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e analysis of rare earth elements
Lu and Y in rare earth ores by laser induced
breakdown spectroscopy combined with iPLS-VIP
and partial least squares
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Hongsheng Tangb and Hua Li *ab

Rare earth ores are complex in composition and diverse in mineral composition, requiring high technical

requirements for the selection of rare earth ores. It is of great significance to explore the on-site rapid

detection and analysis methods of rare earth elements in rare earth ores. Laser induced breakdown

spectroscopy (LIBS) is an important tool to detect rare earth ores, which can be used for in situ analyses

without complicated sample preparation. In this study, a rapid quantitative analysis method for rare earth

elements Lu and Y in rare earth ores was established by LIBS combined with an iPLS-VIP hybrid variable

selection strategy and partial least squares (PLS) method. First, the LIBS spectra of 25 samples were

studied using laser induced breakdown spectrometry. Second, taking the spectrum processed by wavelet

transform (WT) as the input variables, PLS calibration models based on interval partial least squares (iPLS),

variable importance projection (VIP) and iPLS-VIP hybrid variable selection were constructed to

quantitatively analyze rare earth elements Lu and Y, respectively. The results show that the WT-iPLS-VIP-

PLS calibration model has better prediction performance for rare earth elements Lu and Y, and the

optimal coefficient of determination (R2) of Lu and Y were 0.9897 and 0.9833, the root mean square

error (RMSE) were 0.8150 mg g−1 and 97.1047 mg g−1, and the mean relative error (MRE) were 0.0754 and

0.0766, respectively. It shows that LIBS technology combined with the iPLS-VIP and PLS calibration

model provides a new method for in situ quantitative analysis of rare earth elements in rare earth ores.
1. Introduction

The composition of rare earth minerals is complex and diverse,
and the exploration process of rare earth minerals needs to be
completed through a combination of multiple processes, which
requires higher technical requirements. Rare earth ores are the
main raw material for obtaining rare earths. It is the general
name of seventeenmetal elements of the lanthanide series in the
periodic table of rare earth elements and scandium and yttrium.
Rare earths have unique atomic structure, excellent photo-
electromagnetic properties and can easily be combined with
other elements, which can be widely used in metallurgy,1 petro-
chemical,2 medicine,3,4 computer manufacturing,5 agriculture
and other elds. With the development of emerging industries,
rare earths are becoming more and more important in national
security and sustainable economic development. The addition of
rare earth metals to steel can play a role in rening,
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desulfurization, neutralization of low melting point harmful
impurities, and it can improve the processing properties of steel.6

Lutetium can be made into some special alloys, and its
aluminum alloy can be used for neutron activation analysis. The
stable lutetium nuclide can play a catalytic role in petroleum
cracking, alkylation, hydrogenation and polymerization. Yttrium
can be used as an additive for steel and nonferrous metal alloys.
Adding a small amount of yttrium to magnesium alloys can
improve the corrosion resistance of the alloys.7 The stable yttrium
zirconia solid will be used as electrolyte of fuel cell. Yttrium is
used for controlling rods of nuclear reactors, etc. Rare earth has
become a necessary raw material for the development of
sophisticated industries around the world. The extensive appli-
cation of rare earths has led to an increasing global demand.8 It is
of great signicance to explore a method that can quickly detect
and analyse rare earths in situ for the exploration of rare earths.

The common used analytical methods for rare earth
elements are neutron activation analysis (NAA),9 inductively
coupled plasma emission spectrometry (ICP-OES),10 inductively
coupled plasma mass spectrometry (ICP-MS)11,12 and X-ray
uorescence spectrometry (XRF),13 etc. However, the above
methods have more or less disadvantages. For example, when
RSC Adv., 2023, 13, 15347–15355 | 15347
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Table 1 Reference values (in wt%) of some elements in 25 samples of
rare earth ores

Sample no.

Reference values (10−2)
Reference
values (10−6)

Si Ca Fe Mg Lu Y

#1 67.28 0.033 3.561 0.229 2.0 180.0
#2 74.55 0.026 1.204 0.077 5.5 570.0
#3 74.34 0.031 1.169 0.080 30.4 3030.0
#4 66.72 0.029 3.532 0.231 13.6 1240.0
#5 70.92 0.030 2.383 0.153 3.8 380.0
#6 70.81 0.032 2.365 0.155 16.2 1610.0
#7 67.00 0.031 3.547 0.230 7.8 710.0
#8 74.45 0.029 1.187 0.079 18.0 1800.0
#9 70.64 0.028 2.368 0.154 9.6 910.0
#10 70.53 0.030 2.351 0.156 22.0 2140.0
#11 72.06 0.030 1.978 0.129 12.6 1260.0
#12 69.52 0.029 2.766 0.179 7.0 660.0
#13 69.45 0.031 2.754 0.180 15.3 1480.0
#14 71.87 0.029 1.968 0.129 16.5 1610.0
#15 70.72 0.030 2.367 0.154 12.9 1260.0
#16 72.13 0.028 1.990 0.128 4.3 440.0
#17 71.99 0.032 1.966 0.130 20.9 2080.0
#18 66.91 0.030 3.542 0.230 9.7 890.0
#19 74.41 0.029 1.181 0.079 22.1 2210.0
#20 69.33 0.028 2.756 0.180 10.9 1020.0
#21 69.26 0.030 2.744 0.181 19.2 1840.0
#22 70.88 0.030 2.377 0.154 7.9 790.0
#23 69.61 0.030 2.771 0.179 5.1 490.0
#24 69.54 0.032 2.759 0.180 13.4 1310.0
#25 73.18 0.028 1.580 0.104 15.2 1500.0
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ICP-OES, ICP-MS and NAA technologies are used to detect rare
earths in rare earth ores, complex pretreatment is required,
which is very time-consuming and cannot be used for real-time
online detection and on-site analysis. XRF technologies have
many inuencing factors such as the low content of rare earth
elements and serious overlap of spectral lines. Therefore, there
is an urgent need for a rapid and accurate in situ detection and
analysis method of rare earth elements. Laser-induced break-
down spectroscopy (LIBS), as a novel and promising analytical
technique, shows several obvious advantages, such as rapid,
real-time, in situ, micro-destructive analysis, remote detection
and simultaneous multielement analysis. It has been widely
used in space exploration,14 geological exploration,15,16 medical
diagnosis,17,18 metallurgical analysis,19 food detection,20,21

chemical industry22 and other elds. At present, the LIBS tech-
nique has become an international research focus for geological
exploration including rock analysis,23 identication of ore
grade.24 Akhmetzhanov et al.25 used LIBS technology to detect
rare-earth elements – Ce, La, Nd, Pr and Sm – in ores, and the
results show that LIBS have potential to quantify rare earth
elements in natural ores. Martin et al.26 used LIBS analyses rare
earth elements Eu, Gd, La, Nd, Pr and Sm, and the calibration R2

for each element were ranging from 0.95 to 0.99. Bhatt et al.27

used LIBS analyses of six rare earth elements Ce, Eu, Gd, Nd, Sm
and Y, and the limits of detection for Ce, Eu, Gd, Nd, Sm and Y
were calculated to be 0.098%, 0.052%, 0.077%, 0.047%, 0.250%,
and 0.036%, respectively. Therefore, the application of LIBS
technology in the analysis of rare earth ores is feasible.

The LIBS information is very complex because of the
complex matrix of rare earth ore, which reduces the accuracy of
LIBS technology in the analysis of rare earths. Chemometrics
analysis methods, such as partial least squares (PLS),28 random
forest (RF),29–31 articial neural networks (ANN),32 support vector
machine (SVM),33 and other algorithms, provide effective tools
for accurate quantitative analysis of LIBS technology. PLS is one
of the most commonly used modeling methods in chemo-
metrics. It uses rich spectral information to compensate for
different deviations, making the quantitative model more
stable. Guan et al.34 predicted the carbon content of pulverized
coal by LIBS combined with PLS. The prediction error is about
0.41%, and R2 is about 0.991. The LIBS spectrum usually
includes a large number of high-dimensional data, which
affects the prediction accuracy of multivariate calibration.
Feature selection, as an important preprocessing step in data
mining, can eliminate redundant variables, reduce data
dimensions and select effective variables to improve the
performance of multivariate calibration models.35 In order to
improve the accuracy of LIBS analysis, the hybrid variable
selection method is adopted. Hybrid variable selection36 is
a combination of wave bands and wave points methods. It rst
uses the wave bands method to “rough selection” and the
relevant intervals were selected. And then passes the remaining
features along with the concentration data as input parameters
to the wave points method for “ne selection”, and the relevant
variable points were selected. Hybrid method usually achieves
high accuracy that is characteristic to wave bands and high
efficiency characteristic to wave points.
15348 | RSC Adv., 2023, 13, 15347–15355
Therefore, this study attempted to use LIBS combined with
iPLS-VIP and PLS for rapid and accurate quantitative analysis of
Lu and Y in rare earth ores. The rare earth ore samples were
collected by LIBS spectrograph and the initial PLS calibration
model was established. Additionally, the effects of different
pretreatment methods and variable selection on the PLS model
are explored. We believe that the results of this study will allow
cheaper, sensitive, accurate, and direct determination of Lu and
Y in ore analysis using LIBS, which provides a feasible method
for on-site quantitative analysis of rare earth elements in ores.
2. Material and methods
2.1 Sample preparation

In this experiment, four kinds of rare earth ore standard sample
powders (GBW07158, GBW07159, GBW07160 and GBW07161
rare earth ore standard samples purchased from Nanjing
Zhongbiao Chenxi Chemical Technology Co., Ltd, China) were
mixed in different proportions to prepare 25 samples of rare
earth ores. A certain amount of standard material was removed
before using, dried at 105 °C for one hour, and cooled to indoor
temperature in a desiccator. Weigh different proportions of
standard sample powders, and grind them in a mortar for 5 to
10 minutes, so that the sample powders can be mixed evenly.
Table 1 lists the reference values (in wt%) of some elements in
25 samples of rare earth ore. The content of rare earth element
Lu ranges from 2 to 30 mg g−1, the content of element Y ranges
© 2023 The Author(s). Published by the Royal Society of Chemistry
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from 180 to 3030 mg g−1, and the content of some other
macronutrients ranges from 260 to 745 500 mg g−1. The content
of rare earth elements in rare earth ores are less compared to
the macronutrients, and element Y is the most abundant
element in rare earth ore. In order to avoid scattering of the
sample due to the high pulsed laser energy, polyvinyl alcohol
was used as a binder when pressing the pellets to improve the
tightness of the pressed pellets. Weighing 0.5000 g of the mixed
rare earth ore sample powder and 0.8000 g of polyvinyl alcohol,
a PC-24 tablet press (Pinchuang Technology, pressure: 30 MPa)
was used to maintain the press for 5 minutes to produce
a F20 mm × 4 mm pressed pellets, one pressed tablet for each
of the 25 rare earth ore samples, for a total of 25 pressed pellets.
2.2 LIBS spectra collection

The LIBS acquisition device in this study was built by our
laboratory, as shown in Fig. 1. The excitation source chosen for
the device was a Q-switched Nd: YAG laser (DAWA300, Beijing
LeiBao Photoelectric Technology Co., Ltd, China) with a pulse
width of 8 ns, an excitation wavelength of 1064 nm and a repe-
tition rate of 5 Hz, and a laser energy was 45 mJ. The rare earth
ore sample press was rst placed on a three-dimensional
manually adjustable stage, and when the laser was applied to
the surface of the rare earth ore sample through the lens, the
plasma generated during the process was collected through
a quartz collimating lens at 45° to the laser beam and trans-
mitted via optical ber to a three-channel spectrometer (Ocean
Optics, MX2500+, America). Wavelength range of 200–550 nm,
resolution of 0.07 nm, a delay time of 4.2 ms and door width of 2
ms, and LIBS spectral collection in ambient temperature and
pressure. Ocean Optics MaxLIBS was used as the control
soware.

LIBS spectra were collected by randomly selecting 20
different locations for each rare earth ore sample compression
slice because of the heterogeneity of the rare earth ore samples.
25 LIBS spectra were collected for each rare earth ore sample,
anomalous spectra were removed using Euclidean-distances,
and the remaining spectra were averaged to obtain 25 spectra
for 25 samples. 8 rare earth ore samples (#5, #9, #11, #14, #17,
#21, #22 and #25) were manually selected as the prediction set
for validating the PLS model performance, and the rest were
used as the calibration set for constructing the PLS model.
Fig. 1 Schematic diagram of LIBS spectrum acquisition.

© 2023 The Author(s). Published by the Royal Society of Chemistry
2.3 Introduction of method and modeling process

iPLS (interval Partial Least Squares)37 involves dividing the
spectral data equally into small intervals of equal width,
building a PLS model for each subinterval, and then ltering
the optimal spectral bands based on the 5-fold cross validation
results of the model. The variables used for modeling can be
reduced compared to full spectral variable modeling.

VIP (Variable Importance Projection) is a PLS based method
for selecting characteristic variables. In multiple linear regres-
sion problems, the projection of variable importance can be
applied when the sample size is small or when there is a strong
correlation between multiple independent variables in the
sample. By calculating the integrated principal components of
the independent variables, the explanatory power of the inde-
pendent variables in relation to the corresponding dependent
variables are derived, and the independent variables are
screened according to this difference in explanatory power.

iPLS-VIP (interval Partial Least Squares combined with
Variable Importance Projection) is a hybrid variable selection
strategy. Firstly, the characteristic interval of spectrum is
selected by iPLS, then the characteristic interval selected by iPLS
further extracted by VIP, and the corresponding characteristic
variables are obtained.

Fig. 2 shows the hybrid variable selection strategy combined
with PLS model construction process for LIBS quantitative
analysis of rare earth elements Lu and Y in rare earth ores. The
main steps of the PLS algorithm for modeling LIBS spectral data
of rare earth minerals include: (1) sample preparation of rare
Fig. 2 The flow chart of the PLS model construction.

RSC Adv., 2023, 13, 15347–15355 | 15349
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earth ores; (2) LIBS data acquisition; (3) constructing an initial
PLS calibration model; (4) spectral pretreatment; (5) variable
selection; (6) optimal PLS calibration model construction; (7)
prediction of rare earth elements Lu and Y in rare earth ores. All
the data processes were accomplished by MATLAB (Math
Works, Version R2019b).
3. Result and discussion
3.1 LIBS spectral analysis

Fig. 3 shows the average LIBS spectra of 5# rare earth ore sample
in the spectral region of 200–390 nm, and the characteristic
spectral lines of Lu, Y, Fe, Ca, Si and Mg elements in iron ore
samples were identied based on the National Institute of
Standards and Technology (NIST) database,38 and the charac-
teristic spectral peaks identied were mainly Lu (328.17 nm,
364.77 nm), Y (324.23 nm, 363.31 nm), Fe (238.2 nm, 259.93
nm), Ca (373.69 nm), Si (251.61 nm, 288.16 nm) and Mg (279.55
nm).
3.2 Selection of pretreatment methods

As can be seen in Fig. 3, the LIBS spectra of rare earth ores were
subject to spectral dri, spectral non-smoothness and noise.
Spectral pre-processing can be used to lter out extraneous
information from the spectra and reduced the interference of
Fig. 3 LIBS spectra of 5# rare earth ore samples ((a): 200–300 nm; (b):
300–390 nm).

15350 | RSC Adv., 2023, 13, 15347–15355
noise and spectral dri, and improved prediction performance
of the model. Therefore, the effects of different preprocessing
methods of normalization (Nor), standard normal variation
(SNV), wavelet transform (WT), rst order derivative (D1st) and
multivariate scatter correction (MSC) on the PLS calibration
model were investigated. The number of smooth points of the
rst derivative was optimized by 5-fold cross validation. Fig. 4
showed the effects of different smoothing points of the rst
derivative on the analysis ability of the PLS calibration model. It
can be seen from Fig. 4 that for Lu, as the number of smooth
points increases, the RMSECV value increased rstly and then
decreased. When the number of smooth points was 9, the
RMSECV was smallest at 3.3917 mg g−1, and the R2cv was largest
at 0.7819. At this time, the PLS calibration model had better
predictability. For Y element. When the number of smoothing
points was 11, the RMSECV was smallest, which was 310.2202
mg g−1, and the R2cv was largest of 0.7703. At this time, the PLS
calibration model had better prediction performance. The WT
wavelet basis functions and the number of decomposition
layers were optimized by 5-fold cross validation. Fig. 5 showed
the effect of different wavelet basis functions and wavelet
decomposition layers on the analytical capability of the PLS
calibration model. As can be seen from Fig. 5, for Lu elements,
RMESCV decreased rstly and then increased with the increase
of decomposition layer numbers, when the wavelet function was
db3 and decomposition layers was 2, the RMSECV was smallest,
Fig. 4 The effect of different smoothing points of the first order
derivative on the analytical ability of the PLS calibration model ((a): Lu;
(b): Y).

© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 The effect of different wavelet basis functions and wavelet
decomposition layers on the analytical capability of the PLS calibration
model ((a): Lu; (b): Y).

Fig. 6 Influence of different pretreatment methods on the analytical
ability of PLS calibration model ((a): Lu; (b): Y).
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with 3.2755 mg g−1, R2cv was maximum with 0.8025. At this
time, PLS calibration model had a better prediction perfor-
mance. For the Y element selection when the WT wavelet
function was db2 and decomposition layer was 1, the RMSECV
was smallest with 319.6993 mg g−1 and the R2cv was largest with
0.8157. At this time, the PLS calibration model had a better
prediction performance.

Fig. 6 showed the effects of different pre-processing methods
of Nor, SNV, WT, D1st and MSC on the PLS calibration model
were examined on the basis of the model parameters of the
optimal spectral pre-processing method. The performance of
the PLS calibration model built from the WT pre-treated spectra
was improved compared to the original spectra. For the Lu
element, R2cv was improved from 0.7732 to 0.8025, RMSECV
was reduced from 3.5388 mg g−1 to 3.2755 mg g−1, and MREP for
test set was reduced from 0.1614 to 0.1336. For Y element, R2cv
was improved from 0.7965 to 0.8152, RMSECV was reduced
from 333.2424 mg g−1 decreased to 319.6993 mg g−1 and the
MREP for the test set decreased from 0.1518 to 0.1256.
3.3 The effect of variable selection of PLS calibration models

For the WT preprocessed spectra, although the prediction
performance of the PLS calibration model is slightly improved
compared to the original spectra, there are still some redundant
variables in the spectra that can reduce the prediction
© 2023 The Author(s). Published by the Royal Society of Chemistry
performance of the PLS calibration model. Therefore, variable
selection is used to reduce redundant information in the
spectra and improve the predictive performance of the PLS
calibration model.

3.3.1 PLS calibration models based on iPLS. The spectra
aer WT treatment was divided into 9–25 intervals by iPLS
method, PLS calibrationmodel was established in each interval,
and the best modeling interval was selected by RMSECV as the
evaluation index. It can be seen from Table 2 that for the Lu
element, when the number of separation intervals was 24, the
RMSECV of the 14th interval used to establish the PLS calibra-
tion model was smallest, which was 1.2211 mg g−1. The PLS
calibration model of Lu element was established with the vari-
ables selected by iPLS, and the optimal Lv was 9 by 5-fold cross
validation, of which R2p was 0.9876, RMSEP was 0.9436 mg g−1,
and MREP was 0.0926. For the Y element, when the number of
separation intervals was 24, the RMSECV of the PLS calibration
model established in the 14th interval was smallest, which was
126.5878 mg g−1. Used the variables selected by iPLS to establish
the PLS calibration model of the Y element, and used 5-fold
cross validation to select the optimal Lv of 8, R2p of 0.9425,
RMSEP of 142.0406 mg g−1. Compared with the full-spectrum
PLS calibration model aer WT preprocessing, the prediction
performance of the PLS calibration model was further improved
by iPLS variable selection.
RSC Adv., 2023, 13, 15347–15355 | 15351



Table 2 R2cv and RMSECV of the iPLS model with different number of intervals corresponding to Lu and Y

Intervals

Lu Y

Number of
variables

Interval
number R2cv

RMSECV
(mg g−1)

Interval
number R2cv

RMSECV
(mg g−1)

9 9 0.9436 2.4437 9 0.9419 247.7134 642
10 10 0.9462 2.3770 10 0.9448 240.5670 578
11 5 0.9453 2.6487 5 0.9464 260.5057 525
12 7 0.9787 1.5281 7 0.9760 162.0485 482
13 9 0.9411 2.5030 9 0.9390 256.3393 445
14 8 0.9770 1.5881 8 0.9740 168.4629 413
15 14 0.9151 2.9377 14 0.9177 290.5648 385
16 9 0.9758 1.6216 9 0.9715 175.5433 361
17 16 0.9360 2.5873 16 0.9378 256.6047 340
18 17 0.9286 2.7193 10 0.9708 178.9134 321
19 11 0.9809 1.4353 11 0.9804 146.1875 304
20 19 0.9387 2.5227 19 0.9416 247.6393 289
21 12 0.9813 1.4205 20 0.9549 217.5626 275
22 21 0.9572 2.1078 21 0.9552 216.3079 262
23 22 0.9600 2.0347 22 0.9577 209.9137 251
24 14 0.9871 1.2211 14 0.9862 126.5878 241
25 14 0.9716 1.7501 14 0.9689 183.4573 231

RSC Advances Paper
3.3.2 PLS calibration models based on VIP. The variable
importance projection method is adopted to extract features
from the spectral data aer wavelet transform, and the variable
importance threshold was optimized. As can be seen from
Fig. 7, for Lu element, when the VIP threshold was 0.19, the
Fig. 7 Optimization diagram of VIP variable importance threshold
based on PLS calibration model ((a): Lu; (b): Y).

15352 | RSC Adv., 2023, 13, 15347–15355
RMSECV was smallest, which was 3.1715 mg g−1, the R2cv was
largest, which was 0.8198, the R2p of the prediction set was
0.9544, the RMSEP was 1.3481 mg g−1, and the MREP was
Fig. 8 Optimization diagram of iPLS-VIP variable importance
threshold based on PLS calibration model ((a): Lu; (b): Y).

© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 9 Wavelength points selected based on the iPLS-VIPmethod. ((a):
Lu, (b): Y).
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0.1107, and the number of variables was 1468 at this time. For Y
element, when the VIP threshold was 0.15, the RMSECV was
smallest, which was 308.0653 mg g−1, the R2cv was largest, which
was 0.8319, the R2p of the prediction set was 0.9490, the RMSEP
was 139.8618 mg g−1, and theMREP was 0.1078, and the number
of variables was 1820 at this time. With VIP variable selection,
the predictive performance of the PLS calibration model was
slightly improved compared to the full spectrum PLS calibration
model preprocessed by WT.
Table 3 Predictive performance of Lu and Y by different PLS calibration

Elements
Calibration
models Lv Number of variables

5-f

R2c

Lu RAW-PLS 7 5784 0.7
WT-PLS 9 5784 0.8
WT-VIP-PLS 11 1468 0.8
WT-iPLS-PLS 9 241 0.9
WT-iPLS-VIP-PLS 7 113 0.9

Y RAW-PLS 8 5784 0.7
WT-PLS 11 5784 0.8
WT-VIP-PLS 10 1820 0.8
WT-iPLS-PLS 8 241 0.9
WT-iPLS-VIP-PLS 7 85 0.9

© 2023 The Author(s). Published by the Royal Society of Chemistry
3.3.3 PLS calibration models based on iPLS-VIP. When
iPLS selects the optimal wave band for modeling, there are
some irrelevant variables in the selected wave band, while VIP
selects the wave points of the full spectrum, but there are more
features selected under the optimal threshold, which will
increase modeling time. Therefore, this section studies the
inuence of iPLS-VIP hybrid variable selection on the prediction
performance of the PLS calibration model. The optimal band
selected by iPLS in Section 3.3.1 was used for variable selection
by VIP to select the wave point, it can delete irrelevant variables,
and retain useful information more comprehensively. Fig. 8
shows a graph of optimizing VIP variable importance threshold
through 5-fold cross validation. It can be seen from Fig. 8 that
when the VIP threshold was 0.4, the Lu element has better
prediction performance, R2cv reached 0.9584, RMSECV was
1.4939 mg g−1, the prediction set R2p reached 0.9897, the RMSEP
was 0.8150 mg g−1, and the MREP was 0.0754; When the VIP
threshold was 0.6, the Y element had better prediction perfor-
mance, R2cv reached 0.9554, RMSECV was 156.7039 mg g−1, the
test set R2p reached 0.9833, the RMSEP was 97.1047 mg g−1, and
the MREP was 0.0766. Aer implementing the hybrid variable
selection method, the predictive error of the model was signif-
icantly reduced. Fig. 9 showed the wavelength points selected by
iPLS-VIP method. These wavelength points were also a region
where the feature peaks of Lu and Y were concentrated.
However, the PLS calibration model based on these character-
istic variables selected by iPLS-VIP had a relatively good
prediction performance.

3.3.4 Comparison of different PLS calibration models. This
section compared the prediction performance of the PLS cali-
bration model under different variable selection methods, and
proved that it was feasible to select variables according to the
idea of searching the wave band before selecting the wave point.
As can be seen from Table 3, the optimal prediction perfor-
mance for rare earth elements Lu and Y were obtained from
a quantitative analysis model based on WT-iPLS-VIP-PLS.
Compared with WT-iPLS-PLS and WT-VIP-PLS, WT-iPLS-VIP-
PLS had a small improvement in 5-fold cross validation
results, but the external validation results of WT-iPLS-VIP-PLS
were better than WT-iPLS-PLS and WT-VIP-PLS. In addition,
models

old cross validation Prediction set

v RMSECV (mg g−1) R2p RMSEP (mg g−1) MREP

732 3.5388 0.9494 1.7536 0.1614
025 3.2755 0.9579 1.5023 0.1336
178 3.2273 0.9544 1.3481 0.1107
517 1.6114 0.9876 0.9436 0.0926
584 1.4939 0.9897 0.8150 0.0754
965 333.2424 0.9442 175.1057 0.1518
157 319.6993 0.9500 157.0477 0.1256
242 313.0468 0.9490 139.8618 0.1078
551 156.0450 0.9425 142.0406 0.0853
616 148.7193 0.9833 97.1047 0.0766

RSC Adv., 2023, 13, 15347–15355 | 15353



Fig. 10 Predictive performance of different PLS calibration models ((a): R2p; (b): MREP).

Fig. 11 The relationship between the reference value and predictive value obtained by iPLS-VIP-PLS calibration model ((a): Lu, (b): Y).
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WT-iPLS-VIP-PLS selected fewer variables and took less time to
model. As can be seen from Fig. 10, the predictive error of the
model was signicantly reduced, and the LIBS technique
combined with the WT-iPLS-VIP-PLS calibration model
provided better quantitative performance. In summary, the
combination of iPLS and VIP can be used as a more effective
method for variable selection, because the results were better
than the other two variable selection methods. Fig. 11 showed
the relationship between the reference and predicted values
obtained by the WT-iPLS-VIP-PLS model. It can be seen from
Fig. 11 that there was a better linear relationship between the
predicted values and the reference values using the WT-iPLS-
VIP-PLS calibration model to predict the eight prediction set
samples. This study showed that the model had good predictive
performance, enabling rapid quantitative analysis of rare earth
elements Lu and Y in rare earth ores.

4. Conclusions

In this study, PLS calibration model combined with LIBS was
successfully applied for rapid quantitative analysis of rare earth
elements Lu and Y in rare earth ores. The results showed that
the WT-iPLS-VIP-PLS calibration model had the best prediction
performance with the R2 = 0.9897, RMSE = 0.8151 mg g−1, MRE
15354 | RSC Adv., 2023, 13, 15347–15355
= 0.0754 and R2 = 0.9833, RMSE = 97.1047 mg g−1, MRE =

0.0766, for Lu and Y elements in the prediction set, respectively.
Compared with the PLS calibration model based on the original
spectrum, the MRE of Lu and Y in PLS calibration model based
on the iPLS-VIP decreased 8.6% and 7.5%, respectively. It shows
that the hybrid variable selection method is helpful to improve
the calculation efficiency and prediction performance of the
model. The research showed that LIBS technology combined
with WT-iPLS-VIP-PLS was an effective method to detect rare
earth elements in rare earth ores. In the future, with the further
development and perfection of technology, the application of
LIBS technology in the eld of geological exploration will be
more extensive. This study provides theoretical basis and
technical reference for the future application of LIBS technology
to in situ rapid and accurate quantitative analysis in more
geological exploration elds.
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