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There is considerable scientific interest in understanding how cell assemblies—the
long-presumed computational motif—are organized so that the brain can generate
intelligent cognition and flexible behavior. The Theory of Connectivity proposes that the
origin of intelligence is rooted in a power-of-two-based permutation logic (N = 2i–1),
producing specific-to-general cell-assembly architecture capable of generating specific
perceptions and memories, as well as generalized knowledge and flexible actions. We
show that this power-of-two-based permutation logic is widely used in cortical and
subcortical circuits across animal species and is conserved for the processing of a
variety of cognitive modalities including appetitive, emotional and social information.
However, modulatory neurons, such as dopaminergic (DA) neurons, use a simpler
logic despite their distinct subtypes. Interestingly, this specific-to-general permutation
logic remained largely intact although NMDA receptors—the synaptic switch for
learning and memory—were deleted throughout adulthood, suggesting that the logic
is developmentally pre-configured. Moreover, this computational logic is implemented
in the cortex via combining a random-connectivity strategy in superficial layers
2/3 with nonrandom organizations in deep layers 5/6. This randomness of layers
2/3 cliques—which preferentially encode specific and low-combinatorial features
and project inter-cortically—is ideal for maximizing cross-modality novel pattern-
extraction, pattern-discrimination and pattern-categorization using sparse code,
consequently explaining why it requires hippocampal offline-consolidation. In contrast,
the nonrandomness in layers 5/6—which consists of few specific cliques but a higher
portion of more general cliques projecting mostly to subcortical systems—is ideal
for feedback-control of motivation, emotion, consciousness and behaviors. These
observations suggest that the brain’s basic computational algorithm is indeed organized
by the power-of-two-based permutation logic. This simple mathematical logic can
account for brain computation across the entire evolutionary spectrum, ranging from
the simplest neural networks to the most complex.

Keywords: cell assembly, NMDA receptor, cortex, appetitive behavior, computational algorithms, wiring logic,
computational logic, social behavior
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INTRODUCTION

Our knowledge regarding specific genes, neuron types and
circuitry functions has expanded substantially since Ramón
y Cajal pioneered brain research more than a century ago
(Mountcastle, 1957; Hubel and Wiesel, 1962; Carraway and
Leeman, 1973; Hökfelt et al., 1977; O’keefe and Nadel, 1979;
Seeburg et al., 1990; Buck and Axel, 1991; Ramón y Cajal,
1995; Tsien et al., 1996a,b; Tang et al., 1999; Houweling and
Brecht, 2008; Klausberger and Somogyi, 2008; Grillner et al.,
2013; Kvitsiani et al., 2013; Xu and Südhof, 2013; Alberini
and Kandel, 2014; Brichta and Greengard, 2014; Moser et al.,
2014; Basu et al., 2016; Tsien, 2016). This pace is likely to
accelerate further with recent BRAIN initiatives. However, it
has long been recognized that there is a need to establish the
basic computational frameworks that may underlie the brain’s
functions (Grillner, 2006; Tsien, 2007; Brenner and Sejnowski,
2011; Shanahan, 2012; Budd and Kisvarday, 2013; Marcus et al.,
2014; Geman and Geman, 2016). Imagine if all component parts
were made available; what should be the unifying mathematical
principles that evolution has adhered to in constructing brains in
such a way as to be capable of intelligent cognition and adaptive
behavior be?

Clearly, this is a daunting question. The human brain is
estimated to have approximately 86 billion neurons (Herculano-
Houzel, 2009), and each neuron has tens of thousands of
synapses (Andersen, 1990), leading to over one hundred trillion
synaptic connections. On top of this astronomical complexity,
one needs to map each connection or neuron to a given stimulus,
yet possible numbers of stimuli that can be used are infinite
given the complex, ever-changing nature of the world we live
in. Adding yet another layer of complexity to this seemingly
hopeless situation are the well-known variations in the number of
neurons, axonal/dendritic branches and synapses—not only over
the course of development and aging, but also across individual
brains and animal species. As such, the unifying mathematical
principle upon which evolution constructs the brain’s basic
wiring and computational logic represents one of the top most
difficult and unsolved meta-problems in neuroscience (Adolphs,
2015; Geman and Geman, 2016).

Recently, we have taken an alternative ‘‘thought-experiment’’
approach to this question (Tsien, 2015a,b; Li et al., 2016). We
reasoned that the essence of intelligence lies in the brain’s ability
to discover specific features and generalized knowledge from a
world full of uncertainties and infinite possibilities; therefore, our
search for the brain’s computational logic can be reduced to the
question of how neurons should be connected in such a way that
would inherently afford the brain to discover various patterns
and conceptual knowledge.

One useful concept in pursuing this line of reasoning is
cell assembly, a term coined by Hebb (1949) to describe
the supposed computational building block or computational
primitive in the brain (Hebb, 1949). This notion has attracted
keen interest, especially with emerging large-scale recording
techniques (Nicolelis et al., 1997; Kudrimoti et al., 1999; Lin et al.,
2006b;Maurer et al., 2006; Tsien, 2007; Buzsáki, 2010; Tsien et al.,
2013). Hebbian cell assembly was postulated to be comprised

of a group of neurons with strong excitatory connections that
are formed after learning. Once a subset of its cells is later
stimulated (i.e., by cues to recall memory), the assembly would
be activated as a whole to represent percepts or concepts (Hebb,
1949;Wallace and Kerr, 2010).While this terminology capitalizes
on the presumed building block in the brain, the wiring and
computational logic of such a computational motif remain a
mystery.

There is a long list of questions that one can ask: How do
principal cells within a cell assembly organize themselves? How
can such a logic of connectivity enable pattern-separation and
pattern-generalization? How should the size of a cell assembly be
defined? In an abstract sense, is there a mathematical principle
governing the unifying computational algorithm conserved
across various neural circuits despite their different anatomical
features? Furthermore, to what degree is such cell-assembly
logic dependent on learning in adulthood or largely genetically
programmed during brain development? Finally, how is the
computational logic implemented in the cortex so that it can be
repeatedly utilized as a basic motif via surface expansion, leading
to greater intelligence?

The Theory of Connectivity and its
Predictions: A permutation-Based Wiring
Logic To Cover Every Possibility
To explore these questions, we have put forth the Theory
of Connectivity that proposes a rather simple mathematical
rule in organizing the microarchitecture of cell assemblies
into the specific-to-general computational primitives that
would readily enable knowledge and adaptive behaviors to
emerge in the brain (Tsien, 2015a,b; Li et al., 2016). The
theory specifies that within each computational building
block, termed ‘‘functional connectivity motif’’ (FCM), the
total number of principal projection-cell cliques with distinct
inputs should follow the power-of-two-based permutation
equation of N = 2i–1 (N is the number of distinct neural
cliques that can cover all possible permutations and
combinations of specific-to-general input patterns, whereas
i is the number of distinct information inputs; Figure 1).
As such, each FCM consists of principal projection neuron
cliques receiving specific inputs, as well as other principal
projection neuron cliques receiving progressively more
convergent inputs that systematically cover every possible
pattern using the power-of-two-based permutation logic
(Figure 1A).

In other words, an FCM is made of neural-clique assemblies
arranged from specific input-coding principal cell assemblies to
sub-combinatorial and to general responsive cell assemblies. The
specific neural cliques extract unique features about perspective
stimuli (from external environments and/or internal sources),
whereas the sub-general and general neural cliques categorically
extract all possible combinational patterns. Cognitively speaking,
specific and sub-general cell cliques encode specific memories
or actions for pattern-discrimination and categorization,
respectively, whereas higher combinational or generalized neural
cliques discover general patterns for pattern-generalization
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FIGURE 1 | The power-of-two based permutation logic for governing the specific-to-general wiring and computational logic of cell assemblies.
(A) The equation defines the size of a cell assembly; the numbers of neural cliques within a cell assembly. By following the permutation equation of N = 2i–1, the
cell-assembly motif exemplified here consists of 15 distinct neural cliques (N1. . .15), which cover all possible connectivity patterns in order to process four distinct
inputs (i1, i2, i3, i4). The specific-to-general neural cliques shown in this subpanel illustrate the logic for wiring non-recurrent networks (e.g., the hippocampal CA1).
(B) Schematic “bar-code” illustrates the specific-to-general cell-assembly activation patterns, which can be measured by electrodes or imaging techniques, from the
15 distinct neural cliques (N1–15), processing four distinct inputs (i1, i2, i3, i4). The orange color represents the stimulus-triggered activation above the baseline state
(in blue). The arrow on the right side illustrates the number of distinct neural cliques exhibiting specific, sub-combinatorial, as well as generalized, responsiveness.
The cartoon illustration was adopted from Tsien, TINS, 2015. Specific neural cliques encode specific features, whereas various permutation rule-based neural cliques
encode various convergent patterns, representing relational memories and generalized concepts.

corresponding to semantic memories, categorical knowledge,
general intent and motor instruction. In essence, this power-of-
two-based permutation logic intrinsically enables each FCM to
cover every mathematical possibility of connectivity patterns in
a specific-to-general manner (Tsien, 2015a,b).

Due to the inherent structure-function relationship,
this power-of-two permutation-based wiring logic can be
functionally detected by neural recording techniques in the
form of specific-to-general cell assembly activation patterns
(Figure 1B). For example, the theory predicts that by providing
four distinct stimulus inputs (i.e., i = 4), one should observe all
15 excitatory cell cliques (N1–15) in relevant brain regions that
exhibit specific-to-general coding properties.

Importantly, this Theory of Connectivity has offered six
testable predictions: (1) Cognitive universality—This power-
of-two-based computational logic should be used to process
various cognitions across a wider range of modalities—including
appetitive, emotional and social information; (2) Anatomical
prevalence—This logic should be prevalent across many
cortical and subcortical circuits, regardless of their macroscopic
and microscopic variations; (3) Modulatory neurons, such
as dopamine (DA) neurons, use a different logic; (4) The
specific-to-general organization should be developmentally pre-
configured, rather than to be formed after learning in adulthood;
(5) This computational logic is implemented in the cortex
vertically via the differential assignment of specific-to-general

cliques to distinct laminar layers. This vertically implemented
FCM has the advantage to be readily replicated via horizontal
surface expansion (rather than via expansion of cortical
thickness); and (6) Species conservancy—The proposed
computational logic is evolutionarily conserved across the
brains of different animal species. Here, we describe a series of
experiments in testing these six predictions derived from the
power-of-two permutation-based computational logic.

MATERIALS AND METHODS

Ethics Statement
All animal work described in the study was carried out in
accordance with the guidelines established by the National
Institutes of Health regarding the care and use of animals for
experimental procedures and was approved by the Institutional
Animal Care and Use Committee at the Medical College
of Georgia at Augusta University (Approval AUP number:
BR10–12–392) and Banna Biomedical Research Institute of
Yunnan Academy of Science and Technology (BBRI#102).

Construction of Tetrode Headstages and
Animal Surgery
Tetrodes and headstages were constructed using the
procedures as we have previously described (Lin et al., 2006a;
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Xie et al., 2016). To construct tetrodes, a folded piece consisting
of four wires (90% platinum, 10% iridium, 13 µm, California
Fine Wire Company, Grover Beach, CA, USA) was twisted
together using a manual turning device and soldered with
a low-intensity heat source (variable temperature heat gun
8977020, Milwaukee, Brookfield, WI, USA) for 6 s. The
impedances of the tetrodes were measured with an electrode
impedance tester (Model IMP-1, Bak Electronics, Umatilla,
FL, USA) to detect any faulty connections, and our tetrodes
were typically between 0.7 M� and 1 M�. The insulation was
removed by moving the tips of the free ends of the tetrodes over
an open flame for approximately 3 s. The tetrodes were then
placed into appropriate polyimide tubes. The recording ends
of the tetrodes were cut differentially (Vannas spring scissors
— 3 mm cutting edge, Fine Science Tools, Foster City, CA, USA)
according to the different depths of the recording sites. This
ensures that only tetrodes, but not the surrounding polyimide
tubes, were inserted into the brain tissue, thereby minimizing
the tissue damage.

We employed adjustable 128-channel tetrode microdrives to
target the basolateral amygdala (BLA; n = 9 WT mice), medial
amygdala (MeA; n = 9WTmice), anterior cingulate cortex (ACC;
n = 5 WT mice), retrosplenial cortex (RSC; n = 9 WT mice)
and CA1 (n = 5 WT mice) bilaterally with 64 channels per
hemisphere (Lin et al., 2005, 2006a). Stereotaxic coordinates were
as follows: for the mouse BLA, 1.7 mm posterior to bregma,
3.5 mm lateral, −4.0 mm ventral to the brain surface; for the
mouse MeA: −1.70 mm anterior-posterior (AP), ± 2.1 mm
mediolateral (ML), −5.1 mm dorsoventral (DV); for the mouse
ACC: +0.50 mm AP, ± 0.5 mm ML, −1.75 mm DV; for the
mouse RSC: −2.5 mm AP, ±0.5 mm ML, −0.8 mm DV; and
for recording in the prelimbic cortex (PrL) of the Golden Syrian
hamster, the stereotaxic coordinate was +3.50 mmAP,± 0.7 mm
ML,−4.0 mm DV.

For recording in cortical layers 2 and 3 (L2/3) of the RSC,
nine mice were used (eight mice were implanted with 32-channel
tetrodes and one mouse with a 64-channel tetrode array). For
recording in cortical layers 5 and 6 (L5/6) of RSC, 11 mice were
used (seven mice were implanted with 32-channels, three mice
with 64 channels bilaterally and one mouse with 128 channels
bilaterally). For recording from the mouse CA1, the electrode
bundles were positioned above the bilateral dorsal hippocampi
(2.0 mm lateral to the bregma and 2.3 posterior to the bregma
on both the right and left sides). To record in the ILA region,
we used 64-channel tetrodes with 32 channels per hemisphere
(n = 5 mice). The electrode bundles were positioned above
the ILA (1.70 mm anterior to bregma and 0.5 mm lateral on
each side to a depth of 2.0 mm). For recording in the mouse
ventral tegmental area (VTA), we used 64-channel tetrodes with
32 channels targeting each side or a single 32-channel tetrode
bundle for a single side (3.4 mm posterior to bregma, 0.5 mm
lateral and−3.8 mm to−4.0 mm ventral to the brain surface).

Male wild-type (WT) and KO mice (6–8 months old) or
adult male hamsters (3–4 months old) were moved from home
cages housed in the LAS facility to the holding area next to
the chronic recording rooms in the laboratory and stayed in a
large plastic bucket (20 inches in diameter and 16 inch height,

Walmart) per mouse as their homes with access to water and
food for a week prior to surgery. During this period, the animals
were also handled daily to minimize the potential stress from
human interaction. On the day of the surgery, the animal was
given an intraperitoneal injection of 60mg/kg ketamine (Bedford
Laboratories, Bedford, OH, USA) and 4 mg/kg Domitor (Pfizer,
New York, NY, USA) prior to the surgery. The head of the animal
was secured in a stereotaxic apparatus, and an ocular lubricant
was used to cover the eyes. The hair above the surgery sites
was removed, and Betadine solution was applied to the surface
of the scalp. An incision was then made along the midline of
the skull. Hydrogen peroxide (3% solution, Fisher Scientific)
was placed onto the surface of the skull so that bregma could
be visualized. The correct positions for implantation were then
measured and marked. For fixing the microdrive headstage, four
holes for screws (B002SG89S4, Amazon, Seattle, WA, USA) were
drilled on the opposing side of the skull and, subsequently, the
screws were placed in these holes with reference wires being
secured to two of the head screws. Craniotomies for the tetrode
arrays were then drilled, and the dura mater was carefully
removed. After the electrodes were inserted and tetrodes were
secured to the fiberglass base, and the reference wires from
the connector-pin arrays were soldered such that there would
be a continuous circuit between the ground wires from the
head screws and those from the connecter-pin arrays. Finally,
the connector-pin array was coated with epoxy. Aluminum foil
was used to surround the entire headstage to aid in protection
and to reduce noise during recordings. The animals were then
awoken with an injection of 2.5 mg/kg Antisedan. The animals
were allowed to recover post-surgery at least for 3–5 days before
recording began. Then, the electrode bundles targeting the BLA,
VTA, MeA, and hippocampal CA1 region were slowly advanced
over several days in small daily increments. For the cortical sites,
tetrodes were advanced usually only once or twice in a small
increment.

Behavioral Paradigm and In Vivo
Recording
After surgery, the animals were handled for another 5–10 days
while electrodes were advanced to the recording sites for
obtaining maximizing neural units. On the day(s) of behavioral
experiments, we recorded the neural ensemble activity in freely
behaving mice in a clean home bucket for at least 30 min
as baseline. For appetitive experiments, various foods (sugar
pellets, rice, rodent diet pellets and milk droplets made from
Instant nonfat dry powder) were delivered to the small petri dish
located in the clean home bucket to minimize emotional effects
due to changes in environment. Seven pellets or milk droplets
were delivered for each food type with a 15–30 s time-interval
after consumption. The order of delivery was randomized by
using different delivery orders for different animals. We noted
that mice typically consumed the food within 10–20 s. The
time intervals between the different foods were 5–10 min. The
recordings were continued for an additional 30 min after all the
appetitive experiments were completed. The experiments were
videotaped by a camera placed above the recording chamber.
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For social interaction experiments, we implemented
64-channels in the right hemisphere MeA in four mice and
128-channels bilaterally in the MeA in five mice. These mice
were single-cage housed for at least for 1 month before surgery.
One week prior to surgery, the mice were transferred to the large
home buckets (46-cm in diameter) located in the recording room
and maintained single-cage housed and socially isolated until
the social interaction experiments. On that day, the recording
mouse was first placed in the clean home bucket for 30 min
(this also minimized the potential influences from the change
in recording environments) and recorded as the resting baseline
state before a social stimulus mouse (either male or female)
was introduced. To reduce mating behavior, we used anestrus
females. Two mice were allowed to freely interact for 10 min
and then the stimulus mouse was removed with a 15-min time
interval before a second mouse (male or female) was introduced.
The sex of the stimulus mice was balanced across the trials.
Social behaviors during these interactions were videotaped.
The most prominent social interactions were the face-to-face
interactions and face-to-anogenital interactions. To facilitate
peri-event spike raster and histogram analyses, we screened the
videotapes and marked social interaction when face-to-face or
face-to-anogenital interactions occurred at 1-cm distance as time
zero. In some cases, the animals engaged in dynamic interaction
from the anogenital area to face or vice versa within 1 s. These
trials were excluded from peri-event spike raster analysis to
minimize the carry-over effects.

For fearful-event stimulation experiments, the animal was
introduced to the airpuff chamber (a clean large home bucket),
foot-shock chamber, earthquake chamber and drop boxes.
Baseline activities were recorded for at least 3–5 min prior to
fearful stimulation. Four distinct fearful episodic events were
introduced to the mice in a fixed sequence: (1) Airpuff - a sudden
airpuff was delivered to the animal’s back (10 p.s.i., 400 ms) via
an air tube; (2) Earthquake-like shake - the mouse was placed in
a small chamber (4" diameter and 6"H circular chamber) fixed on
top of a vortexmixer and shaken at 300 rpm for 400ms (Lin et al.,
2005); (3) Free-fall in the elevator - the animal was placed inside
a small box (3" x 3" x 5"H) and dropped from an 11-cm height (a
cushion which was made from a crumbled table cloth was used to
dampen the fall and to stop the bouncing effect), and (4) Fearful-
conditioning foot-shock. The fear-conditioning chamber was a
square chamber (10" × 10" × 15"H) with a 24 bar, shock-grid
floor (Zhang et al., 2013). In a subset of experiments, acoustic
startle produced by clapping two metal boxes (100 db, 300 ms
in duration) was also used. Animals were placed into the shock
chamber for 3–5 min and received the unconditioned foot-shock
stimulus (60 Hz phasic 300-ms foot-shock at 0.75 mA) for a
total of seven times and an inter-trial time interval between
1–3 min. These episodic stimuli are fearful as evidenced by
physiological indications, including a rapid increase in heart
rates and reduced heart rate variability (Liu et al., 2013, 2014).
To facilitate peri-event spike histogram analysis, each fearful
event was repeated 7–10 times. To maintain the consistency
of stimulus inputs yet minimizing the possible prediction of
upcoming stimuli, the episodic stimuli were triggered by a
computer and delivered at randomized intervals within 1–2 min.

We also introduced 5- to 10-min intervals (resting in home
buckets) between switching from one type of fearful event session
to another session of a different type of stimulus while briefly
placing the mice in the home buckets. After the completion of all
episodic event sessions, the mice were placed back into the home
buckets.

At the end of the chronic recording experiments, the animals
were anesthetized and a small amount of current was applied
to the recording electrodes in order to mark the positions
of the tetrode bundles. The actual electrode positions were
confirmed by histological Nissl staining using 1% cresyl echt
violet. In some experiments, the electrode tips were dipped in
fluorescent Neuro-Dil (Neuro-Dil, #60016, Red oily solid color,
from Biotium, Inc.) prior to surgery insertion, which can then
reveal the electrode track under a fluorescent microscope. 4′,
6-diamidino-2-phenylindole (DAPI) staining was used for the
counter-staining of the nuclear DNA of the brain cells. Images
were collected using a Zeiss 780 Upright Confocal microscope.
The stability of the in vivo recordings was judged by waveforms
at the beginning of, during and after the experiments. Only stable
units were included for further analysis.

Data Processing and Spike Sorting
The neuronal activity was recorded by a Plexon multi-channel
acquisition processor system (filtered at 250–8000 Hz; digitized
at 40 kHz), and waveforms were collected using 56 points
with 1400 µsec time width. The recorded spike activities
from various brain regions were processed in the manner also
previously described (Lin et al., 2006a; Zhang et al., 2013),
and then sorted using the MClust 3.5 program1. First, the
recorded data were filed in Plexon system format (∗.plx). Before
spike sorting, the artifact waveforms were removed and the
spike waveform minima were aligned using the Offline Sorter
3.3.5 software2, (Dallas, TX, USA). It should be noted that
foot-shock did introduce artifacts, but could be easily removed
during this spike sorting step because spike waveforms are
distinct from electrical noise. The aligned data were then
saved as files in a Neuralynx System format (∗.ntt). Next, the
MClust 3.5 program was used to isolate different spiking units.
Only units with less than 0.1% in spike intervals within a
1-ms refractory period and clear boundaries, as judged by an
Isolation-Distance calculation >15, were included in the present
analysis.

For the datasets recorded from ACC, CA1, PrL, RSC
and ILA, well-isolated units were classified as either putative
excitatory principal cells or inhibitory interneurons based
on three characteristic features of spike waveform—namely,
trough-to-peak width, the second principal component of the
spike waveform (PC2), and the first derivative of the energy
(EnergyD1 in MClust). Automated clustering of excitatory
principal cells and inhibitory interneurons was performed by
k-means method.

Because the features PC2 and EnergyD1 provided poor
differentiate power in BLA datasets, we employed a novel set

1http://redishlab.neuroscience.umn.edu/MClust/MClust.html
2http://www.plexon.com
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of spike waveform features for describing the spike waveforms
of neuron firing in BLA, including trough-to-peak width,
half-width after trough and the differential integral of area shape
∆A(after peak). Half-width after trough was defined as the width
between the points when the waveform raised to or fell from
half-height of the peak. ∆A(after peak) was defined as the area
between the waveform and the line segment of peak and the last
point of the waveform. The feature∆A(after peak) could be positive
or negative, depending on the shape of the waveform after the
peak. The k-means method was employed to achieve automated
cell-type clustering, and we found that the vast majority of the
units recorded from BLA were putative excitatory principal cells
(∼86.4%).

Construction of Optrodes and
Light-Stimulation Protocol
For the optrodes targeting the BLA or VTA bilaterally, a square-
shaped arrangement of polyimide tubes per bundle was used for
32 channels/8 tetrodes per hemisphere. For optical fiber, cladding
was removed from the two 200-µm core, 037 NA standard, hard-
cladding, multimode fiber (ThorLabs), and the optical fibers were
placed 1-mm apart in a microdrive base for bilateral targeting
of the VTA or BLA using a total of 32 channels/8 tetrodes.
Eight tetrodes were threaded into separate polyimide tubes
and placed adjacent to each optical fiber to create an optrode
bundle with the tip of the optical fibers 600-µm above the
recording tetrodes. Tetrodes were then inserted into eight of
the polyimide tubes, leaving an empty tube at each corner
of the square. This arrangement would allow the tetrodes to
be reached effectively by the light-stimulation from the fiber.
After each tetrode was correctly positioned, the wires were
glued to the polyimide tubes. The free ends of each tetrode
were wrapped around the 36 pin-connector array and were
individually soldered to their respective pins. The recording tips
of the tetrodes were cut so that they would protrude past the fiber
300–500 µm.

Prior to stimulation, PM100D (ThorLabs) was used to
measure the light intensity. Optical fibers were connected to a
blue laser (473 nm, diode-pumped solid-state, Shanghai Dream
Lasers Technology Co.). Trains of 10-Hz stimulations (10ms
per pulse, 20 pulses per train) were delivered to the site in
10 trials using a PulsemasterA300. To confirm the identity of
pyramidal cells that were based on waveform characteristics,
we recorded from the BLA of two double transgenic mice
(Tg-CaMKII-Cre crossed with Tg-Ai32-ChR2). To verify DA
neurons, we used a combination of pharmacological and
optogenetic methods that we previously published (Wang and
Tsien, 2011). DA neurons were identified initially by decreased
firing upon injection of D2 agonist apomorphine (1mg/kg,
i.p.). To label DA neurons using optogenetics, we injected
adeno-associated virus particles (UNC viral core facility), coding
the floxed channelrhodopsin-2 (ChR2) and green fluorescent
protein (GFP), into the VTA region of a DAT-Cre mouse.
The animals were allowed to recover for 3–4 weeks before
recording. Optogenetic identification of putative pyramidal cells
or DA neurons was based on the comparison between waveforms

before optical stimulation and those triggered by blue laser
during the light-stimulation. Waveforms were judged to be
identical if the correlation coefficient was measured to be
higher than 0.9. The latencies between the light-stimulation
and blue-light-induced spikes were calculated by peri-event
histogram.

Characterization of Principal Unit
Responses
To determine whether a recorded unit was responsive to a
given stimulus, we used the stimulus time points as time
zeros to calculate a peri-event histogram using a 500 ms-bin
size for appetitive stimulation, a 200 ms-bin size for social
interaction, and a 100 ms-bin size for fearful stimuli. The
neural activities before stimulus were used as a baseline to
determine confidence intervals (10-s for appetitive experiments,
3-s for social recognition, and 2-s for fearful stimulation).
To assess significant changes in firing, we used 95%, 99.9%,
99.999%, confident intervals and the duration longer than
five bins, three bins, and two bins for a given category of
stimulation, respectively, then it is considered a significant
neuronal response to the stimulus. These criteria are determined
empirically. To facilitate the comparison between units that
exhibit different increases/decreases over baseline activities, we
used the transformation Ri = (f resp, i − f pre, i)/(f 0 + f resp, i) Here,
f resp, i represents the average firing rate during the detected
neuronal response after the stimuli i. f pre is the average firing
rate during baseline before the stimuli i, and f 0 is the averaged
basal firing rates of all isolated units in a given region (typically
in the range of 0.5∼3.5 Hz). Note that this transformation allows
for uniform quantification of the significant changes in firing
patterns for units with both low- and high-baseline firing rates.

For measuring the population response significance, neural
activity was calculated by comparing the firing rate after stimulus
onset (in 500 ms-, 200 ms- or 100 ms-bin size for appetitive,
social, or fearful stimuli, respectively) with the firing rate
recorded during the baseline periods (10-s before appetitive
experiments, 3-s before social recognition, and 2-s before fearful
stimulation) using a Z-score transformation. Z-score values
were calculated by subtracting the average baseline firing rate
established over the defined duration preceding stimulus onset
from individual raw values then by dividing the difference by the
baseline standard deviation.

Hierarchical Categorical Clustering
Hierarchical clustering methods were used to investigate
the stimulus responses of the overall population of the
simultaneously recorded units. The procedure was similar to
the one previously described (Lin et al., 2005; Zhang et al.,
2013). This analysis was performed on a transformed neuronal
response: T = log(1+|R|). Here, R is a n ×mmatrix representing
the neuronal responses of n units during m stimulus, and
| | denotes the absolute value. An agglomerative hierarchical
cluster tree was created from the standardized Euclidean
distances. Then, a categorical sorting was applied to facilitate
the visualization. That is, units were sorted by the number of
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stimuli to which these units responded. After the categorical
sorting, the units which were non-responsive were put on the
top of the matrix, followed by the units responding to a specific
event, and the units responding generally to the most number
of types of stimulus events were located at the bottom of the
matrix.

Assessing Nonrandomness in Distribution
Patterns of Neural Cliques
In order to test if the response patterns of the recorded ensembles
deviated from random distribution, we constructed a null
(independent random) model which assumed that each neuron
in the given region has an independent response probability to
a given pattern, and the response probabilities of this neuron
to different stimuli can be different. In other words, each
event would randomly activate a subset of the neurons with a
different average ensemble size, and the activation patterns of
different stimuli are independently chosen and do not interact.
Accordingly, we normalized the observed histogram of counts for
16 clique response-types to four different stimuli (example shown
below) by the total number of counts to obtain the response
pattern distributions denoted as pi(Ej), where i goes from 1–16,
and j from 1–4, and Ej can be 0 or 1. Example histogram for ACC
WTmice:

#1 clique (0, 0, 0, 0): 114 cells (non-responsive units)
#2 clique (1, 0, 0, 0): 35 cells (responded to the first stimulus)
#3 clique (0, 1, 0, 0): 25 cells (responded to the second

stimulus)
#4 clique (0, 0, 1, 0): 13 cells (responded to the third stimulus)
#5 clique (0, 0, 0, 1): 35 cells (responded to the fourth

stimulus)
#6 clique (1, 1, 0, 0): 23 cells (responded to the first and second

stimuli)
#7 clique (1, 0, 1, 0): 15 cells (responded to the first and third

stimuli)
#8 clique (0, 1, 1, 0): 13 cells (responded to the second and

third stimuli)
#9 clique (1, 0, 0, 1): 21 cells (responded to the first and fourth

stimuli)
#10 clique (0, 1, 0, 1): 13 cells (responded to the second and

fourth stimuli)
#11 clique (0, 0, 1, 1): 14 cells (responded to the third and

fourth stimuli)
#12 clique (1, 1, 1, 0): 37 cells (responded to the first, second,

and third stimuli)
#13 clique (1, 1, 0, 1): 19 cells (responded to the first, second,

and fourth stimuli)
#14 clique (1, 0, 1, 1): 17 cells (responded to the first, third,

and fourth stimuli)
#15 clique (0, 1, 1, 1): 31 cells (responded to the second, third,

and fourth stimuli)
#16 clique (1, 1, 1, 1): 95 cells (responded to all four stimuli)
The probability of generating the combined pattern is the

product of individual independent probabilities, i.e., pi (E1 = 0, E2
=1, E3 =0, E4 = 0) = p(E1 = 0)× p(E2 = 1)× p(E3 = 0)× p(E4 = 0).
The independent probabilities can be obtained by summing all

pis where a given event occurs. For example, p(E1 = 0) can
be obtained by summing all pis with E1 = 0, regardless of
the value of the other variables. To generate the error bars,
we used a resampling procedure by running 1000 Monte-
Carlo simulations. In each simulation, we assigned each data
point to one of those 16-clique patterns by drawing a random
number weighted by the probability of the occurrence of
each pattern. The 5% and 95% values were plotted on the
graphs, and the p value for the probability of a given pattern
being significantly different from the actual distribution was
assessed at a level of p < 0.05 after dividing the p value
by 16 to reflect the Bonferroni multiple hypothesis testing
correction.

RESULTS

The Power-of-Two-Based Permutation
Logic for Processing Food Experiences
We employed large-scale in vivo tetrode arrays (Lin et al.,
2006a) to measure activation patterns of large numbers of
neurons in the appetitive neural circuit—namely, the BLA
(Everitt et al., 2003; Fernando et al., 2013), while mice freely
consumed four different foods (rodent-diet pellets, sugar pellets,
rice and milk droplets). Because our Theory of Connectivity
concerns the coding patterns of principal-projection neurons,
we limited our present analysis to putative excitatory neurons
(for classification of putative pyramidal cells and fast-spiking
interneurons, as well as their stability during experiments,
please see Supplementary Figures S1A–1C). To avoid possible
training-induced changes in coding patterns, we only used the
datasets collected from the very first food-encounter experiments
during which the mice consumed seven sugar pellets, seven
rice and seven condensed-milk droplets for the first time, in
addition to seven rodent diet pellets (which lab animals routinely
ate).

A total of 794 units were recorded from the BLA in
nine WT mice, and 527 putative pyramidal units met the
above criteria and were used for peri-event spike raster
histogram analysis. Interestingly, we found that putative
pyramidal cells exhibited a variety of event-response selectivity,
including the general-responsive cells that increased their
firings to all four types of foods, the combination of two
or three types of appetitive stimuli, or those specific units
responding only to one type of food (Figure 2A). The diverse
responsiveness among the putative pyramidal cell population
was further confirmed by optrode recording from Tg-CaMKII-
Cre/Ai32-ChR2 double transgenic mice. These computationally
classified pyramidal cells were activated by blue light and
they indeed exhibited specific, combinatorial, or general
responses to appetitive stimulations (Supplementary Figures
S1D,F).

From a neural classifier’s perspective, this was an emergent
process of pattern self-discovery as the animals experienced
different foods over the meal session. For example, of these
527 BLA principal cells, 89 of the units (16.89%) increased
firings to rodent diet (Figure 2B, the first heat map on the
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FIGURE 2 | The permutation-based logic in the basolateral amygdala (BLA) cell assemblies for processing food experiences. (A) Examples of pyramidal
cells with specific to general responsiveness. The top row shows a cell selectively responded to milk; A representative two-event cell responding to rodent diet biscuit
(RD) and milk (the second row); A three-event cell responding to biscuit, sugar and milk (the third row); A pyramidal cell responding to all four types of foods

(Continued)
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FIGURE 2 | Continued
(bottom row). Peri-event raster (upper subgraph) and peri-event histograms
(lower subgraph) are presented. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001,
Wilcoxon signed-rank test. (B) BLA pyramidal cells followed the
power-of-two-based permutation rule to process appetitive information
(n = 9 mice, 221 responsive pyramidal cells). As i was increased from 1, 2, 3,
to 4, hierarchical clustering plots show the emergence of distinct neural
cliques from 1, 3, 7, to 15. The Y-axis lists the number of responsive putative
pyramidal cells. Color scale bars indicate the logarithm-transformed
responsiveness of putative pyramidal units (10-s post-stimulation) averaged
over seven trials. It typically took 5∼10 s for mice to consume each pellet or
milk. (C) The specific-to-general assembly logic was also present in the
simultaneously recorded BLA pyramidal cells from a single mouse (50 out of
110 pyramidal cells were responsive to foods) in the very first recording
session. In this mouse, the food order was presented as follows: seven rodent
biscuits, seven sugar pellets, seven rice, followed by seven milk droplets.
(D) Z-score plots show population responses of each of the 15 distinct neural
cliques in the BLA to various food experiences. The number of pyramidal cells
belonging to each clique is listed in each subplot. Color lines (blue, orange,
green, purple) indicate a given food type.

left). When the responses to rodent diet and sugar pellets
were analyzed, a total of 128 pyramidal cells responded
with three distinct neural cliques (Figure 2B, the second
heat map) —30 units increased firing to both rodent diet
and sugar, indicating that these neurons received converged
inputs; whereas 59 units reacted specifically to rodent diet,
and 39 units to sugar only. As neuronal responses to rice
were included in data analysis, a total of 167 units were
found to be involved in encoding these three food experiences,
with a total of seven specific-to-general combinatorial cliques
manifested (Figure 2B, the third heat map). When milk
responses were included, a total of 15 cell cliques has emerged.
These 15 pyramidal cell cliques precisely followed the power-
of-two-based permutation logic (N = 24− 1 = 15) which
covered every mathematical possibility required to process four
distinct food experiences (Figure 2B, the fourth heat map).
Importantly, the emergence of 15 distinct neural cliques was also
observed in a single-mouse dataset (Figure 2C), demonstrating
that this computational logic indeed operates within the local
motif. The diverse response patterns of these 15 neural cliques
was further confirmed by the Z-score analysis plot of pooled
population datasets collected from multiple mice (n = 9, each
animal was subjected to a different food order; Figure 2D).
Therefore, the BLA pyramidal cells followed the specific-
to-general permutation logic to extract all possible patterns,
enabling discrimination, categorization, and generalization of
various food experiences.

The Power-of-Two-Based Logic for
Processing Social Interactions
Next, we examined whether this power-of-two-based
computational logic is employed in processing social recognition.
The MeA is known to be part of the social-behavioral neural
network (Petrulis, 2009; Gur et al., 2014; Rilling and Young,
2014). We implanted tetrodes in the MeA of male mice (using
64 channels in four mice and 128 channels in five mice—a
total of nine mice) and monitored their neural activity while
the mice engaged in four typical social interactions, such as

the social recognition of female faces, female anogenital areas,
male faces and male anogenital areas (Figure 3A). A total of
495 well-isolated units were analyzed for their responsiveness
during dynamic social interactions from these nine mice.
Of those, 239 of them responded to these social-interaction
events and they exhibited specific-to-general response patterns
(Figure 3B). Interestingly, both hierarchical-clustering analysis
and population Z-score analysis showed that these responsive
cells followed the power-of-two-based permutation logic and
had 15 permutated neural cliques to represent four distinct types
of social information (Figure 3C). These results suggest that the
MeA circuit also follows the specific-to-general permutation
logic to register not only specific social recognition, but also
to discover various combinatorial relationships of conspecific
social interactions.

The Power-of-Two-Based Logic for
Processing Fearful Experiences
To further test the generality of this logic in processing a
wide range of cognitive information, we investigated how cell
assemblies in the prefrontal cortex encode emotionally fearful
experiences. We mimicked the accumulative experiences in real
life by exposing the animals to four distinct fearful events
(using air-puff blast, free-fall, earthquake-like shake and mild
electrical foot-shock) known to trigger emotional responses (Liu
et al., 2013, 2014). A total of 776 units were recorded using
128-channel tetrode arrays from the ACC, a region crucial
for controlling fear behavior (Steenland et al., 2012) in freely
behaving mice (n = 5 mice). Of them, 602 units met the
criteria to be well-isolated. These units were then separated
into putative excitatory units and fast-spiking interneurons
(Supplementary Figures S2A,B). Stable units before, during
and after fearful stimulation were selected for further analysis
(Supplementary Figures S2C,D), and 520 putative excitatory
units were identified. Many ACC excitatory cells (406 units)
increased their firings to these fearful stimulations in a specific-
to-general manner (Figure 4A). A total of 15 distinct principal
cell cliques were identified based on hierarchical clustering
analysis from the pooled datasets (Figure 4B). More importantly,
single-mouse datasets also contained 15 distinct excitatory cell
cliques (Figure 4C), suggesting that this power-of-two-based
logic is also conserved in the individual ACC circuit. Z-score
analysis of population datasets once again confirmed that these
15 cell cliques exhibited robust responsiveness (Figure 4D).
Taken together, the above results show that the specific-to-
general cell-assembly coding is based on the power-of-two-based
permutation logic to extract every possible representational
pattern across many cognitive modalities.

The Power-of-Two-Based Logic is
Repeatedly Utilized Along the Neural
Pathways
Next, we examined the second prediction that the power-
of-two-based permutation logic should be repeatedly utilized
throughout various stages of network processing. Accordingly,
we investigated cell-assembly patterns in three additional
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FIGURE 3 | The power-of-two-based logic in the medial amygdala (MeA) cell assemblies for processing social information. (A) Four distinct social
recognitions: female face, female anogenital area, male face and male anogenital area. Examples of specific-to-general responsive pyramidal cells. ∗P < 0.05,
∗∗P < 0.01, Wilcoxon signed-rank test. (B) Hierarchical clustering plot shows the existence of 15 distinct neural cliques in the MeA. The datasets were pooled from
nine mice (239 responsive units). The Y-axis lists the number of responsive units. Color scale bars indicate the scaled responsiveness of MeA units. (C) Z-score plots
show population responses of the 15 distinct neural cliques in the MeA to four distinct social interactions. The number of cells belonging to a given clique is indicated
inside each plot. Colored lines (blue, orange, green, purple) indicate different social interaction types.
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FIGURE 4 | The power-of-two-based logic in processing fearful experiences in the anterior cingulate cortex (ACC). (A) Four distinct fearful
experiences—airpuff, free-fall, earthquake and foot-shock—triggered robust firing increases in many ACC principal excitatory cells. Examples of specific-to-general
responsive cells (list from the top to bottom rows, respectively). Red bars above the peri-event raster plots indicate the stimulus time-duration. ∗P < 0.05,
∗∗P < 0.01, Wilcoxon signed-rank test. (B) Hierarchical clustering plot shows the existence of 15 distinct principal neuron cliques in the ACC in processing four
distinct fearful experiences. The plot showed 406 principal excitatory cells pooled from nine mice. (C) Hierarchical clustering plot of 15 specific-to-general ACC
excitatory cell cliques from a single mouse data. Color scale bar indicates the scaled responsiveness. (D) Z-score plots of 15 distinct principal ACC neuron cliques
from a single mouse (76 excitatory cells). Specific to general cliques are listed in rows from the top to bottom. The number of units belonging to each clique is
indicated inside the plot. Colored lines indicate distinct fearful events.
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neural circuits known to be crucial for associative fear
memories—namely, the infralimbic cortex (IL), RSC and
CA1 region of the hippocampus (Kim and Jung, 2006; Do-Monte
et al., 2015; Giustino and Maren, 2015).

A total of 423 units were recorded from the IL in freely
behaving mice (n = 5 mice), and 296 units were judged as stable
and well-isolated. Of them, 205 units were classified as putative
excitatory units (Supplementary Figure S2B). Our large-scale
recordings again detected 15 distinct neural cliques (from 148
responsive units) showing the specific-to-general coding patterns
(Figure 5A and Supplementary Figure S3A).

Next, we investigated neural activation patterns in the RSC, a
region implicated for long-term storage of fear-related memories
(Cowansage et al., 2014; Kwapis et al., 2015). A total of 716 units
were recorded from nine mice, and 545 were found to be isolated
and stable. Out of these, 346 were identified as putative excitatory
units (Supplementary Figure S2B). Our analyses revealed that
these RSC excitatory units (250 responsive units) also exhibited
specific-to-general, combinatorial response patterns (Figure 5B
and Supplementary Figure S3B).

Finally, in the CA1, a total of 749 units were recorded
from five mice and, of them, 529 were stable and well-
isolated. There were 418 units classified as putative
CA1 pyramidal cells (Supplementary Figure S2B). Our
analyses of these pyramidal cells (264 responsive units)
in pooled data also uncovered 15 specific-to-general
response types (Figure 5C and Supplementary Figure S3C).
Moreover, the existence of 15 permutated pyramidal cell
cliques was also found in single-mouse data (Supplementary
Figure S4).

Taken together, the results from four different regions
(ACC, IL, RSC and CA1) revealed that the power-of-two-
based permutation logic was, indeed, repeatedly employed across
various network stages of the emotional memory circuits.

A Simpler Logic in Dopaminergic Neurons
The third prediction is that because the modulatory
neurons—such as DA neurons in the VTA - have different
functional purposes (i.e., providing motivational valence
signals—such as wanting vs. not wanting, or rewarding vs.
not rewarding, etc.). Accordingly, they may use a simpler
logic. We recorded from the VTA in freely behaving mice
(Figures 6A,B) while also subjecting them to the above four
types of fearful stimulations. A total of 36 well-separated
VTA putative DA neurons were identified from the VTA
recordings (n = 10 mice) based on a combination of
criteria—their waveforms (Supplementary Figure S5A) and
decreased firing upon injection of D2 agonist apomorphine
(Supplementary Figure S5B). In a subset of experiments,
DA units were further confirmed by the optogenetic
method (Supplementary Figures S5, S6). We noted that DA
neurons can be classified into three major types. Type-1
and -2 DA neurons suppressed their firings during fearful
stimulation, and these neuron DA subtypes (n = 27 units) were
broadly tuned to these fearful stimulations (Figures 6C–E).
Type-1 DA neurons (n = 24 units) exhibited significant
rebound-excitation at the termination of fearful stimulation

(Supplementary Figure S5E), whereas Type-2 DA neuron
(n = 3 units) lacked such rebound-excitation (Supplementary
Figure S5F).

In contrast to the suppressed firing upon fearful stimulation,
Type-3 DA neurons (nine units recorded) increased firing to air-
puff, free-fall, earthquake or foot-shock (Figure 6F), and they
also lacked specificity (Figure 6G). Type-3 DA neurons were
further confirmed by optogenetic and pharmacological methods
(Supplementary Figures S6A–D). Taken together, despite their
temporal dynamic differences, DA neurons lacked the power-of-
two-based clique coding patterns and were broadly tuned to these
distinct fearful stimuli.

The Power-of-Two-Based Logic Remained
Intact in the NMDA Receptor Knockout
Mice
While Hebb postulated that cell assemblies are formed by
learning, the Theory of Connectivity predicts that this power-
of-two-based logic should be pre-configured by evolution and
development. In other words, this logic should be independent
of learning in adulthood. To examine these two competing
hypotheses, we deleted the N-methyl-D-aspartate (NMDA)
receptors in the forebrain excitatory neurons postnatally starting
at 6-weeks’ old (Cui et al., 2004) and studied cell-assembly
patterns (in BLA, RSC and ACC, respectively) of these adult
conditional knockouts (KO) when they were 5–6 months old.
This chronic deletion of the NMDA receptors throughout
adulthood caused a random synaptic drift, which can destabilize
synaptic patterns related to previously acquired memories,
thereby reverting to the original naïve ‘‘unlearned’’ state (Cui
et al., 2004, 2005).

We first recorded appetitive coding patterns from the BLA
of the mutant mice as they were exposed to four distinct foods
(mouse chew pellets, sugar pellets, rice and milk droplets). A
total of 659 putative pyramidal units were identified from seven
KO datasets. Of them, 279 cells responded to these four distinct
foods. Fifteen distinct specific-to-general neural cliques were
found among these pyramidal cells to represent these four food
experiences in a surprisingly similar way to that of WT mice
(Figure 7A).

We then investigated fear memory-coding patterns from the
RSC of the KO mice (n = 6) and control mice (n = 6) while
they were exposed to four distinct fearful stimuli (air-puff,
acoustic startle, earthquake and free-fall). We obtained a total
of 295 putative excitatory units from the RSC of the KO mice
and 326 units from the control mice. Of them, 175 units out of
295 cells in the KOmice and 165 units out of 326WT cells reacted
to these fearful stimuli. Once again, we also identified 15 specific-
to-general neural cliques in the RSC of both the KOmice andWT
littermates (Figure 7B). These patterns were also very similar.

Finally, we recorded from the ACC of yet another set of
the KO mice (n = 4) and control mice (n = 3) while exposing
them to air-puff, acoustic startle, earthquake and free-fall. A
total of 249 or 302 putative excitatory cells were identified
from the KO and WT ACC region, respectively. 225 units
out of those 249 cells in the KO mice and 213 units out of
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FIGURE 5 | The permutation logic is conserved in multiple cortical and hippocampal regions processing fearful experiences. (A) Hierarchical clustering
plot shows the existence of 15 distinct cell cliques in the ILA (148 out of 205 principal excitatory units responded to fearful stimuli from five mice). Color scale bar
indicates the scaled responsiveness. (B) Hierarchical clustering plot shows the existence of 15 distinct cell cliques in the retrosplenial cortex (RSC). The datasets were
pooled from nine mice (250 responsive excitatory cells out of a total of 346 units). (C) Hierarchical clustering plot shows the existence of 15 distinct CA1 pyramidal
cell cliques. The datasets were pooled from five mice (264 responsive pyramidal out of 418 stable pyramidal cells). The Y-axis indicates the unit number.

those 302 cells responded to these fearful events. There were
15 distinct specific-to-general cliques in both the KO datasets
and their WT datasets (Figure 7C). Intriguingly, we noted that
the ACC units in the KO mice exhibited greater firing increases
in comparison to that of WT mice. Moreover, the general clique
is much higher in proportion (40% in KO vs. 16% in WT),
whereas the numbers of specific cells in the KOmice were greatly
reduced (9%) in comparison to the 28% in the WT mice. This
occurred while the basal firing rates in the BLA, RSC and ACC
in the KO mice were comparable to those of the WT mice
(data not shown). Taken together, these results show that the
specific-to-general permutation logic remained intact after the
NMDA receptors were deleted from the principal neurons in the
forebrain throughout adulthood.

Specific-to-General Cell Assemblies
Deviated from the Random-Connectivity
Model
Theoretically, in the early stage of evolution, a simple circuit
with only several neurons could use the random-wiring strategy
to generate specific-to-general combinatorial patterns. Also,
in a given recurrent network with sufficient convergence
and divergence, the random wiring-based mechanism may
also be potentially employed to produce specific-to-general
combinatorial connectivity. Thus, we asked whether specific-
to-general clique ratios may match the random distribution.
Because lack of the NMDA receptors causes a random drift in
synaptic strength, we also wondered if deleting NMDA receptors
in the adult brain would result in random-connectivity patterns.

Accordingly, we performed the independent random-
connectivity model analysis on both the WT and mutant BLA,
ACC and RSC datasets. We found that the experimentally
observed specific-to-general patterns in the wild mice deviated
significantly from the random model. Chronic deletion of the
NMDA receptors throughout adulthood did not cause much of a
drift from the nonrandom distribution patterns in the BLA, ACC
and RSC to randomness (Figure 8); again, strongly indicating
that the specific-to-general computational logic was constructed
via the nonrandom strategy that is independent of learning in
adulthood.

Implementation of the
Power-of-Two-Based Permutation Logic
Within Cortical Layers
The fifth predictionmade by theTheory of Connectivity is that the
power-of-two-based computational logic should be implemented
vertically in the cortex via differential distribution of specific-
to-general cliques across laminar layers (termed as the cortical
FCM; Tsien, 2015a; Li et al., 2016). While the primary sensory
cortices (koniocortex) and primary motor cortex have the classic
six layers (Harris and Shepherd, 2015), many associational
cortices in the rodents or other animal species, including the
ACC, PrL, RSC or piriform cortex only have a three-layered
structure (namely—L1, L2/3 and L5/6; Hooks et al., 2011; Sugar
et al., 2011; Ueta et al., 2013; Dembrow and Johnston, 2014;
Fournier et al., 2015; Yamawaki et al., 2016). While L2/3 neurons
project locally to L5/6, they are predominantly responsible
for cortical-to-cortical communications. On the other hand,
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FIGURE 6 | Dopamine (DA) neurons did not use specific-to-general logic to process different types of fearful experiences. (A) Tetrode recordings in the
ventral tegmental area (VTA) in freely behaving mice. (B) Histological confirmation of the tetrode positions in the VTA. (C) Hierarchical clustering plot showed that DA
neurons were broadly tuned to all four fearful events (81.5%), with 11.1% tuned to three events. Color scale bar indicates the scaled responsiveness. (D) Type-1 DA
neuron suppressed its firing during fearful stimulation, followed by rebound excitation after the termination of the events, whereas Type-2 DA neuron suppressed its
firing upon fearful stimulation but without rebound at the termination of the fearful events. The bar above each spike raster indicates the stimulus duration. ∗P < 0.05,
Wilcoxon signed-rank test. (E) Z-score plot shows that DA Type-1 and -2 neurons (n = 27) exhibited a broadly tuned, significant suppression in their firings during
fearful stimulation. (F) Type-2 DA neurons increased firing upon fearful stimuli and were broadly tuned to all four fearful stimuli. (G) Z-score plot shows that DA Type-3
neurons (n = 9) exhibited a significant increase of their firings upon all four types of fearful stimulation. ∗∗p < 0.01; ∗∗∗p < 0.001.

L5/6 neurons have recurrent local feedback to the superficial
layers, and they project preferentially to subcortical systems.
The Theory of Connectivity predicts that specific clique cells
should be enriched in the superficial layers two and three
(L2/3), whereas general clique cells should be concentrated
in the deep layers five and six (L5/6; Tsien, 2015a; Li et al.,
2016). Most importantly, the power-of-two-based permutation
logic across laminar layers would ensure every possible
combinatorial excitatory cell clique to be found within each
cortical FCM.

To test this prediction, we targeted our tetrode arrays
specifically to the RSC L2/3 or L5/6, respectively (Figures 9A,B).
We recorded from RSC L2/3 in nine mice while they were
exposed to four types of fearful stimulations (namely, air-
puff, drop, earthquake and foot-shock). Population analysis
of 197 putative excitatory cells revealed that specific cells
(responding to only one fearful event) constituted about 65% of
all responsive cells. Only 1% of the responsive cells belonged to
the general clique (four-event cells), and 14% of the responsive
cells were three-event clique cells (Figures 9C,E).
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FIGURE 7 | The power-of-two-based logic was preserved in the N-methyl-D-aspartate (NMDA) receptor knockout (KO) mice. (A) Hierarchical clustering
plot shows the existence of 15 distinct pyramidal cell cliques in the BLA of the wild-type (WT) mice (221 cells) and KO mice (279 cells). Appetitive stimuli were labeled
in the X-axis. (B) Hierarchical clustering plot shows the existence of 15 distinct excitatory cell cliques in the RSC of the WT mice (165 cells) and KO mice (175 cells).
Four distinct fearful stimuli were labeled. (C) Hierarchical clustering plot shows the existence of 15 distinct excitatory cell cliques in the ACC of the WT mice
(213 cells) and KO mice (225 cells) in response to four distinct fearful events. Color scale bars indicate the scaled responsiveness of these units.

We then recorded from L5/6 of the RSC in a different set
of mice (n = 11) while the same four types of fearful events
were delivered. Hierarchical clustering analysis of 168 putative
excitatory cells showed that the percentage of cells belonging
to one-event specific cells was significantly smaller (26%;
Figure 9D). At the same time, the general four-event cells were
expanded to 23% (Figures 9E,F). We found that three-event and
four-event cells together constituted about 55% of the responsive
population. These results demonstrated that the superficial
layers preferentially contained many specific cliques, whereas
the general cliques were greatly enriched in the deeper layers.
Together, these vertically implemented computational motif
(cortical FCM) followed the power-of-two-based permutation
logic and covered all 15 specific-to-general coding patterns.

The Power-of-Two-Based Permutation
Logic is Evolutionarily Conserved
Finally, we tested the sixth prediction that the power-of-two-
based computational logic should be evolutionarily conserved
across animal species. We asked whether the PrL in Golden
Syrian hamsters (Markham et al., 2012) would follow this logic in
processing fearful experiences. We implanted 64-channel tetrode
arrays bilaterally into the PrL region (L2/3 or L5/6) and recorded
neural activity patterns while subjecting the hamsters to the
same four types of fearful events that we used in mice (namely,
air-puff, free-fall, earthquake and acoustic tone). A total of
336 units were recorded from 12 hamsters. Of these, 244 putative
excitatory units were identified as stable and well-isolated
(145 cells from L2/3, and 99 cells from L5/6). Many of them
(125 units) responded to these fearful stimulations and also
showed specific-to-general coding patterns (Figures 10A–H).

Together, these putative principal cells in the hamster PrL cortex
also followed the power-of-two-based permutation logic and
formed all 15 distinct neural cliques to cover all possible coding
patterns for these four fearful experiences (Figure 10I).

Further, we asked whether differential distributions of
specific-to-general cliques observed in the mouse RSC would
also be conserved in the hamster PrL. Thus, we analyzed
these 125 responsive excitatory units according to their layer-
specific distributions. Indeed, we found that specific clique
cells were again overwhelmingly concentrated in the L2/3 of
the hamster PrL cortex (Figure 10J), whereas the general
responsive cells and most of the three-event cells concentrated
in the L5/6 (Figure 10K). Quantitative analysis revealed that
71% of the all responsive cells in L2/3 belonged to specific
cliques (Figure 10L). Only 1% of these responsive cells reacted
to three-events, and there was no four-event unit. On the
contrary, a greater percentage of the excitatory units in
L5/6 belonged to the general clique (18%) and three-event cells
(29%; Figure 10L). Statistically, there were significant differences
in the distributions of one-event units vs. three-or four-event
cliques between L2/3 and L5/6 in the hamster PrL cortex
(Figure 10M). These results demonstrated that the power-of-
two-based computational logic is evolutionarily conserved in the
hamster brain, and so is its cortical architectural implementation
of specific-to-general cell cliques.

Randomness in Superficial Layers and
Nonrandomness in Deep Layers
L2/3 neurons are known to be responsible for cortical-to-cortical
communications, whereas L5/6 neurons project predominately
to subcortical systems. As such, these cortical cells are clearly
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FIGURE 8 | Distribution of specific-to-general neural cliques in the BLA, ACC and RSC regions of the WT and KO mice deviated significantly from the
random model. (A) Distribution of response patterns in the BLA for WT mice and KO mice as fit by independent model. Distribution probability (P, Y-axis) in both
WT and KO mice deviated significantly from the random model, ∗P < 0.05. (B) Distribution of response patterns in the ACC for WT mice and KO mice as fit by
independent model. Distribution in both WT and KO mice deviated significantly from the random model. ∗P < 0.05. (C) Distribution of response patterns in the RSC
for WT mice and KO mice as fit by independent model. Distribution in both WT and mutant mice deviated significantly from the random model. ∗P < 0.05. In X-axis,
Clique #1 indicates non-responsive cells; Cliques #2–5 are one-event specific cliques; Cliques #6–11 are two-event cliques; Cliques #12–15 are three-event cells;
and Clique #16 is general clique responded to all four stimuli.

organized for different functional purposes. Thus, we took
advantage of the layer-specific identification of all 15 neural
cliques and investigated further whether different cortical
layers employ a different connectivity strategy in implementing
the permutation-based computational logic. Specifically, we
asked whether distinct specific-to-general clique distributions
in L2/3 vs. L5/6 might indicate their underlying organizing
principles.

Accordingly, we performed the independent-connectivity
model analysis on the layer-specific RSC datasets. Surprisingly,
our analyses revealed that L2/3 cliques in the mouse RSC
resembled to random distribution (Figure 11A). In contrast,
neural cliques in L5/6 showed high nonrandom probability
distribution patterns (Figure 11A).

Most interestingly, the similar randomness in L2/3 and highly
nonrandomness in L5/6 were also observed in the PrL of

hamsters (Figure 11B). This stark difference between L2/3 and
L5/6 patterns was also clearly evident from covariance analyses of
L2/3 vs. L5/6 clique distribution-probability (Figure 11C). Given
that L2/3 is the major gateway for inter-cortical communication,
this finding supports the notion that randomness can be
ideal to discover novel cross-modality association, enabling
pattern-discrimination and pattern categorization, whereas
nonrandomness in L5/6 cliques, which mostly project to
subcortical structures and contain more general cliques for
categorized generalization, is ideal to ensure robust execution of
evolutionarily selected, adaptive behaviors.

DISCUSSION

In the present study, we systematically tested the six predictions
made by the Theory of Connectivity. We show that this power-
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FIGURE 9 | The power-of-two-based logic computational logic is implemented through the cortical layers. (A) Histological confirmation of the tetrode
positions in L2/3 of the RSC of the mouse brain. (B) Histological confirmation of the tetrode positions in L5/6 of the RSC. (C) Hierarchical clustering plot revealed the
highest proportion of cliques in L2/3 belongs to specific cliques, followed by two-event cliques. (D) Hierarchical clustering plot revealed that the general four-event
clique and three-event cliques constituted a larger proportion. (E) Ratio of one-event, two-event, three-event and four-event excitatory cells between L2/3 vs. L5/6.
(F) There are significant differences in the distributions of specific cells vs. the general cells between L2/3 and L5/6. Two asterisks denoted that the p-value is in the
range of 0.01–0.001.
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FIGURE 10 | The power-of-two-based computational logic was also observed in the prelimbic cortex (PrL) of the hamster brain. (A) A specific cell
responding specifically to earthquake. ∗P < 0.05, Wilcoxon signed-rank test. (B) The population response of this specific neural clique. (C) An example of two-event
cell responding to two types of fearful events. ∗P < 0.05, ∗∗P < 0.01, Wilcoxon signed-rank test. (D) The population response of this two-event neural clique. (E) An
example of three-event cell responding to three types of fearful events. ∗P < 0.05, Wilcoxon signed-rank test. (F) The population response of this three-event clique.
(G) A general cell responding to all four types of fearful experiences as evidenced from the peri-event raster (upper subgraph) and peri-event histograms (lower
subgraph). ∗P < 0.05, ∗∗P < 0.01, Wilcoxon signed-rank test. (H) The population response of the general neural clique responded to all four fearful events

(Continued)

Frontiers in Systems Neuroscience | www.frontiersin.org 18 November 2016 | Volume 10 | Article 95

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Xie et al. Computational Logic of the Brain

FIGURE 10 | Continued
(Z-score plot). (I) Hierarchical clustering plot shows the existence of 15 distinct
principal neuron cliques in the PrL. Unit number is labeled in the Y-axis. Color
scale bars indicate the scaled responsiveness of these units. (J) Hierarchical
clustering plot of L2/3 putative principal cells revealed the highest proportion
of cliques belongs to specific cliques, followed by two-event cliques. (K)
Hierarchical clustering plot of L5/6 principal cells revealed that the general
clique and three-event cliques constituted a larger proportion. (L) Pie plots
showed the ratio of one-event, two-event, three-event and four-event cells in
L2/3 vs. L5/6. (M) There are significant differences in the distributions of
specific cells vs. the three-event cells and general cells between L2/3 and
L5/6. Two asterisks denoted that the p-value is in the range of 0.01–0.001,
three asterisks denoted the p-value is < 0.001.

of-two-based permutation logic operated in seven different brain
regions and in two animal species during processing appetitive,
emotional and social experiences. These findings are quite
revealing to us for the following reasons.

First, this mathematical principle is strikingly simple, yet it
is this power-of-two-based permutation logic that can best deal
with uncertainties and endless possibilities by generating every
connectivity pattern. In other words, the resulting FCM—in
the form of specific-to-general cell assemblies—covers not only
specific patterns but also every possible combination of these
patterns. Moreover, the assemblies organized by this logic
can intrinsically give rise to pattern-discrimination, pattern-
categorization and pattern-generalization as animals’ experiences
accumulate over time, forming the microcircuit basis for specific
memories and actions, categorical knowledge and skills, general
concepts and motor commands.

Second, this power-of-two-based permutation logic fulfills the
critical requirement as the unifying design principle, because it
can preside brain computation across the entire evolutionary
spectrum—ranging from the simplest neural networks to the
most complex (Figure 12). This universality is experimentally
demonstrated by the observation of the same logic in seven
different neural circuits, including the nonrecurrent networks
such as the CA1 region and BLA, as well as the recurrent
networks such as the cortex.

Third, this logic is also capable of describing the general
computational purpose of the cortex regardless of the
evolutionary variations in cortical structures and modality
functions. The fact that all four cortices (the ACC, PrL, ILA
and RSC) contained 15 specific-to-general cell assemblies
is consistent with the notion that this power-of-two-based
permutation logic serves as the general computational algorithm
of the cortex.

Brain Computation and Its Evolutionary
Logic
Over evolution, different animals have developed a variety of
drastically different sensory apparatus (from typical sensory
organs to exotic ones—such as electroreception in electric
eels, magnetoception in homing pigeons, sonar in dolphins
and infrared visions in bedbugs; Teeling et al., 2000; Clarke
et al., 2013). As such, different animals construct very
different perceptions of the world in their brains. Likewise,
behavioral skills have also evolved differently—from swimming,

FIGURE 11 | Specific-to-general cortical clique distributions exhibited
randomness in L2/3 but nonrandomness in L5/6. (A) Distribution of
response patterns in the mouse RSC for layers 2/3 and layers 5/6 as fit by
independent model. Distribution in L2/3 was closer to the random model,
whereas L5/6 deviated significantly from the random model. ∗P < 0.05.
(B) Distribution of response patterns in the hamster PrL for layers 2/3 and
layers 5/6 as fit by independent model. Distribution in L2/3 was closer to the
random model, whereas L5/6 deviated significantly from the random model.
∗P < 0.05. In X-axis, Clique #1 is non-responsive cells; Cliques #2–5 are
one-event specific cliques; Cliques #6–11 are two-event cliques;
Cliques #12–15 are three-event cells; and Clique #16 is general clique
responded to all four stimuli. (C) The covariance was significantly higher in
L5/6 than L2/3 in both the PrL of the hamsters and RSC of the mice.
∗∗∗P < 0.001.

flying and walking, to playing basketball or managing
business and governments. As an individual, the animal
would typically encounter numerous events, objects, foods
and countless social interactions in a lifetime. Therefore,
from an evolutionary perspective, the central mission of
the brain is to discover various meaningful patterns from
natural and social environments and subsequently convert
them into specific memories, categorical knowledge and
flexible behaviors. Such cognitions and behaviors require the
brain’s neural circuits to be capable of pattern separation,
categorization, and generalization. The power-of-two-based
permutation logic provides the cell-assembly level solution to
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FIGURE 12 | Power-of-two-based permutation logic governs brain evolution and cortical expansion. (A) The logic is applicable from the simplest circuits
(1 st left subpanel) during the early evolution of the complex cortex in humans. Implementation of the power-of-two-based computational logic in the cortex via
differentially hosting various cliques across laminar layers. In the classic 6-layered cortex, the layer 4 hosts most of the specific cliques. In the 3-layered cortex
(illustrated here), there is no layer 4. As such, the cortex is divided into the L1, the superficial layers (L2/3) which preferentially host low-level combinatorial cells, and
deep layers (L5/6) which host more high-level combinatorial cells. The implementation of this power-of-two-based logic can be repeatedly utilized as cortical
expansion occurred over evolution. (B) Illustration of the emergence of specific features, sub-combinatorial features, as well as the abstract concept of “meal” from
specific-to-general cell assemblies in the appetitive circuit. This ensemble activation pattern allows pattern-separation, pattern-categorization and
pattern-generalization of various food experiences at the cognitive level.

this problem. It affords the brain the unique ability to cope
with a complex, ever-changing world full of uncertainties and
infinite possibilities of which current computers are incapable
(von Neumann, 1958; Hawkins and Blakeslee, 2007; Legg and
Hutter, 2007; Brenner and Sejnowski, 2011). Evolution can
then repeatedly utilize this mathematical principle to construct
various brains from the simplest organisms to the most complex
mammals.

In the early stages of evolution when animals began to
appear 500–600 million years ago, the random connectivity
strategy may be initially used to execute this power-of-two
permutation-based mathematical logic by constructing a simple
circuitry node for rudimentary pattern-separation and pattern-
generalization (Tsien, 2015a,b). For example, in a three-neuron
circuit, one neuron encoded foods, another neuron encoded
mates, the third neuron (which received convergent inputs from
the food neuron and the mate neuron) encoded combined
information and generated motor intents and commands such
as ‘‘attractive and approaching’’ (Figure 12A, left panel). This
similar arrangement can be applied to an aversive neural node
to generate escape behavior in order to avoid obstacles and
dangers (e.g., hot rocks or predators). Through evolution as
more neurons became available, the brain evolved with a
greater capacity to expand the ‘‘power-of-two’’-permutation-
based permutation wiring and consequently, to extract more
relational patterns (i gets larger as N is bigger based on the
equation of N = 2i − 1), thereby leading to higher abstraction
of categorical knowledge and more intelligent behaviors. Over
time, when the random connectivity strategy may no longer
be sufficient and efficient to ensure the desired outcome,
evolution exerts its selection force to develop nonrandom
organization to execute this power-of-two-based permutation

logic to efficiently deal with environments in which animals lived.
This is supported by our findings that specific-to-general cell
assembly patterns in the CA1, BLA and cortex (combined from
L2–6) all differed significantly from the independent random-
connectivity model.

Interestingly, within the cortical architecture, our analysis
suggests that evolution employed both random and nonrandom
connectivity strategies to construct its laminar layers—namely,
randomness for L2/3 organization vs. nonrandomness for
L5/6 organization. Once this cortical FCM was in place
(Figure 12A, middle panel), evolution can seamlessly
implement this power-of-two-based permutation logic
via expanding its surface size horizontally (Figure 12A,
left panel). This is supported by the examination of
30 different animal species showing that cortical surface
area varied by a factor larger than 10,000, whereas the
thickness of the cortical layers varied only by a factor of 10
(Hofman, 1989). The horizontal expansion via repeated
utilization of these cortical FCMs can explain how the more
complex brains emerge, equiped with greater conceptual
knowledge and intelligence (Hofman, 2014; Dicke and Roth,
2016).

At the cognitive level, the specific-to-general cell-assembly
logic offers the network-level explanation as to how the brain
can encode not only specific memories but also categorical
knowledge (Lin et al., 2006b; Tsien, 2007; Tsien et al., 2013).
As evident from identification of specific-to-general pyramidal
cells in the BLA responding to food experiences, one can
envision that such a cell-assembly logic can allow the appetitive
circuits to represent not only specific food experiences but
also various combinations of different types of foods, giving
rise to the general concept of ‘‘meals’’ (Figure 12B). In the
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past, specific memory and conceptual knowledge have been
often studied as separate problems with the belief that they
may engage different cellular mechanisms. To the contrary, our
results suggest that specific memory and generalized knowledge
are generated via a coherent cell-assembly logic and should
emerge simultaneously. This suggests that pattern-separation
and pattern-generalization can be widely studied in a variety
of circuits far beyond the hippocampus as David Marr had
originally envisioned (Marr, 1971; Leutgeb et al., 2007; McHugh
et al., 2007; Clelland et al., 2009; Rolls, 2013; Xu and Südhof,
2013). It is noteworthy that this logic can also be applied tomotor
circuits to generate specific motor action and categories of motor
behavior, but in a reversed general-to-specific manner (Li et al.,
2016).

What Do Randomness in L2/3 and
Nonrandomness in L5/6 Mean for Sparse
Coding, Memory Consolidation and
Adaptive Behaviors?
The power-of-two permutation-based computational logic can
be executed in the cortex whether it has three or six layers
(Barbas, 2015; Fournier et al., 2015), in the service of the
fundamental cortical ‘‘processing unit’’ that has been long
sought-after (Van Hemmen and Sejnowski, 2005; Rabinovich
et al., 2008; Hill et al., 2012; Marcus et al., 2014; Adolphs,
2015; Lisman, 2015). In both the mouse RSC and hamster
PrL, we showed that specific cells were concentrated in the
superficial layers (L2/3), whereas general cells were enriched
in the deep layers (L5/6). This is consistent with literature on
primary sensory cortices (i.e., L5/6 cells in the auditory cortex
of anesthetized rats had broader frequency-tuned responses
than L2/3 cells; Sakata and Harris, 2009; Harris and Shepherd,
2015). By taking advantage of our successful identification of
all 15 specific-to-general neural cliques, we compared their
distribution-probability patterns with that of an independent
random-connectivity model. Surprisingly, we discovered that
L2/3 specific-to-general cliques in both mice and hamsters
conformed to the randomly produced patterns, whereas neural
cliques in L5/6 showed high nonrandomness. This finding
can account for the discrepancy in the literature whether
cortical patterns are random or nonrandom (Szentágothai,
1989; Sjöström et al., 2001; Holmgren et al., 2003; Song
et al., 2005; Carlo and Stevens, 2013). L2/3 randomness and
L5/6 nonrandomness are highly informative to us for several
reasons.

First, L2/3 neurons are the major sources for inter-cortical
communications, whereas L5/6 neurons mainly project to
subcortical systems (Hooks et al., 2011; Sugar et al., 2011;
Ueta et al., 2013; Dembrow and Johnston, 2014; Barbas, 2015;
Fournier et al., 2015; Harris and Shepherd, 2015; Yamawaki et al.,
2016). This suggests that superficial layers and deep layers have
completely different missions. Our observed random strategy
in generating L2/3 specific-to-general cliques vs. nonrandom
strategy in generating L5/6 specific-to-general cliques makes
good sense from an evolutionary and a cognitive perspective.
As information from different sensory modality needs to be

integrated and extracted for higher cognitions, the randomness
in constructing L2/3 neural cliques is ideal to maximize the
capacity in discovering various possible novel combinations
across a wide range of sensory cortices. The power-of-two-based
permutation logic mathematically guarantees every possibility
would be covered at the structural and computational levels.
The observation that specific cells and low-combinatorial cells
are concentrated in the L2/3 also makes it suitable for pattern-
separation and pattern-categorization of abstract concepts and
specific knowledge. By communicating with sensory cortices,
L2/3 neurons in the associational cortex and prefrontal cortex
generate distinct assembly patterns for specific memories and
facts.

Second, this local L2/3 randomness of synaptic connectivity
can be useful for not only rewiring synaptic connections by
experience-dependent plasticity during development, but also
during rehabilitation (Sur et al., 1988; Recanzone et al., 1993;
Rothschild and Mizrahi, 2015; Hua et al., 2016). Independent of
the intrinsic changes of molecular and cellular composition of
neurons and circuits (Monyer et al., 1994; Sheng et al., 1994),
this L2/3 randomness principle provides another explanation as
to why such a re-wiring process is difficult and slow.

Third, it also provides an experimental evidence for why
cross-modality learning of knowledge can be slower than the
formation of simple memory (Lisman and Morris, 2001). This
is because the L2/3 randomness deems their synaptic efficacy
in across-modality connectivity to be much less robust, leading
to possible sparse code. Such coding strategy is useful for
coding specific percepts and concepts (Song et al., 2005; de
Kock et al., 2007; Lin et al., 2007; Hromádka et al., 2008;
Waydo and Koch, 2008; Bowers, 2009). Yet, the disadvantage
of this randomness-based sparse code is that post-learning
spontaneous reverberation may be too weak to occur on its
own. But it can be resolved via the offline trainings and
coordination from the hippocampal system during memory
consolidation (Squire, 1992; McClelland et al., 1995; Bontempi
et al., 1999; Kudrimoti et al., 1999; Zola and Squire, 2000;
Sara and Hars, 2006; Dudai et al., 2015). Therefore, the
random strategy in organzing specific-to-general cell assemblies
in the L2/3 can nicely explain why the hippocampal system
(offline reverberation) is critical for memory consolidation and
long-term cortical storage (Skaggs and McNaughton, 1996;
Foster and Wilson, 2006; Moser et al., 2005; Takehara-Nishiuchi
and McNaughton, 2008; Chen et al., 2009; Zhang et al.,
2013). This coordinated cortical-hippocampal consolidation
have been shown to require the NMDA receptor reactivation-
mediated synaptic reentry-reinforcement (SRR) mechanism
(Shimizu et al., 2000; Santini et al., 2001; Wittenberg and
Tsien, 2002; Cui et al., 2004, 2005; Wu et al., 2007;
Tsien et al., 2013), a property that can be examined in
finer details within the context of this power-of-two-based
logic.

In comparison, nonrandomness in L5/6 neural cliques is
ideal for pattern-categorization and pattern-generalization to
generate categorical behaviors, general commands and overall
cognitive states. Their heavy projections to subcortical sites such
as the amygdala, midbrain dopaminergic circuits, and striatum
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exert feedback controls of general motivational, emotional and
conscious states, as well as behavioral outputs that were built
and selected by evolution. In this sense, such states are relatively
low-dimensional, but useful to ensure evolutionarily proven
responses. This is in contrast with much higher dimensionalities
that random L2/3 cliques use in dealing with almost endless
possibilities that specific knowledge structure may face.

The Power-of-Two-Based Permutation
Logic Helps Explain Many Results in the
Literature
This permutation logic-based coverage of all possible
connectivity-patterns can mechanistically account for why
researchers reported all sorts of interesting cells in the brain
that corresponded to some kind of specific stimulus or multiple
stimuli (e.g., syringes, peanuts, faces, hands, the actress Halle
Berry, or a nest) or a category of items (e.g., dogs vs. cats,
or people vs. other objects; Rolls et al., 1979; Logothetis and
Sheinberg, 1996; Fried et al., 1997; Freedman et al., 2003;
Hampson et al., 2004; Gross, 2005; Quiroga et al., 2008; Bowers,
2009; Tsao, 2014). Although combining simple stimulus-
features from sensory organs for higher cognition were often
postulated and reported (Buck and Axel, 1991; Yeshurun and
Sobel, 2010; Fu et al., 2015), findings of some cells in a given
site which responded to multiple stimuli (as the literature
intermittently described in bits and pieces) have reinforced the
popular but undue impression that somehow convergence and
combination occurred but in a stochastic and random fashion.
Obviously, such sporadic combinations can easily take place in
various ways without conforming to the power-of-two based
permutation logic. As a result, the stochastic convergence (in
the absence of the systematic permutation logic) became a trivial
mechanism which failed to be intuitively conceptualized into
a general organizing principle under which orderly abstraction
and intelligent cognition would emerge from the brain’s
networks.

There is general agreement that information processing
in the brain is hierarchical—that is, simple features in the
primary sensory cortex are somehow transformed into complex
features in the next-stage cortex, and so on and so forth.
The demonstration of the power-of-two-based permutation
rule in producing comprehensive cell cliques within each
microcircuitry motif, arranged in a specific-to-general manner,
provides the unifying microcircuit-level framework for achieving
this hierarchical construction (Tsien, 2015a). This logic contrasts
with many conventional models in which ‘‘simple feature-to-
complex feature’’ conversion emerges from one region to the
next in a two- or multi-staged sequential manner. Further
investigation of this power-of-two-based permutation logic can
shed crucial insights into how hierarchical representation is
achieved in real-time along and among various neural pathways.

This logic can also explain well why initial orderly
architectures in the primary sensory cortices, which often
have structural motifs (i.e., mini-columns or patches dedicated
to processing specific sensory inputs), (Mountcastle, 1957;
Hubel and Wiesel, 1962; Vassar et al., 1994; Erzurumlu et al.,

2010) have been discarded as modality-specific, early-stage
sensory information is transmitted deeper into the association
and decision-making circuits (Heisenberg, 2003; Rakic, 2008;
Sosulski et al., 2011; Bergan et al., 2014; Rothschild and
Mizrahi, 2015). This can be explained by the power-of-two-
based cell-assembly logic aimed at discovering and maximizing
various novel cross-modality patterns for specification as well
as generalization. Such cell-assembly level organization does not
necessarily need to occur in the form of histological ‘‘patches
or columns.’’ In fact, the randomness, as discovered in the
superficial layers for the execution of the power-of-two-based
permutation wiring logic, is preferred.

While it is nice for the power-of-two-based permutation logic
to account for much of the evidence seen in the literature,
such extrapolation should be treated with great caution. For
example, some of the studies contained a mixture of single-units
and multi-units due to the insufficient spike-sorting resolution
of single electrodes. Moreover, principal excitatory cells and
interneurons usually were not separately characterized. Because
interneurons tend to exhibit broad tuning properties, such
inhibitory units could be misquoted as literature evidence for
general or sub-general excitatory cell cliques. Another caveat is
that repeated presentations of the same stimuli over a period of
days, weeks, and even months may result in learning-induced
association, habituation, or sensitization, thus altering their
original response properties. Similarly in human studies, it has
been reported that a hippocampal cell was activated by pictures
of Jennifer Aniston and Lisa Kudrow—both actresses in the TV
series Friends (Quiroga et al., 2008). It remains to be deteremined
whether such a coding property reflects the associative learning
after repeated experiences (such as watching the TV series for
many weeks or months) or the stochastic input convergence
that is independent of learning. In addition, many previously
reported data were not collected from the same recording site(s)
or subregion. Thus, gross extrapolation by taking one example
from one region in an animal and linking it with another unit
recorded from another site(s) in another animal species can be
problematic. In light of our observed permutation logic, it may
be beneficial to re-examine these fascinating issues in the future
with large-scale recordings and imaging techniques.

Power-of-Two-Based Logic and its
Constraints on Biological Brains
While the power-of-two-based permutation logic is based on
the mathematical equation of N = 2i−1, it imposes biological
boundary on the computational limitation of circuits. For
example, due to exponential growth in input numbers i, the cost
(in terms of cell resources) can quickly become prohibitive. For
instance, in order to cover all possible patterns for processing
40 distinct perceptual inputs, a single FCM would require
over a trillion neurons (1012). Even neurons in the human
brain (8.6 × 1010 neurons) would be inadequate to afford
this exponential coverage if this power-of-two-based logic were
to be rigidly applied. The best and necessary solution is to
employ modular approaches, or a divide-and-conquer strategy,
to segregate or stream information inputs through distinct
sensory domains or pathways.
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For example, if a central node in a small neural circuit
needs to cover all possible connectivity wiring patterns to
represent eight distinct types of inputs or information, a
total of 255 principal projection neurons would be required
(N = 28 −1 = 255) for this node. However, when a sub-modular
approach is employed (e.g., dividing into a set of four inputs per
subnode), the same 255 principal neuron sets can increase its
processing capacity by a factor of 17 times (255 total cells/15 cells
per sub-node = 17). Similarly, if a subnode or FCM was
structured to process only three distinct pieces of information
(N = 23 −1 = 7), 255 neurons can be used to construct 36
assemblies for processing 108 distinct information inputs.
Through evolution, i number should have been selected and
confined by the complexity of given environmental demands
in which organisms have lived for generations. This means
that evolution has been forced by this mathematical cost-
and-benefit analysis to use neuron resources efficiently and
wisely, as evident from the evolutionarily conserved specific
sensory pathways and cortical modalities. This boundary
condition can be tested in simple organisms such as drosophila
larvae or C. elegans as well as classic mammalian models such
as mice and rats by increasing numbers of inputs. Perhaps
it should also be explored and expanded in computational
modeling, neuromorphic chips and artificial intelligence
systems.

Neuromodulatory Neurons Such as DA
Cells Use a Simpler Logic
Because the overall functional purpose of modulatory neurons
is to provide motivational and attentional signals (i.e., to define
positive or negative valence, or whether the brain should pay
attention or not, or whether an animal is hungry or not, etc.),
the Theory of Connectivity posited that neuromodulatory circuits
should use a different, but more likely, simpler logic. This
was indeed found in the dopaminergic circuit. While literature
described that VTA DA neurons responded to the air-puff (to
monkey’s eyelids) or to a tail-pinch or foot-shock in anesthetized
rats (Brischoux et al., 2009; Matsumoto and Hikosaka, 2009;
McCutcheon et al., 2012; Fiorillo et al., 2013), tuning properties
over various types of fearful stimuli by the same DA neurons
(whether in anesthetized or freely behaving states) were rarely
examined. Here, we show that despite diverse dopaminergic
neuron subtypes, they showed broad responsiveness to all four
different fearful stimuli. These subtype DA neurons showed
distinct temporal dynamics, with either suppressed firing or
increased firings during aversive stimulation. However, they did
not use the specific-to-general coding logic. Extending the similar
multi-categorical investigations to other modulatory neuron
types (such as serotonin, adrenergic or cholinergic neurons) will
be necessary and informative.

The Power-of-Two-Based Cell-Assembly
Logic Does not Require Adult NMDA
Receptors
One of the key questions is whether this power-of-two-
based, cell-assembly logic should be formed by learning in

adulthood or pre-configured by development, or both. We
employed two approaches to examine the role of learning in
our current experiments: one was to take steps to minimize
learning in the present experiments, and another was to delete
the NMDA receptors in the forebrain right after postnatal
development.

In our experiments, various specific stimuli (such as foot-
shock, drop, earthquake, air-puff, rice, etc.) were given for the
first time to the recorded mice whenever possible (the exceptions
are rodent diet and pre-weaned social interactions with their
littermates). Our datasets were all collected in the very first set of
trials (limited to seven trials per stimulus type without any former
training). This ensured the patterns were not a result of repeated
conditioning.

We then used forebrain NMDA receptor KO mice to assess
whether learning is necessary to the observed coding logic.
It is known that synaptic proteins are metabolically turned
over within hours, days or week(s). This means that learning-
induced synaptic connectivity should drift significantly over time
(Shimizu et al., 2000; Wang et al., 2006; Choquet and Triller,
2013). We have shown that the NMDA receptor-based SRR
is crucial for maintaining the stability of synaptic connections
established by prior learning (Wittenberg and Tsien, 2002;
Wittenberg et al., 2002). For example, inducible KO of the
NMDA receptor in the forebrain principal neurons for one
month (but not for one week) results in the abolishment of
remote fear memories due to random drift in the synaptic
connectivity established by previous learning (Cui et al., 2004,
2005; Wang et al., 2006). We reasoned that if specific-to-
general coding logic was based on a random connectivity
mechanism during development, one should expect that deleting
the NMDA receptor throughout adulthood would eventually
lead synaptic connectivity to drift all the way back to the initial
randomness.

In the present study, the NMDA receptors in the forebrain
were deleted, starting at the sixth postnatal week and throughout
adulthood, which is known to produce profound deficits in
appetitive, social and fearmemories (Cui et al., 2004, 2005; Jacobs
and Tsien, 2016). We previously also showed that loss of the
NMDA receptors impaired the formation and reverberations
of associative real-time fear memory traces in the hippocampal
CA1 region (Zhang et al., 2013). Here, we recorded from three
structures—namely, the BLA, RSC and ACC. Interestingly, we
found that deleting the NMDA receptor had minimal effect on
the specific-to-general connectivity logic in all three circuits,
suggesting that the power-of-two-based logic is not dependent
on learning in adulthood. This finding is in line with the
emerging evidence that specific input patterns in the cortex
were largely independent of NMDA receptor function (DeNardo
et al., 2015). It also fits with the reports showing pre-organized
spontaneous firing patterns or sequences in the visual cortex,
hippocampus, and entorhinal cortex (Tsodyks et al., 1999;
MacLean et al., 2005; Dragoi and Tonegawa, 2013; Mizuseki
and Buzsáki, 2013). It will be of great interest to examine
how neural ontogeny and circuit development lead to such a
remarkably deterministic blueprint (Gao et al., 2014; Wilber
et al., 2014).
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Further Testing and Additional Validation
It is widely believed that functional selectivity reflects the
underlying structural connectivity. Although the specific-to-
general coding patterns suggest their underlying wiring logic,
the direct evidence for such wiring patterns awaits future
demonstration. Perhaps it will be best approached by studying
in simpler organisms (drosophila larvae) in which structural
connectivity and functional imaging can be better analyzed
(the Keyon cells in the mushroom body; Chiang et al., 2011;
Wang et al., 2013). Moreover, our current cortical layer-
specific recordings were limited to three-layered cortices, further
testing in the koniocortex and motor cortex, which have
six-layered cortices, will be necessary. It will also be crucial
to examine whether and how this logic operates in monkeys
and humans. In addition, we have previously shown that some
of CA1 neurons which responded to drop events did not
differentiate the environmental contexts, yet, some of those
drop-sensitive units were also sensitive to specific context (Lin
et al., 2005). For instance, some units responded only to
drop inside Elevator-A, whereas other units responded only
to Elevator-B, suggesting that those CA1 cells encoded for
both ‘‘what and where’’ information (Lin et al., 2005, 2006b).
Thus, it will be of considerable interest to examine how
environmental and emotional contexts (including habituation vs.
novelty) might affect cell-assembly response patterns in neural
circuits.

Finally, while our present study has focused on principal
projection neurons, it is clear that their dynamic patterns are
critically modulated by local inhibitory interneurons (Freund
and Buzsáki, 1996; Klausberger and Somogyi, 2008; Kätzel
et al., 2011). Cre-lox neurogenetics (Tsien et al., 1996a; Tsien,
2016) combined with chemical-genetic and/or optogenetic
manipulation (Lim et al., 2013) will be highly useful to delineate
how various interneuron types compute information and
modulate circuitry dynamics (Kvitsiani et al., 2013; Dembrow
and Johnston, 2014; Kim et al., 2016). Collectively, such efforts
will likely lead to a better understanding of how the brain’s
logic is organized in specific circuits and how various other
rules and properties might be integrated (McClelland et al., 1995;
Klausberger and Somogyi, 2008; Perin et al., 2011; Shanahan,
2012; Stevens, 2012; Miller, 2016).

In summary, we present a series of experimental evidence
for the Theory of Connectivity that a simple mathematical logic
underlies brain computation. The power-of-two permutation-
based logic governs specific-to-general cell-assembly
coding patterns that are capable of pattern discrimination,
categorization and generalization, giving rise to specific
perception and memories as well as generalized knowledge and
adaptive behaviors. Further testing of this power-of-two-based
logic in additional neural circuits and animal species will be
highly desirable, and exploring its applications in general
artificial intelligence systems can also be informative.
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