± 0.94 1.93 ± 0.40 0.001

α1 2.04 ± 0.06 2.09 ± 0.02 0.05

α2 1.43 ± 0.11 1.57 ± 0.36 0.16

Glycemic measures

HbA1c (%) 8.2 ± 0.85 7.7 ± 0.51 0.07

Mean glucose (mmol/l) 7.4 ± 1.2 7.5 ± 1.6 0.83

CV (%) 39.9 ± 8.5 24.3 ± 6.8 0.003

SD (mmol/l) 2.9 ± 0.6 1.8 ± 0.7 0.010

Time in range (h/day) 13.0 ± 3.0 17.7 ± 5.3 0.021

The number of patients was n = 10. Data are mean ± SD values. P-values are
two-tailed.

FIGURE 3 | Continuous glucose monitoring tracings obtained from patients
(n = 10) with type 1 diabetes (A) before and (B) 6 months after initiation of
insulin pump therapy. Tracings are shown for each patient with the average
curve in bold. The corresponding dynamic and glycemic measures are shown
in Table 5.

in glucose fluctuations (reduced non-linear autocorrelation) and
thus with the diminished glycemic stability observed in the
glucose profile structure of our T1D and T2D patient samples
(Figure 1). In so far PCP descriptors in T1D and healthy
control subjects are concerned, this is in agreement with a report
by Crenier (2014). Regarding the ratio of long-term to short-
term glucose time series variability, SFE was correspondingly
higher in patients with T1D than in the non-diabetic subjects.
Numerically high PCP indices unequivocally point toward
dynamical instability in the glucoregulation. Nevertheless, the
indices SD1, SD2, and AFE of PCP analysis quantify linear
rather than non-linear features of the underlying time series
(Brennan et al., 2001; Fishman et al., 2012). Consistent with the
changes that occurred in the PCP geometry, the decreased MSE,
and the altered DFA plots with increased α1 and α2 exponents
observed in the T1D group further indicate significant alterations
in the feedback mechanism that is less able to diminish glucose
fluctuations in patients with T1D than in those with T2D.

Frontiers in Physiology | www.frontiersin.org 7 September 2018 | Volume 9 | Article 1257

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01257 September 4, 2018 Time: 19:14 # 8

Kohnert et al. Variability Analysis Techniques in Diabetes

TABLE 6 | Summary of characteristics and metrics of the continuous glucose monitoring profiles shown in Figure 1 for a non-diabetic control subject (ND), a patient
with type 2 diabetes (T2D), and a type 1 diabetic patient (T1D).

ID Group Diabetes duration HbA1c (%) Mean glucose CV (%) SD1 SD2 AFE MSE α1 α2

(years) (mmol/l) (mmol/l) (mmol/l) (mmol2/l2)

777773 ND NA 5.1 5.6 23.42 0.81 2.00 5.08 5.47 1.81 1.32

128701 T2D 13 6.1 6.1 26.27 1.11 2.39 8.31 4.66 1.83 1.24

125264 T1D 29 6.8 8.7 32.37 1.48 3.67 17.06 2.86 2.02 1.53

Our previous results demonstrated that the β-cell function
is an independent predictor of glucose time series dynamics as
measured by the DFA alpha exponents (Kohnert et al., 2014).
Thus, the reduced glucose dynamics in the T1D versus the
T2D patient group allows the assumption that worsening of the
glucoregulation is partly due to the loss of the β-cell secretory
capacity, whereas the remaining β-cell reserve prevents such
derailment in T2D. The variability indices from the different
domains correlated weakly or moderately to one another. As
one could expect, the strongest correlations existed between the
PCP indices within the geometric domain. The unexpectedly
weak correlation across the variability domains suggests that
the indices are not interchangeable. These correlations are in a
way comparable with those found for the cardiac interbeat time
series (Bassi et al., 2015) because the information retrieved from
PCP and from DFA analysis show structural correlations of the
underlying dynamics. By the multivariate regression analyses,
we disclosed that the measures of glucose profile dynamics are
independent predictors of the quality of glucose control, as
defined by the time spent in target range (TIR). The analyses
showed that the PCP indices SD1, SD2, and AFE along with
%CV were independent determinants of TIR (Supplementary
Table 1). Sex, age, diabetes duration, BMI, carbohydrate intake,
and antidiabetic treatment had, if any, no substantial influence.
Of note, we found that SD1, SD2, and AFE explained 35, 44,
and 29%, respectively, of the interindividual variance in TIR
compared to an additional 3–8% defined by the %CV. The
variables SFE and α2, even significant in the regression models,
were weaker predictors, explaining 17 and 21% of TIR. Moreover,
the regression models (4, 5, and 8) including SFE, AFE, and
α2 demonstrate that these measures predicted the quality of
glycemic control, whereas the overall glycemic variability as
measured by %CV was not a significant predictor. The MSE did
not determine TIR which indicates that this index is not useful in
the assessment of the quality of glycemic control. Therefore, the
evaluated indices do not reflect purely the global GV, although
they relate to conventional measures of GV. Methods analyzing
the fluctuation of glucose time series are not detecting the
same phenomena as those methods that identify amplitude-
based glycemic variability. Indeed, a loss in glucose time series
dynamics gives rise to increased overall glycemic variability
(Garcia Maset et al., 2016). Although strongly correlated with
SD (in our study r = 0.876, p < 0.0001), we chose %CV for
our regression models as the standard metric of GV in clinical
research (Rodbard, 2018) to compare its effect on TIR with those
indices from the different variability domains. We used TIR as
an established and clinically useful indicator of the quality of

glycemic control, reflecting the time in predefined target ranges
(Bergenstal et al., 2013 and Rodbard, 2018).

Finally, we investigated the dynamics of glucose time series in
a cohort of T1D patients in response to insulin pump therapy.
CSII yielded a marked improvement in the PCP geometry–
consistent with the report by Crenier (2014), except for the SFE
descriptor, with a corresponding decrease in glycemic variability
(calculated as %CV and SD) and increased quality of glycemic
control as evaluated using TIR. Although HbA1c did not
significantly change and mean glucose not markedly drop (Vogt
et al., 2016), one may conclude that overall glycemia improved
because of reduced glycemic variability and increased TIR. Of
note, however, the MSE index decreased, whereas the DFA long-
term exponent α2 tended to increase. This is an unexpected
result, and we do not have any plausible explanation, because
healthier glycemic dynamics are associated both with higher MSE
values and lower α exponents (see Figures 2C,D). Nevertheless,
these finding suggests that even 6 months of CSII could not halt
the loss of glucose time series complexity and fractal structure in
glucose dynamics. In other words, CSII therapy is inappropriate
to reverse glucose dynamics to those of non-diabetic subjects.
We assume that owing to the absolute β-cell insulin deficiency in
T1D, the glucoregulatory system remains insufficient to correct
defective glucose dynamics. Islet transplantation rather than
insulin pump therapy would offer restoration of the β-cell
function (Vantyghem et al., 2014). Whether such therapy can
restore glucose complexity and the fractal structure is not known
and requires appropriate clinical studies.

This study has limitations in as much as it is retrospective in
nature, and the number of subjects in the T1D and ND group is
relatively small. Furthermore, the follow-up time in the patients
after insulin pump therapy appears too short to allow restitution
of glucose complexity and the fractal structure of glucose time
series. In patients with T2D, for example, β-cell function began to
increase not until after 12 months of CSII therapy (Choi et al.,
2013). The strength of the investigation is the use of indices
from different variability domains and classical GV measures
as well as the inclusion of both patients with T1D and T2D to
enable comparison of glucose dynamics between distinct types of
diabetes.

In summary, this study provides evidence that glucose time
series dynamics differ between the two primary forms of diabetes.
The loss of complexity is more pronounced in T1D than in T2D,
which we anticipate is due to differences in the β-cell pathology.
Insulin pump therapy for 6 months can not reverse multiscale
dynamics toward those of non-diabetic subjects because of the
failure to mimic healthy patterns of insulinemia. Our findings,
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which corroborate and extend previous work by others, also
emphasize the need for using an ensemble of indices from various
variability domains to characterize glucose time series more
specifically. Moreover, we show that a combination of several
dynamical metrics and classical GV measures has the potential
to assess both the natural glucoregulatory system and quality of
blood glucose control which may help in approaching diabetes
treatment on a personalized basis.
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