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Abstract: Biotransformation of organophosphorus flame retardants (OPFRs) mediated by cytochrome
P450 enzymes (CYPs) has a potential correlation with their toxicological effects on humans. In this
work, we employed five typical OPFRs including tris(1,3-dichloro-2-propyl) phosphate (TDCIPP),
tris(1-chloro-2-propyl) phosphate (TCIPP), tri(2-chloroethyl) phosphate (TCEP), triethyl phosphate
(TEP), and 2-ethylhexyl diphenyl phosphate (EHDPHP), and performed density functional theory
(DFT) calculations to clarify the CYP-catalyzed biotransformation of five OPFRs to their diester
metabolites. The DFT results show that the reaction mechanism consists of Cα-hydroxylation and
O-dealkylation steps, and the biotransformation activities of five OPFRs may follow the order of
TCEP ≈ TEP ≈ EHDPHP > TCIPP > TDCIPP. We further performed molecular dynamics (MD)
simulations to unravel the binding interactions of five OPFRs in the CYP3A4 isoform. Binding mode
analyses demonstrate that CYP3A4-mediated metabolism of TDCIPP, TCIPP, TCEP, and TEP can
produce the diester metabolites, while EHDPHP metabolism may generate para-hydroxyEHDPHP
as the primary metabolite. Moreover, the EHDPHP and TDCIPP have higher binding potential to
CYP3A4 than TCIPP, TCEP, and TEP. This work reports the biotransformation profiles and binding
features of five OPFRs in CYP, which can provide meaningful clues for the further studies of the
metabolic fates of OPFRs and toxicological effects associated with the relevant metabolites.

Keywords: organophosphorus flame retardant; P450 enzyme; biotransformation; density functional
theory calculations; molecular dynamics simulations

1. Introduction

To improve the fire resistance of household products and fulfill the increasingly rigor-
ous flammability standards, flame retardants (FRs) are often used as additives in various
consumer supplies, such as furniture foam, infant products, textiles, and electronics [1–3].
The polybrominated diphenyl ethers (PBDEs) have been widely used in polyurethane foam
for many years as the mainstream FRs [4]. Since the mid-2000s, PBDEs have been phased
out in many countries due to their bioaccumulation, persistence, and toxicity to humans,
and thereafter the interest in the alternatives of PBDEs such as organophosphate flame
retardants (OPFRs) has been growing [5–7]. With the rapid increase in OPFRs production
in recent years, global consumption reached 500,000 tons in 2011 and was estimated to be
680,000 tons in 2015 [8]. Because OPFRs are usually water-soluble and are not covalently
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bound to materials, they thus can easily discharge into the environment through wear,
volatilization, and dissolution during use [9,10].

OPFRs have been widely detected in various environmental media, such as indoor
and outdoor air, water, soil, dust, and sediments [3,11–17], and the levels of OPFRs in the
indoor environment are significantly higher than those of brominated flame retardants
(BFRs) [18]. Humans may be exposed to OPFRs through breathing, skin contact, and
dietary intake, which has potential adverse effects on health [19]. Actually, OPFRs have
been detected in human hair, breast milk, and urine samples [20–23]. Toxicological studies
have shown that the long-term exposure of OPFRs to animals may lead to adverse effects
on their reproductive and endocrine system [24–27]. In the exposure experiment using a
rat brain sphere in vitro model, the enhancive expressions of cytokine gene and receptor
demonstrate that OPFRs may induce an inflammatory response [28]. Moreover, OPFRs
exposure may reduce the proliferation and growth of human neural stem cells, rat neuronal
growth, and network activity [29].

Cytochrome P450 enzymes (CYPs) are phase-I metabolic enzymes involving primar-
ily in the biotransformation of xenobiotic compounds in diverse organisms, which may
substantially change the toxicological and physicochemical properties of OPFRs through
metabolism [30]. The OPFRs can be metabolized by CYPs to produce hydroxylated metabo-
lite and diester metabolite via the competitive C-hydroxylation and O-dealkylation re-
actions [31,32]. Although the structural differences among OPFRs can result in various
mono-/di-hydroxylated metabolites, diester may be produced as the common metabo-
lite. For instance, both human and Brevibacillus brevis CYPs can metabolize triphenyl
phosphate (TPHP) into diphenyl phosphate (DPHP) as the important metabolite, and
CYP1A2 and CYP2E1 isoforms are mainly involved in the metabolism in human liver
microsomes (HLMs) [6,33]. Incubation of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP)
with HLMs results in the formation of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and
other metabolites of oxidative dehalogenation [32], and CYP3A4 shows the highest activity
toward TDCIPP metabolism [34]. Indeed, 2-ethylhexyl diphenyl phosphate (EHDPHP) can
be transformed by human CYPs into mono- and di-hydroxylated metabolites, keto metabo-
lites, and diphenyl phosphate (DPHP) as major phase-I outputs [35]. Chen et al. further
reported CYP3A4 to be the major activating enzyme involved in EHDPHP metabolism [36].
Hou et al. reported the in vitro metabolism kinetics of tris(2-butoxyethyl) phosphate
(TBOEP) and tris(n-butyl) phosphate (TNBP) and identified CYP3A4 and CYP1A as the
major CYP isoforms catalyzing the metabolism in fish liver microsomes [37]. However, to
date there are few studies have explored the CYP-mediated biotransformation mechanism
and reactivity of OPFRs in-depth, and binding interactions between OPFRs and specific
CYP isoforms remain unclear, and deserve further research.

In the past two decades, molecular modeling techniques, such as molecular dynamics
(MD) simulations and quantum chemical calculations, have been extensively used to shed
light on the binding and metabolism of xenobiotics in various biomacromolecules including
CYPs [38–43]. In this work, five OPFRs detected widely in the environment, including
TDCIPP, tris(1-chloro-2-propyl) phosphate (TCIPP), tris(2-chloroethyl) phosphate (TCEP),
triethyl phosphate (TEP), and EHDPHP (Figure S1 in the Supplementary Materials), were
employed to investigate the reaction mechanism leading to their diester metabolites through
the density functional theory (DFT) calculations. Further MD simulations and binding free
energy calculations were performed to predict the binding features and affinities of five
OPFRs in CYP3A4, and to confirm the DFT results.

2. Computational Procedures
2.1. Model System

The reactive iron(IV)−oxo porphyrin species Compound I (Cpd I) of CYP was mim-
icked by a simplified model, Fe4+O2−(C20N4H12)−1(HS)−1, to unravel the mechanistic
details of biotransformation of 5 OPFRs. Numerous previous studies have proven the high
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reliability and effectiveness of this simple model to accurately reproduce the electronic
structures and reactivity of Cpd I [44–47].

2.2. DFT Methodology

All DFT calculations were performed by Gaussian 09 program [48]. The geometry
optimizations and frequency analyses were carried out using the spin-unrestricted UB3LYP
functional [49–51], integrating the LANL2DZ pseudopotential basis set [52] for the Fe atom
and 6-31G(d,p) basis set [53] for other atoms (denoted BS1). Frequency analyses were
used to obtain the thermal corrections to the Gibbs free energy, and to confirm the nature
of all optimized geometries, among which all reactant/intermediate structures showed
only real frequencies and the transition states had a single imaginary frequency. Based on
the optimized geometries, single-point energy (SPE) calculations were performed using a
larger def2-TZVP basis set [54] for all atoms (BS2) to obtain more accurate energies. Disper-
sion corrections were introduced into SPE calculations using the DFT-D3(BJ) method [55]
to further improve the accuracies of B3LYP energies. Furthermore, the SMD solvation
model [56] with nonpolar chlorobenzene and polar water was used to implicitly simulate
CYP active site and aqueous-phase surroundings at the UB3LYP-D3/BS2 level, respectively.
The relative energies reported in this work are thus the single-point energies with the
inclusion of solvation and dispersion effects and Gibbs free energy corrections. It should
be noted that Cpd I shows two closely lying spin states, including high-spin (HS) quartet
and low-spin (LS) doublet states [57,58], and thus the energy profiles of biotransformation
routes of 5 OPFRs were evaluated in both HS and LS states.

2.3. Molecular Docking

We selected CYP3A4 as the potential receptor of OPFRs because this isoform has a
higher abundance and larger active pocket than the other CYPs in human liver tissue [59–61].
Moreover, in vitro experiment has identified CYP3A4 as the major CYP isoform catalyzing
the metabolism of TDCIPP and EHDPHP [34,36]. CYP3A4 may also be involved in the
metabolism of TCIPP, TCEP, and TEP due to the structural similarity of these 3 OPFRs
with TDCIPP.

On the basis of the crystal structure of human 3A4 (PDB code: 2v0m) obtained from
the Protein Data Bank (https://www.rcsb.org/, accessed on 15 April 2021) [59,62], molecu-
lar docking simulations were performed using Autodock Vina program [63] to construct
the initial 3A4-OPFR binding complexes. Before docking, the bound ligand and water
molecules in 3A4 were manually removed, and then the missing residues were comple-
mented using the Chimera program [64]. During the docking, CYP3A4 was kept as the
rigid receptor, while OPFRs were set as the flexible ligand. The grid box with suitable
three dimensions was set to accommodate the ligand and CYP active site. The obtained
5 CYP3A4-OPFR complexes with the lowest binding affinities were shown in Figure S2,
which were selected as the initial conformations for the following MD simulations.

2.4. Molecular Dynamics Simulations

All MD simulations were carried out using Amber12 program [65] with the ff14SB
force field [66]. In CYP3A4, all Asp and Glu residues were set to be deprotonated, while
all Lys and Arg were set to be protonated. The protonation states of all His residues were
determined based on the predicted pKa values by the PDB2PQR Server [67] and the visual
inspections of surrounding hydrogen-bonding networks. Specially, His30, His54, His65,
His287, and His402 were singly Nε-protonated, His324 was singly Nδ-protonated, and
His267 was doubly Nδ- and Nε-protonated. The force field parameters of 5 OPFRs were
generated using the Antechamber module of AmberTools. All CYP3A4-OPFR complexes
were solvated using the truncated octahedral TIP3P water box [68], and then the generated
solvation models were neutralized by adding counterions. Before the production simu-
lation, each solvated system was pre-equilibrated through 4000 ps energy minimization,
500 ps heating from 0 K to 300 K, 500 ps density equilibration at 300 K, and then 1000 ps

https://www.rcsb.org/
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constant pressure equilibration at 300 K. The final production simulations with different
time scales were performed to equilibrate the solvated systems.

2.5. Binding Free Energy Calculations

After the production simulations, 200 snapshots were extracted from the last 20 ns MD
trajectories to calculate the binding free energies (∆Gbind) between CYP3A4 and OPFRs.
Based on the molecular mechanics/generalized Born surface area (MM/GBSA) method [69],
∆Gbind was calculated using the following Equations (1)–(4):

∆Gbind = Gcomplex − (GCYP3A4 + GOPFRs) (1)

Gbind = EMM + Gsolv − TS (2)

EMM = Eele + EvdW (3)

Gsolv = GGB + GSA (4)

Gcomplex, GCYP3A4, and GOPFRs refer to the free energies of the binding complex,
CYP3A4, and OPFRs, respectively. EMM represents the molecular mechanics energy in the
gas phase, consisting of electrostatic energy (Eele) and van der Waals interaction energy
(EvdW). Gsolv refers to the solvation free energy, which can be divided into a polar term
(GGB) and a nonpolar term (GSA). TS is the entropy contribution. The calculated ∆Gbind can
be used to compare the binding affinities of different OPFRs in CYP3A4. Furthermore, the
active site residues contributing significantly to the ligand-binding were also identified by
binding energy decomposition calculations (energy contribution < −1.0 kcal/mol), which
is essential for understanding the molecular mechanism of ligand-receptor binding [70].

3. Results and Discussion
3.1. Biotransformation Profiles of OPFRs by CYP

Biotransformation of TDCIPP to BDCIPP. Previous studies have detected BDCIPP
as the main product in the phase-I metabolism of TDCIPP [1,71,72], and CYPs may be
involved in the metabolic process [32]. Our calculations confirm that the biotransforma-
tion of TDCIPP to BDCIPP proceeds through the Cpd I-mediated C-hydroxylation and
intramolecular O-dealkylation processes. C-Hydroxylation begins with the hydrogen atom
transfer (HAT) from Cα atom (denoted C1) of TDCIPP to FeIV=O unit of Cpd I, generating
an unstable C1-radical intermediate (IM1-H) with reduced FeIV-OH species. C1-radical
further captures OH from FeIV-OH to form a hydroxylated intermediate (IM1-OH) with
resting FeIII-porphyrin species. Subsequently, IM1-OH undergoes O-dealkylation to produce
the final diester metabolite BDCIPP (PBDCIPP) with 1,3-dichloroacetone.

The free energy profiles for biotransformation of TDCIPP and the optimized geome-
tries of relevant reaction species in both HS and LS states are shown in Figure 1, and the
structural characteristics of transition states of HAT and OH rebound are also summa-
rized in Table S1. HAT proceeds through a transition state TS1-H with an LS/HS energy
barrier of 27.89/27.52 kcal/mol relative to the reactant complex (RC). The formation of
intermediate IM1-H is endothermic by 5.73 kcal/mol in the LS state, while it is exothermic
by 3.05 kcal/mol in the HS state. The subsequent OH rebound to C1-radical is essentially
a barrier-free process, although it undergoes a transition state 4TS1-OH with a tiny barrier
of 0.36 kcal/mol in the HS state. The collapse of IM1-H to IM1-OH is strongly exothermic,
which facilitates the follow-up O-dealkylation of IM1-OH. As shown in Figure 2b, the
intramolecular O-dealkylation proceeds through H2O-assisted proton transfer from OH
to P=O group, undergoing a transition state TSBDCIPP with a barrier of 8.26 kcal/mol to
generate the exothermic PBDCIPP.

Biotransformation of TCIPP to BCIPP. TCIPP shows highly structural similarity with
TDCIPP, and therefore they may have similar metabolic routes. Figure 2 shows the free en-
ergy profiles for biotransformation of TDCIPP to bis(1-chloro-2-propyl) phosphate (BCIPP).
The LS and HS barriers of HAT are calculated to be 24.27 and 21.17 kcal/mol, respectively,
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which are lower than those in TDCIPP metabolism (27.89 and 27.52 kcal/mol). The barrier
difference may be attributed to the chlorine substituent. Compared with TDCIPP, TCIPP
has only one chlorine substituent in each alkyl side chain, which may reduce the steric
hindrance effect and further enhance the reactivity of C1-hydroxylation. The barrier-free
collapse of C1-radical intermediate IM1-H results in the hydroxylated intermediate IM1-OH
with a dramatically exothermic effect (51.81 to 58.20 kcal/mol relative to the respective RCs).
The H2O-assisted O-dealkylation of IM1-OH undergoes transition state TSBCIPP with an
energy barrier of 7.64 kcal/mol to yield the exothermic product PBCIPP with chloroacetone
(Figure 2b).
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Biotransformation of TCEP to BCEP. TCEP can undergo C1-hydroxylation and O-
dealkylation to produce bis(2-chloroethyl) phosphate (BCEP) and chloroacetaldehyde
as metabolites. The free energy profiles are shown in Figure 3. The LS/HS barrier of
HAT is 18.04/16.78 kcal/mol, much smaller than those in TDCIPP (27.89/27.52 kcal/mol)
and TCIPP (24.27/21.17 kcal/mol) biotransformation, suggesting that TCEP has higher
metabolic activity to form the diester metabolite. After OH rebound, the resultant formation
of IM1-OH is strongly exothermic by 55.89/55.59 kcal/mol. Moreover, the O-dealkylation of
IM1-OH proceeds through transition state TSBCEP with barrier of 7.45 kcal/mol to form the
exothermic PBCEP.
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Biotransformation of TEP to DEP. Compared with TCEP, TEP has no chlorine sub-
stituent in its ethyl groups. The HAT barrier of TEP is 17.34/17.58 kcal/mol in the LS/HS
state (Figure 4), which is comparable with that of TCEP (18.04/16.78 kcal/mol), sug-
gesting that chlorine substituent is incapable of differentiating the metabolic activities
of TCEP and TEP. OH rebound in HS surface cross the transition state 4TS1-OH with a
minor barrier of 2.25 kcal/mol to yield exothermic C1-hydroxyTEP, followed by the H2O-
triggered O-dealkylation of IM1-OH to generate the exothermic diethyl phosphate (DEP)
with acetaldehyde.
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Biotransformation of EHDPHP to DPHP. The free energy profiles of biotransforma-
tion of EHDPHP to DPHP are shown in Figure 5. The corresponding HAT barrier is
17.48/16.89 kcal/mol in the LS/HS surface, which has a slight difference with those of
TCEP and TEP (18.04/16.78 and 17.34/17.58 kcal/mol). The results state clearly that these
three OPFRs have comparable metabolic activities leading to their diester metabolites.
The formation of remarkably exothermic IM1-OH facilitates the ensuing O-dealkylation to
produce exothermic DPHP with 2-ethylhexanal. Moreover, the C1-hydroxyEHDPHP has
much smaller O-dealkylation barrier than the other 4 C1-hydroxyOPFRs (0.27 vs. 6.80 to
8.26 kcal/mol). It is notable that prior studies have confirmed that TPHP containing three
phenyl groups can be transformed to diester metabolite DPHP by CYPs [6,32]. Given the
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structural similarity of EHDPHP with TPHP, it is also possible that EHDPHP metabolism
produce 2-ethylhexyl phenyl phosphate (EHPHP) as another diester metabolite.
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Figure 5. Free energy profiles for (a) C1-hydroxylation of EHDPHP to IM1-OH by Cpd I and (b) O-
dealkylation of IM1-OH to DPHP, along with the optimized geometries of relevant reaction species in
HS and LS states. Bond lengths are given in angstroms, while relative energies are given in kcal/mol.

Overall, these results demonstrate that the HAT barriers are much higher than the O-
dealkylation barriers for these 5 OPFRs, suggesting HAT to be the rate-determining step of
biotransformation routes. The O-dealkylation of hydroxyOPFRs is a moderately exothermic
process with a relatively low energy barrier, facilitating the formation of diester metabolites. In
addition, a comparison of HAT barriers of 5 OPFRs reveals that the metabolic activity towards
diester metabolites may follow the order of TCEP ≈ TEP ≈ EHDPHP > TCIPP > TDCIPP.
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3.2. Binding Modes of 5 OPFRs in CYP3A4

We further selected CYP3A4 isoform as a potential receptor of OPFRs and performed
MD simulations to unravel the binding interactions between OPFRs and CYP3A4 and
confirm the DFT results discussed above. We calculated the root-mean-square deviations
(RMSDs) of CYP3A4 and the bound OPFRs to evaluate the conformational stability of
the binding complexes. The smooth RMSD curves indicate the dynamic equilibrium of
binding conformations along the simulation time (Figure S3). Figure 6 shows the averaged
binding conformations extracted from the last 20 ns MD trajectories. Structural analyses of
the binding conformations reveal that CYP3A4 can trap the flexible OPFRs into the active
pocket, and thus it may have the potential to metabolize OPFRs.
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OPFRs binding are shown in the images, and corresponding binding energy contributions are given
in kcal/mol and shown in the brackets. Distances are given in angstroms.

Among the 5 binding complexes, OPFRs show different binding features. Except for
EHDPHP, the remaining 4 OPFRs can orientate one of their Cα atoms (denoted C1 above)
toward the Fe=O unit. As shown in Figure 6, the averaged distances between the H atom
linked to Cα atoms and the O atom of the Fe=O unit are calculated to be 3.05, 2.75, 2.90,
and 3.17 Å for TDCIPP, TCIPP, TCEP, and TEP, respectively, which state clearly that the Cα

atoms of these 4 OPFRs are the preferred sites of metabolism by CYP3A4 to yield their Cα-
hydroxylated metabolites, followed by O-dealkylation to generate the diester metabolites.
These results accord well with the DFT results discussed above. Interestingly, for the
CYP3A4-EHDPHP complex, the Cα atom of the 2-ethylhexyl group of EHDPHP stays away
from the Fe=O unit, rejecting undoubtedly the formation of DPHP metabolite. However,
the averaged distance between the para-H atom of phenyl and the O atom of Fe=O is 3.35 Å,
facilitating the preferential formation of para-hydroxyEHDPHP metabolite. Therefore, we
conclude that DPHP is not the candidate metabolite involved in the CYP3A4-mediated
metabolism of EHDPHP.
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3.3. Binding Affinities of 5 OPFRs in CYP3A4

Based on the last 20 ns MD snapshots, we calculated the binding free energies (∆Gbind)
to estimate the binding affinities of 5 OPFRs in CYP3A4. The calculated ∆Gbind and its
energy components for 5 CYP3A4-OPFR complexes are shown in Table 1. Among the
5 OPFRs, EHDPHP has the most negative value of ∆Gbind (−26.71 kcal/mol), followed
by TDCIPP (−25.02 kcal/mol), TCIPP (−20.70 kcal/mol), TCEP (−13.32 kcal/mol), and
TEP (−12.59 kcal/mol). Consequently, the binding affinities of OPFRs in CYP3A4 follow
the order of EHDPHP > TDCIPP > TCIPP > TCEP > TEP. The further energy decompo-
sition of ∆Gbind indicates that the van der Waals interaction energies (∆EvdW: −25.28 to
−43.85 kcal/mol) possess the most significant contribution to OPFRs binding, followed
by the nonpolar solvation free energies (∆GSA: −4.02 to −6.88 kcal/mol) and electrostatic
interaction energies (∆Eele: −0.56 to −4.55 kcal/mol) that have only minor contributions.
Instead, entropy component (T∆S: −15.64 to −21.72 kcal/mol) and polar solvation free
energies (∆GGB: 2.92 to 6.30 kcal/mol) show negative contributions to OPFRs binding.

Table 1. Binding free energies between CYP3A4 and OPFRs.

CYP OPFRs
Energy Components (kcal/mol)

∆Eele ∆EVDW ∆GGB ∆GSA T∆S ∆Gbind

3A4

TDCIPP −4.55 −40.92 6.30 −5.67 −19.82 −25.02
TCIPP −0.56 −35.35 2.92 −4.93 −17.22 −20.70
TCEP −3.15 −27.70 4.59 −4.23 −17.17 −13.32
TEP −2.44 −25.28 3.51 −4.02 −15.64 −12.59

EHDPHP −3.31 −43.85 5.61 −6.88 −21.72 −26.71

3.4. Effects of CYP3A4 Active Site Residues on OPFRs Binding

Based on the binding energy decomposition calculations, we further identified the key
CYP3A4 residues contributing significantly to OPFRs binding (Figure 6). Residues with an
energy contribution value of less than −1 kcal/mol are regarded as the key residues [73].
The binding conformations of 5 OPFRs have certain differences in the CYP3A4 active
site, and only hydrophobic Ile301 and Phe304 are the shared residues contributing to the
binding of these ligands. In particular, Ile301 residue gives the major driving force for the
binding of TDCIPP, TEP, and EHDPHP with energy contributions of −2.21, −1.53, and
−2.54 kcal/mol (Figure 6a,d,e). Besides, Arg105 residue plays important role in promoting
the binding of TDCIPP, TCIPP, and EHDPHP, while it has no contribution to binding
TCEP and TEP. Compared with TECP and TEP, TDCIPP and TCIPP have more complex Cl-
substituted alkyl groups, and thus their binding involves more key residues. Seven residues
provide important contributions to TDCIPP binding, including Arg105, Ser119, Leu211,
Phe241, Ile301, Phe304, and Leu482 (Figure 6a). TCIPP has only one Cl substituent in each
propyl group compared with TDCIPP, and six residues are considered to be important
to its binding, including Arg105, Ser119, Ile301, Phe304, Ala370, and Leu482 (Figure 6b).
Further analysis shows that 5 shared residues (Arg105, Ser119, Ile301, Phe304, and Leu482)
contribute significantly to the binding of both TDCIPP and TCIPP, which suggests that the
different Cl substitution effects can moderately differentiate their binding features. For CYP3A4-
EHDPHP complex, a total of 8 key residues are identified to contribute EHDPHP binding,
including Arg105 (−1.50 kcal/mol), Phe108 (−2.23 kcal/mol), Ile120 (−1.17 kcal/mol), Leu211
(−2.00 kcal/mol), Phe241 (−1.44 kcal/mol), Ile301 (−2.54 kcal/mol), Phe304 (−1.30 kcal/mol),
and Leu482 (−1.39 kcal/mol) (Figure 6e). The number of key residues with significant
contributions in the CYP3A4-EHDPHP complex is higher than that in other complexes, and
thus EHDPHP shows a stronger binding affinity to CYP3A4. Moreover, EHDPHP orients
one of its phenyl groups toward Cpd I and moves the other two side chains into a cavity
formed by the hydrophobic residues. Actually, except for Arg105 and Ser119, the other key
residues are hydrophobic in CYP3A4-OPFR complexes, which can provide a hydrophobic
cavity to stabilize the ligands binding.



Molecules 2022, 27, 2799 12 of 15

4. Conclusions

CYP-catalyzed biotransformation of OPFRs may alert their environmental behavior and
toxicological effects, and thus the identification of biotransformation profiles and relevant
metabolites can provide meaningful guidance for environmental risk assessment of OPFRs
exposure. In this work, we first performed quantum chemical calculations to unravel the
biotransformation mechanism of OPFRs to their diester metabolites. The results show that
Cpd I-mediated biotransformation of OPFRs undergoes Cα-hydroxylation comprising of rate-
determining HAT and barrier-free OH rebound to generate Cα-hydroxyOPFRs, followed by
H2O-triggered O-dealkylation to yield the respective diester metabolites. Metabolic activities
of OPFRs follow the order of TCEP ≈ TEP ≈ EHDPHP > TCIPP > TDCIPP. Compared with
the energy profile of TCIPP biotransformation, the extra Cl substituent in TDCIPP enhances
the HAT barrier and thus reduces the metabolic activity toward BDCIPP. However, the Cl
substitution cannot differentiate the reactivity of TCEP and TEP.

We further performed MD simulations to explore the binding interactions of OPFRs in
CYP3A4 at the molecular level. The MD results demonstrate that CYP3A4 can accommodate
these 5 OPFRs with varying binding features. Binding mode analyses indicate that the Cα

atoms of TDCIPP, TCIPP, TCEP, and TEP are the preferred sites of metabolism leading to their
diester metabolites, while EHDPHP may have more preference for para-hydroxyEHDPHP
metabolite rather than DPHP. Based on the binding free energy calculations, we estimate the
binding affinities in the order of EHDPHP > TDCIPP > TCIPP > TCEP > TEP and van der
Waals interactions contribute to the major driving forces for OPFRs binding. Furthermore,
the hydrophobic residues in the CYP3A4 active site play a crucial role in stabilizing the
OPFRs binding, among which Ile301 and Phe304 are the common key residues contributing
to the binding. Overall, the present work reports the CYP-mediated biotransformation pro-
files of OPFRs to their diester metabolites, which may provide an essential understanding
of the metabolic fates of OPFRs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27092799/s1, Figure S1: Structural diagram of 5 OPFRs
used in this work; Figure S2: Optimal docking conformations of OPFRs in 3A4 active site; Figure S3:
Root mean square deviations (RMSDs) of 5 CYP3A4-OPFR complexes; Table S1: Structural charac-
teristics and activation energy barriers of the transition states of hydrogen atom transfer and OH
rebound; Tables S2–S6: Absolute energies and relative energies for the reaction species involved
in Cpd I-catalyzed biotransformation of OPFRs to diesters; Tables S7–S11: Calculated spin densi-
ties for the molecular species involved in OPFRs C1-hydroxylation; Cartesian coordinates of all
DFT-optimized structures.
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