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Abstract Heart failure is rapidly increasing in prevalence and will redraw the global landscape for cardiovascular health.
Alleviating and repairing cardiac injury associated with myocardial infarction (MI) is key to improving this burden.
Homing signals mobilize and recruit stem cells to the ischaemic myocardium where they exert beneficial paracrine
effects. The chemoattractant cytokine SDF-1a and its associated receptor CXCR4 are upregulated after MI and ap-
pear to be important in this context. Activation of CXCR4 promotes both cardiomyocyte survival and stem cell mi-
gration towards the infarcted myocardium. These effects have beneficial effects on infarct size, and left ventricular
remodelling and function. However, the timing of endogenous SDF-1a release and CXCR4 upregulation may not
be optimal. Furthermore, current ELISA-based assays cannot distinguish between active SDF-1a, and SDF-1a inacti-
vated by dipeptidyl peptidase 4 (DPP4). Current therapeutic approaches aim to recruit the SDF-1a-CXCR4 path-
way or prolong SDF-1a life-time by preventing its cleavage by DPP4. This review assesses the evidence supporting
these approaches and proposes SDF-1a as an important confounder in recent studies of DPP4 inhibitors.
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1. Introduction

Modern therapeutic advances in treating ischaemic heart disease, includ-
ing reperfusion strategies and secondary prevention, have improved pa-
tients’ survival. For example, primary percutaneous coronary
intervention (PPCI) for ST-segment elevation myocardial infarction
(STEMI) has led to a reduction in 30-day mortality from 13.7% in 1995 to
4.4% in 2010.1 This, combined with an aging population, has led to an in-
creasing prevalence of ischaemic heart failure (HF), with current esti-
mates suggesting that 26 million people live with HF worldwide and that
myocardial infarction (MI) is a contributory factor in 29% of HF hospital-
izations.2 Ischaemic cardiomyopathy describes significantly impaired left
ventricular function resulting from coronary artery disease causing myo-
cardial injury and ventricular remodelling. In contrast to the improve-
ments in the treatment of many cardiovascular diseases (CVDs), survival
rates of HF patients remain unacceptably poor with 1-year mortality fol-
lowing HF hospitalization after MI being 45.5%.3 Consequently, novel
strategies to mitigate this burden of HF are paramount.

Stem cells are involved in the natural response to ischaemic tissue in-
jury and have become a promising target of clinical research over the last

decade, with the aim being to repair and replace damaged myocardium.4

Preclinical studies of various adult stem cells, including bone marrow
(BM)-derived stem cells, endothelial progenitor cells (EPCs), and resi-
dent cardiac stem cells, have demonstrated beneficial effects on cardiac
function and angiogenesis following MI, although clinical trial results have
been mixed.4 It has been proposed that paracrine factors may mediate
the favourable effects of stem cell engraftment. However, the duration
of expression of these factors at the time of myocardial injury may be
short.5 To improve stem cell mobilization and retention, and facilitate
paracrine signalling, stem-cell homing signals from ischaemic cells are of
considerable interest. Although many chemotactic factors are impli-
cated, the chemokine stromal cell-derived factor 1a (SDF-1a/CXCL12)
and its corresponding receptor CXCR4 have been identified as key regu-
lators.6 SDF-1 is an 8 kDa CXC chemokine that comprises six alterna-
tively spliced isoforms, of which SDF-1a is the principally expressed
subtype. It is upregulated by hypoxia in a hypoxia-inducible factor 1
(HIF-1a)-dependent manner, and facilitates chemotaxis, stem-cell re-
cruitment and cardiomyocyte survival via its G-protein coupled recep-
tor, CXCR47 SDF-1a and CXCR4 are up-regulated in the heart in both
experimental and clinical studies of MI.8 In addition to mobilization and
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migration of stem cells, SDF-1a is also thought to confer direct protec-
tion against ischaemia-reperfusion (IR) injury via the same signalling path-
ways implicated in ischaemic conditioning.7 SDF-1a, therefore, exhibits
pleiotropic effects on ischaemic myocardium: gradient-guided homing of
stem cells towards sites of myocardial injury and direct protection via in-
tracellular pro-survival signal transduction pathways.

Three approaches have been taken to optimize recruitment the SDF-
1-CXR4 axis in the setting of ischaemic heart disease: (a) supplying artifi-
cial SDF-1a to match peak CXCR4 expression; (b) augmenting CXCR4
expression to meet the period of maximal SDF-1a release; and (c) mini-
mizing SDF-1a degradation by dipeptidyl peptidase 4 (DPP4) and other
proteases. Here, we review the role of SDF-1a in myocardial injury and
examine the evidence that optimization of the SDF-1a-CXCR4 axis us-
ing these approaches may alleviate myocardial ischaemic injury.

2. SDF-1a-CXCR4 signalling

2.1 Normal signalling
Under hypoxic conditions HIF-1a upregulates both SDF-1a and
CXCR4.9 In the hypoxic BM environment, BM stem-cells constitutively
express CXCR4, which anchors them to the BM by SDF-1a expressed
by stromal cells. SDF-1a degradation within the BM microenvironment
causes mobilization of stem cells into the peripheral blood.
Simultaneously, at the site of injury, a local rise in SDF-1a level recruits
the mobilized cells from the circulation to the inflamed tissue. The
CXCR4 antagonist, AMD3100, can also break this physical anchor in the
BM, thereby enabling rapid mobilization of progenitor cells.10

In multiple experimental models of MI, SDF-1a is rapidly up-regulated
and persists for 7 days in the infarct and peri-infarct zones (Table 1),
thereby acting as a gradient-guided homing beacon to facilitate recruit-
ment and adhesion of progenitor cells to the infarct border zone.11

CXCR4 is expressed on stem-cells, peripheral blood leucocytes, en-
dothelial cells and smooth muscle cells and cardiomyocytes.12,13 The
binding of SDF-1a stimulates a Gi protein-pathway towards PLC-b and
PI3K activation,7 as well as JAK/STAT, MAPK p42/44 extracellular signal-
related (Erk1/2) and NF-ŒB pathways.14 CXCR4 signalling stimulates
pathways that are important in cellular; (i) survival; (ii) proliferation and
growth; (iii) chemotaxis; (iv) signalling and migration; and (v) adhesion
and regulation of cytoskeletal apparatus.14 The effects are cell-type de-
pendent, but are crucial in regulation of haematopoiesis, stem-cell hom-
ing, angiogenesis and cardiac repair.6,12,13 SDF-1a also binds a second
GPCR called CXCR7, which was originally thought function as a non-
signalling decoy co-receptor, but is now known to signal in its own right,
primarily via b-arrestin and MAPK pathways.15 The physical and
hormonal interaction of CXCR4 and CXCR7 and their impact these
non-classical pathways makes the signalling role of SDF-1a on myocar-
dial repair even more complex.16

2.2 Signalling in myocardial injury: a
desynchronized orchestra
Myocardial ischaemia results in elevated expression of both SDF-1a and
CXCR4 in the myocardium, indicating that they might have a central role
in the response to ischaemic injury. Additionally, platelet surface expres-
sion of SDF-1a, CXCR7 but not CXCR4 is significantly enhanced during
ischaemia compared to stable coronary artery disease.17 CXCR4/SDF-
1a signalling is required for progenitor cells to be recruited and increase
angiogenesis and blood flow (Figure 1).18 Evidence from mouse models
indicates that SDF-1a increases 6 h after ischaemic injury but only lasts

for 3–4 days (Table 1).19,20 Data from rat models are conflicting with no
clear reproducible time course of SDF-1a upregulation.6,9,21–23

However, there appears to be a delay in the CXCR4 time-course, which
takes at least 1 day to increase and remains elevated for up to
2 weeks.21,23,24 Consequently, it has been postulated that CXCR4 upre-
gulation has limited overlap with the SDF-1a surge.25 However, whether
the same temporal mis-match applies to humans has yet to be
established.

3. Retuning the SDF-1a-CXCR4 axis

3.1 Preclinical studies
3.1.1 Artificially increasing SDF- 1a levels
Several approaches have been proposed to ‘retune’ the relationship be-
tween SDF-1a and CXCR4 after MI. Cardiac SDF-1a levels have been
augmented using several strategies (Table 2). Direct intracardiac injection
of SDF-1a protein in mice reduced infarct size, increased angiogenesis
and improved cardiac function 4 weeks post-infarction,11,26–28 likely due
to a combination of direct cardioprotection as well as stem cell recruit-
ment. Timing of administration is likely crucial. In a pig model, SDF-1a in-
jected into the peri-infarct zone 2 weeks post-MI did not improve infarct
size or myocardial perfusion and actually impaired LV function.29 One
approach to prolonging SDF-1a activity has been to bioengineer SDF-1a
resistant to proteolytic cleavage. This improved stem-cell homing and
myocardial retention, and also improved capillary density, blood flow
and LVEF several weeks later.22

In a rat MI model, adenoviral delivery of SDF-1a post-infarction led to
smaller infarct size, less fibrosis, more blood vessels, and improved LV
parameters.30 Similarly, adenovirus-mediated cardiac expression of SDF-
1a improved retention of BM-derived stem-cells (BMSC) delivered
intra-coronary 48 h after MI.19 Human cardiac stem cells, engineered to
overexpress SDF-1a and injected into infarcted mice, improved myocar-
dial function and angiogenesis.31 Similar benefits have been observed af-
ter intracardiac injection of a variety of cells (fibroblasts, myoblasts,
MSCs) overexpressing SDF-1a.6,24,32–35 However, CXCR4 may play a
double-edged role, additionally contributing to inflammatory cell recruit-
ment and remodelling processes after MI, since CXCR4þ/- mice have
smaller infarct sizes than WT 4 weeks post MI.36

3.1.2 Augmenting CXCR4 expression
CXCR4 expression has been augmented in stem cells with the aim of im-
proving their cardiac recruitment. When MSCs overexpressing CXCR4
were delivered i.v. to rats 1–3 days post IR, recruitment to the infarct im-
proved, as did neoangiogenesis, LV remodelling and function.37,38

Hypoxic culture increased CXCR4 expression in cardiosphere-derived,
c-KitþLin- stem-cells, and improved their cardiac recruitment after i.v. in-
jection, reducing infarct size, increasing angiogenesis, and improving car-
diac function.39

CXCR4 expression has also been increased in the myocardium.
Adeno-associated viral vector (AAV9)-mediated over-expression of
CXCR4 in the hearts of mice with trans-aortic constriction (TAC)-in-
duced pressure overload preserved capillary density, prevented ventric-
ular remodelling and maintained ventricular function.40 On the other
hand, adenoviral delivery of myocardial CXCR4, prior to IR in rats was
found to increase inflammatory cell infiltration and infarct area, as well as
worsening cardiac function.41
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..These results suggest that re-synchronization of SDF-1a and CXCR4
expression after MI may be a valid approach, but that timing or method
of delivery is crucial. Of note, these reports do not confirm that myocar-
dial regeneration took place and do not distinguish between a direct ef-
fect on cardiomyocyte survival pathways and stem-cell-induced repair.7

3.1.3 DPP4 inhibitors to extend SDF-1a half-life
A potential drawback with SDF-1a therapy is its relatively short half-life
in plasma of 25.8 ± 4.6 min.22 Furthermore, this value represents total
SDF-1a and does not distinguish between the active and cleaved,

inactivated forms.23 The N-terminal lysine is rapidly cleaved by the pro-
tease DPP4, abolishing its bioactivity.42 Unfortunately, commercial anti-
bodies recognize both the active and inactive forms and therefore
report total levels of SDF-1a. A recently developed recombinant anti-
body recognizing only full length SDF-1a was identified in a phagemid li-
brary screen, and an ELISA based on this antibody should prove useful
for quantifying active SDF-1a.43

The half-life of SDF-1a can be prolonged by inhibiting DPP4.42 DPP4
inhibitors (Sitagliptin, Vildagliptin, Alogliptin, and Saxagliptin) have be-
come mainstay oral hypoglycaemic therapies in type 2 diabetes mellitus

..............................................................................................................................................................................................................................

Table 1 Preclinical studies examining the timing of SDF-1a and CXCR4 after ischaemia

Author Model Assayed Method Change in expression at different timepoints

Assaying SDF-1 in the Mouse

Abbott, 200419 Mo CAL SDF-1 protein ELISA. IHC localized

expression to cardi-

omyocytes and

blood vessels

Abbott, 200419 Mo CAL SDF-1 mRNA qRT-PCR

Kucia, 200420 Mo IR SDF-1 mRNA qRT-PCR. IHC local-

ized to cardiomyo-

cytes and blood

vessels

Assaying SDF-1 in the Rat

Pillarisetti, 20019 Rat CAL SDF-1 mRNA RT-PCT

Askari, 20036 Rat CAL SDF-1 mRNA RT-PCR

Czarnowska, 200721 Rat CAL SDF-1 protein IHC

Segers, 200722 Rat CAL SDF-1 protein ELISA

Misra, 200823 Rat IR SDF-1 protein IHC. Localized to en-

dothelium and infil-

trating cells.

Assaying CXCR4 in the Rat

Czarnowska, 200721 Rat CAL CXCR4 protein IHC

Misra, 200823 Rat IR CXCR4 protein Radiotracer. IHC lo-

calized expression

to cardiomyocytes

Zhang, 200724 Rat IR CXCR4 protein IHC localized expres-

sion to

cardiomyocytes

CAL, coronary artery ligation; IHC, immunohistochemistry; IR, ischaemia reperfusion; Mo, mouse; qRT-PCT, quantitative real time polymerize chain reaction.

360 O.J. Ziff et al.
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..based on their capacity to prevent breakdown and prolong the activity
of the incretin glucagon-like peptide 1 (GLP-1). However, less is known
about exploiting these DPP4 inhibitors to increase the half-life of SDF-1a
in ischaemic cardiomyopathy.

DPP4 inhibition was first shown to increase stem-cell homing to bone
marrow.44 It also improved G-CSF-mediated stem-cell mobilization in a
murine model of MI, improving cardiac remodelling, EF and survival.45 In
a pacing-induced model of heart failure in pigs, Sitagliptin significantly im-
proved stroke volume, heart rate, and the inotropic response to BNP.46

Similarly, Sitagliptin significantly improved cardiac function in a rat, LV-
ablation model of HF.47

Interestingly, infarct size following IRI is reduced in DPP4 knockout
mice or rats treated with Vildagliptin and Sitagliptin.48–50 Another target
of DPP4, GLP1, may account for some of this protection,49 but the con-
tribution of SDF-1a was not investigated in any of these studies.
Furthermore, it is not clear whether DPP4 inhibition would compromise
the longer-term, beneficial effects of the SDF-1a-CXCR4 axis with re-
spect to ventricular remodelling.

3.2 Translating bench to bedside: SDF-1a in
clinical studies

3.2.1 Stem-cell based therapies
Since the encouraging early clinical trials of cell-based therapy for myo-
cardial repair and regeneration, results have been conflicting and gener-
ally disappointing.4 One approach to improving the efficacy of stem-cell
therapy is to increase the mobilization of endogenous stem-cells.
Supporting this, in a study of 519 patients the number of circulating en-
dothelial progenitor cells was correlated with improved LVEF and pre-
dicted the occurrence of CV events and mortality.51

Human BM harbours CXCR4þ progenitor cells, and these are
mobilized into the peripheral circulation after MI, and migrate towards
SDF-1.20,52 Interestingly, the infarct remodelling after intracoronary pro-
genitor cell treatment in patients with acute myocardial infarction
(TOPCARE-AMI) trial demonstrated that in vitro migration capacity of
transplanted cells toward a gradient of SDF-1a was correlated with the
reduction of infarct size assessed by MRI.53 Disappointingly, however,

Figure 1 Mechanistic role of SDF-1a in response to myocardial injury. SDF-1a is increased in response to hypoxia via HIF-1, but is rapidly cleaved and
inactivated by DPP4. Stem cells expressing CXCR4 are mobilized from bone marrow when SDF-1a levels decrease locally, and are recruited to areas of
myocardium expressing SDF-1a.

SDF-1a in ischaemic cardiomyopathy 361
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when CXCR4þ cells were selected from BM-derived progenitor cells
and infused via the coronaries in a multicentre RCT of 200 patients with
AMI (REGENT trial), they did not improve LVEF any more than non-
selected cells.54

One explanation may be that injection of stem-cells in the days
following an MI may partially miss the peak window of myocardial SDF-
1a expression, leading to sub-optimal stem-cell homing. In addition, dif-
ferent cell isolation procedures may influence cellular CXCR4
expression.55

3.2.2 Clinical studies of SDF-1a delivery
Attempts have been made to improve cardiac function by resynchroniz-
ing SDF-1a and CXCR4 expression following ischaemia in humans.

A naked DNA plasmid encoding SDF-1 (JVS-100) has been used to in-
crease SDF-1 expression. This was found to be both safe and feasible,
and encouragingly, in 17 patients with symptomatic ischaemic cardiomy-
opathy and LVEF <40% 6-min walk distance, NYHA class and quality of
life was improved 1 year later.56 In a subsequent phase II double-blind
RCT (STOP-HF), JVS-100 or vehicle was delivered via an endocardial

..............................................................................................................................................................................................................................

Table 2 Impact of artificially augmenting SDF-1 levels on infarcted myocardium

Author Species SDF-1 Dose and timing Result Mechanism

SDF-1 cardiac injection

Koch, 200629 Pig 2 weeks post MI, 18 x 5ig trans-endo-

cardial injections into peri-infarct

myocardium

Increased vessel density. Reduced

cardiac function.

SDF-1 delivery associated with loss

of collagen in peri-infarct area

Sasaki, 200726 Mice CAL followed immediately by myocardial

injection of 1ug SDF-1

Improved function improved at 4

weeks. Smaller infarct size.

BM derived stem cells accumulated

in SDF-1 myocardial injection site

Saxena, 200827 Mice 2 x 300 ng SDF-1 intracoronary injec-

tion when ligated

Improved cardiac function after CAL

at days 1–28

Akt activation in cardiac endothelial

cells and cardiomyocytes

Tang, 200930 Rat CAL with immediate myocardial in-

jection of 0.5 x 1010 pfu/mL

Adenovirus-SDF-1.

Increased cardiac function at 4 weeks Increased ckitþ stem cells recruited

to infarcted area.

SDF-1 infusion

Hu, 200711 Mice 175 ug/kg perfusion into LV cavity

then 10 min washout before IR

Reduced infarct size Activated Aktp and Erkp

Blocked by AMD3100

Huang, 201174 Isolated

Mouse heart

15-25ng/mL SDF-1 perfusion 5 min

before ischaemia

Improved contractile function after

IR

STAT3 increased but not PI3K or

ERK1/2

Jang, 2012 75 Isolated 25 nM pSDF perfusion at reperfusion Reduced infarct size Increased ERK1/2p no Aktp

Rat heart

Ziegler, 201276 Mice 10 mg/kg SDF-1 intravenous infusion

at d0 and d2 of CAL

Increased capillary density, reduced

infarct size, preserved function

Enhanced recruitment of bone mar-

row stem cells

Stem cells over-expressing SDF-1

Askari, 20036 Rat 8 weeks post CAL cardiac fibroblasts

with SDF-1 expression injected

into myocardium

Increased vascular density Increased haematopoietic stem cell

recruitment to infarcted

myocardium

Improved LV function and strain.

Deglurkar, 200633 Rat Transplanted SDF-1 expressing skele-

tal myoblasts 8 weeks post MI

Increased vascular density and car-

diac function. Increased VT risk.

Not assessed

Elmadbouh, 200734 Rat Transfected SDF-1 into skeletal

myoblasts

Increased vessel density. Improved

LV function and remodelling.

Increased Aktp. Recruitment of

stem cells into infarcted

myocardium

Zhang, 200724 Rat MSC overexpressing SDF-1 infused 1

day post MI

Improved cardiac function at 5

weeks. Increased vessel density.

Preservation, not regeneration, of

cardiac myocytes in the infarct

zone.

Zhao, 200977 Rat MSC overexpressing SDF-1 injected

into myocardial infarct region

Regeneration of cardiomyocytes.

Increased vascular density.

Bone marrow progenitor cells re-

cruited to infarct region.

Ischaemic preconditioning to increase SDF-1

Hu, 200711 Mouse myocytes Ischaemic preconditioning increased

SDF-1 three-fold.

Less injury after hypoxia/

reoxygenation

Aktp and Erkp increased, JNKp and

p38 decreased

Davidson, 201328 Rat Plasma SDF-1 increased after RIC

(hindlimb 3x5 min cycles)

RIC decreased infarct size and im-

proved cardiac muscle recovery

Improvements blocked by

AMD3100.

Malik, 201578 Human 25 ng/mL for 30 min prior to hyp-

oxia/reoxygenation

Improved contractile function Blocked by AMD3100

362 O.J. Ziff et al.
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..catheter into the peri-infarct region in 93 patients with HF following MI.
Included patients had LVEF <_ 40% and were mostly NYHA class III
(mean age 65 ± 9 years, 90% male) with baseline median NT-proBNP of
1000 ng/L and reduced exercise capacity. After 1 year, there was no dif-
ference in the primary endpoint of a composite score of 6-min walk dis-
tance and quality of life questionnaire at 4 months. There was no
statistically significant difference in LV volumes or function at 1 year.
However, in the pre-specified analysis, patients with LVEF <26% receiv-
ing 30 mg JVS-100 experienced an 11% increase in LVEF relative to pla-
cebo (P < 0.01).57 These results suggest that SDF-1 therapy may not only
improve stem-cell homing many years following MI but may also induce
reactivation of endogenous cardiac repair mechanisms. This study opens
the door to regenerative gene therapies targeting endogenous stem cells
and processes.

Several questions remain: (i) how long does SDF-1 expression remain
active following delivery; (ii) do repeat treatments improve LV function
and are these associated with an inflammatory type response; (iii) how
does the time interval between the ischaemic insult and delivery impact
on therapeutic response; and (iv) what is the optimal vector for delivery
of SDF-1 to the myocardium? The FDA have approved STOP-HF 2,
which will treat responsive patients identified in STOP-HF with
6-monthly repeat dosing.

3.2.3 DPP4 inhibitors in HF
Interestingly, DPP4 may itself be implicit in the mechanism of heart fail-
ure. For example, circulating DPP4 activity correlates with cardiac dys-
function in human and experimental heart failure.47,58,59 In 14 patients

..............................................................................................................................................................................................................................

Table 3 Major clinical trials investigating cardiovascular outcomes of DPP4 inhibitors

Study Sample

size

Population Intervention vs.

control

Follow-

up (yrs)

Outcome (95% CI)

SAVOR-TIMI 53, 201464 16, 492 T2DM, HbA1c 6.5-12.0%,

>40 years with CVD OR

men >55 or women >60

with dyslipidaemia, HTN or

active smoking.

Saxagliptin 5mg o.d.

(2.5mg if eGFR <50mL/

min) vs. Placebo

2.1 Composite primary (CV death, nonfatal MI, non-

fatal ischaemic stroke) HR 1.00 (0.89-1.12)

All-cause death HR 1.11 (0.96-1.27)

CV death HR 1.03 (0.87-1.22)

MI HR 0.95 (0.80-1.12)

Stroke HR 1.11 (0.88–1.39)

Unstable angina hospitalization HR 1.19

(0.89-1.60)

HF hospitalization HR 1.27 (1.07-1.51)

TECOS, 201579 14, 671 T2DM receiving antidiabetic

therapy, HbA1c 6.5-8.0%

CVD, >50 years

Sitagliptin vs. Placebo 3.0 Composite primary (CV death, nonfatal MI,

nonfatal ischaemic stroke) HR 0.98, 95% CI

0.89-1.08)

All-cause death HR 1.01 (0.90-1.14)

CV death HR 1.03 (0.89-1.19)

MI HR 0.95 (0.81-1.11)

Stroke HR 0.97 (0.79-1.19)

HF hospitalization HR 1.00 (0.83-1.20)

EXAMINE, 201365,79 5, 380 T2DM receiving antidiabetic

therapy, HbA1c 6.5-11.0%

(7.0-10.0% if on insulin),

ACS within 15–90 days

prior to randomization

Alogliptin 25mg (12mg if

GFR <60; 6.25mg if

GFR <30) vs. Placebo

1.5 Composite primary (CV death, nonfatal MI,

nonfatal ischaemic stroke) HR 0.96, p = 0.32

All-cause death HR 0.88 (0.71-1.09)

CV death HR 0.85 (0.66-1.10)

Non fatal MI HR 1.08 (0.88-1.33)

Non fatal stroke HR 0.91 (0.55-1.50)

HF hospitalization HR 1.19 (0.90-1.58)

VIVIDD, 201367 254 T2DM, HbA1c 6.5-10%

(mean 7.8%), CHF NYHA

1-3, LVEF mean 30%,

Vildagliptin 50mg b.d. vs.

Placebo

1 LVEF no difference

LVEDV increased by 17.06mL vs. placebo

(p < 0.05)

LVESV increased by 9.44mL vs. placebo

BNP -28% vs. -14%

CV events no difference (35 vs. 31)

CV mortality no difference (7 vs. 4 deaths)

All-cause mortality no difference (11 vs. 4

deaths)

SITAGRAMI, 201669 174 Revascularization after MI Combined G-CSF and

Sitagliptin vs. Placebo

1 LVEF -0.85% (-3.16-1.47%)

RVEF 0.30% (-1.32-1.91%)

MACE HR 0.79 (0.41-1.49)
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with CAD and preserved LV function, inhibition of DPP4 with sitagliptin
improved LVEF in response to stress testing, and mitigated post-
ischaemic stunning.60 Accordingly, DPP4 inhibitors have been shown to
improve CV outcomes.47,58,61 The target of DPP4 in HF may include
BNP, GLP-1, and/or SDF-1. However, in type 2 diabetic patients, an in-
crease in EPC mobilization after 4 weeks of Sitagliptin was associated
with increased SDF-1a.62

Disappointingly, however, larger RCTs have failed to support a role
for DPP4 inhibitors in CVD. All new oral hypoglycaemic agents for type
2 diabetes mellitus are required to undergo thorough CV safety evalua-
tion. Consequently, three large multicentre clinical trials have recently
demonstrated safety with regard to CV outcomes of DPP4 inhibitors in
patients with type 2 diabetes at high risk for CV events (Table 3).
However, SAVOR-TIMI 53 reported an increased risk of HF hospital-
ization in the Saxagliptin group compared to placebo (HR 1.27, 95% CI
1.07–1.51, P = 0.007).63 A subsequent sub-study found HF hospitaliza-
tion to be highest in patients with elevated natriuretic peptides, previous
HF or CKD.64 EXAMINE compared Alogliptin with placebo in 5380 pa-
tients with type 2 diabetes mellitus (T2DM) and recent acute coronary
syndrome over median follow-up of 18 months and found no significant
difference in the primary composite endpoint (CV death, non-fatal MI or
non-fatal stroke) or in all-cause mortality or HF hospitalization.65 In a
post-hoc analysis, there was no evidence of excess admissions for HF.66

The VIVIDD trial, which compared Vildagliptin with placebo in 254 pa-
tients with LV dysfunction (NYHA 1–3; LVEF <35%) and T2DM, re-
ported no significant differences in HF hospitalization, LVEF or
natriuretic peptide levels. However, the authors identified an increased
LV end-diastolic volume and end-systolic volume with Vildagliptin com-
pared to placebo.67 More recently, TECOS, which compared Sitagliptin
to placebo in 14 671 patients with T2DM (HbA1c 6.5–8.0%) and CV dis-
ease, found no difference with respect to the composite primary out-
come (CV death, nonfatal MI, nonfatal stroke, or hospitalization for
unstable angina) or HF hospitalizations.68 In contrast to other DPP4 in-
hibitor trials, rates of HF hospitalization did not differ between groups,
which may relate to baseline characteristic differences in patients en-
rolled, recording, and defining HF events or intrinsic pharmacological dif-
ferences between DPP4 inhibitors.

The phase III clinical trial Safety and efficacy of SITAgliptin plus
Granulocyte-colony-stimulating factor in patients suffering from Acute
Myocardial Infarction (SITAGRAMI) randomized 174 patients to either
G-CSF and Sitagliptin or placebo after PPCI for MI in a multi-centre, dou-
ble-blind design. The primary endpoint of improved EF as assessed by
magnetic resonance imaging at 6 months was not met, however, a non-
significant trend towards reduced major adverse cardiac events was
identified.69 This may be explained by the inclusion of only 21% of pa-
tients with LVEF below 50%, thereby obfuscating any potential benefit of
this therapy.

Combined with mixed results from observational studies, the rela-
tionship between DPP4 inhibitors and HF is controversial. A recent
comprehensive systematic review and meta-analysis of 114 randomized
trials including 107 100 patients demonstrated that DPP4 inhibitors did
not affect all-cause mortality (RR 1.01, 95% CI 0.94–1.09), CV mortality
(RR 0.98, 95% CI 0.89–1.07), incident MI, stroke or HF.70 Although these
trials achieved non-inferiority, they failed to demonstrate superiority
with respect to clinical outcomes. Despite the finding in SAVOR-TIMI 53
that HF hospitalization increased with Saxagliptin, this meta-analysis sug-
gested that DPP4 inhibitors, as a class, are safe in patients with high CV
risk, and actually demonstrated a trend towards reduced MI (Figure 2).
Importantly, in SAVOR-TIMI 53 there were key differences in baseline

characteristics. Nonetheless, the US-FDA adverse event reporting sys-
tem reported an association between Saxagliptin and HF.71 Additionally,
a recent meta-analysis concluded that, despite an abundance of low-
quality evidence, DPP4 inhibitors ‘may increase the risk of hospital ad-
mission for heart failure in those patients with existing CVD or multiple
risk factors for vascular diseases, compared with no use’.72 However, the
debate is far from over. Indeed, the most recent addition to the body of
evidence is a population-based, retrospective cohort study of 255 691
South Korean patients with type 2 diabetes mellitus newly prescribed ei-
ther DPP-4 inhibitors or sulfonylureas. This study found that DPP4 inhib-
itors significantly lowered future HF risk compared with sulfonylurea,
and furthermore, that Sitagliptin and Linagliptin significantly lowered HF
risk.73

Although the aforementioned studies were primarily based on the hy-
pothesis that higher levels of GLP-1 would be beneficial, and none of
them investigated SDF-1a, it is hypothesized that increased cleavage of
SDF-1a after ischaemic injury is part of a reparative mechanism that, if in-
terrupted by DPP4 inhibitors, may result in worse outcomes. The poor
prognosis associated with high circulating DPP4 levels is likely to be re-
lated to reduced bioavailability of SDF-1a combined with direct adverse
influences of DPP4 on fibrosis and inflammation. Thus, therapeutic use of
DPP4 inhibitors to preserve SDF-1a and confer cardioprotection re-
mains promising. However, future experimental and clinical research is
required to decipher the appropriate time-course and clinical relevance
in patients with HF.

4. Conclusion

The SDF-1a-CXCR4 axis plays a crucial role in homing stem-cells to
ischaemic myocardium, resulting in the preservation and beneficial
remodelling of myocardium. Since CXCR4 is expressed on BM

Figure 2 Meta-analysis of DPP4 inhibitors on cardiovascular events
in patients with type 2 diabetes mellitus. Forrest plot showing the
pooled clinical outcomes of 114 randomized trials comparing dipeptidyl
peptidase 4 (DPP4) inhibitors with control (placebo or active drug).
Reproduced from Ref. 70
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.
stem-cells, SDF-1a offers a useful tool to remotely attract stem-cells to
the site of injury. Based on a growing body of evidence, the complex dy-
namic signalling orchestra involved in the intricate network of cellular re-
cruitment, migration, and engraftment to achieve myocardial repair is
becoming clearer. This has exposed critical questions regarding optimal
SDF-1a therapy including (i) timing; (ii) route of delivery; (iii) dosing regi-
men; (iv) duration of therapy; and (v) co-administration of DPP4 inhibi-
tors to extend the half-life of SDF-1a.

Optimizing stem-cell homing and engraftment towards ischaemic
myocardium by manipulating expression of migration signals is likely to
be pivotal in the future of stem-cell therapy in HF. However, while DPP4
inhibitors may increase cardiac SDF-1a levels and enhance homing of cir-
culating stem cells to the heart, they also reduce the number of BM stem
cells mobilized and available for recruitment. Further experiments using
tissue-specific knockouts are required to elucidate these mechanisms.

Marrying up the endogenous SDF-1a surge with CXCR4 upregulation
appears crucial, but the precise timing in humans remains to be estab-
lished. To this end, further work is required to establish the precise role
of SDF-1a and subsequent recruitment of CXCR4 expressing stem-cells
in clinical trials of DPP4 inhibitors. The recently development method
for the direct measurement of the active (uncleaved) form of SDF-1a in
blood should facilitate this task.43
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