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Physical activity has a therapeutic role in cardiovascular disease (CVD), through
its beneficial effects on endothelial function and cardiovascular system. Circulating
endothelial progenitor cells (EPCs) are bone marrow (BM) derived cells that represent
a novel therapeutic target in CVD patients, because of their ability to home to sites
of ischemic injury and repair the damaged vessels. Several studies show that physical
activity results in a significant increase in circulating EPCs, and, in particular, there are
some evidence of the beneficial exercise-induced effects on EPCs activity in CVD settings,
including coronary artery disease (CAD), heart failure (HF), and peripheral artery disease
(PAD). The aim of this paper is to review the current evidence about the beneficial effects
of physical exercise on endothelial function and EPCs levels and activity in both healthy
subjects and patients with CVD.
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INTRODUCTION
Physical activity improves endothelial function both in healthy
subjects and in patients with cardiovascular disease (CVD)
(Volaklis et al., 2013) through several favorable effects on inflam-
mation and regulation of autonomic tone and blood pressure.
Endothelial progenitor cells (EPCs) are bone marrow (BM)
derived cells that, following endothelial damage, are recruited
into systemic circulation and home to sites of ischemic injury
(Galasso et al., 2013), where they contribute to vascular repair. It
has been reported that EPCs have regenerative and proliferative
potential, and act as “software” that promote neovasculariza-
tion through secretion of pro-angiogenic cytokines (Heil et al.,
2004). EPCs number and function are inversely correlated with
age and common cardiovascular risk factors like diabetes, smok-
ing, hypertension, and hyperlipidemia (Vasa et al., 2001; Hill
et al., 2003). Low levels and impaired activity of circulating EPCs
have been shown to be an independent predictor of morbidity
and mortality in patients with CVD (Dzau et al., 2005), whereas
high levels of EPCs have been associated with longer event-free
survival from adverse cardiovascular events (Werner et al., 2005;
Cassese et al., 2013). Several studies demonstrated that a regular
physical activity has a positive effect on the levels of circulating
EPCs, by inducing EPCs mobilization from the BM niche (George
et al., 2011) and counteracting EPCs impairment in the presence

Abbreviations: ACS, acute coronary syndrome; AMI, acute myocardial infarc-
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derived growth factor-1; SOD, superoxide dismutase; VEGF, vascular endothelial
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of cardiovascular risk factors (Volaklis et al., 2013). In this paper,
we aim to review the current evidence about the effects of physical
activity on endothelial function and EPCs number and activity, in
healthy patients and in the setting of CVD.

CHARACTERIZATION AND ROLE OF EPCs
In 1997 Asahara and colleagues first isolated and characterized
putative EPCs from human peripheral blood, and established
their ability to form clusters of round cells on fibronectin-coated
dishes (Asahara et al., 1997), and their regenerative potential
regarding neoangiogenesis and vascular repair. Afterwards Hill
et al. defined putative EPCs as colony forming unit-Hill (CFU-
Hill), and showed a significant inverse correlation between cir-
culating CFU-Hill number and Framingham cardiovascular risk
score in humans (Hill et al., 2003). Nevertheless, up to date the
proper definition of EPCs is still a matter of debate and EPCs
characterization is performed according to AHA recommenda-
tion (Hirschi et al., 2008; Yoder, 2010), defining a human EPC
as a circulating cell that promotes neovascularization at sites of
ischemia, hypoxia, injury, or tumor formation (Hirschi et al.,
2008). The majority of EPCs reside in the BM, in close associa-
tion with hematopoietic stem cells (HSCs) and BM stromal cells
that provide the microenvironment for hematopoiesis (Luttun
et al., 2002), representing only 0.02% of circulating mononu-
clear cells (MNC) in peripheral blood (Galasso et al., 2006). The
mobilization of EPCs from the BM niche is known as “recruit-
ment”. There are many stimuli able to promote EPCs recruitment
(Dimmeler et al., 2001; Aicher et al., 2005; Schiekofer et al., 2008;
Jung et al., 2009), including pro-angiogenic growth factors like
angiopoietin-1, fibroblast growth factor and stromal cell-derived
growth factor-1 (SDF-1) (Yamaguchi et al., 2003). Several studies
have shown that the vascular endothelial growth factor (VEGF),
or rather, the most common isophorm of VEGF, VEGF-165, is
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the main player in promoting EPCs mobilization and their incor-
poration into sites of neovascularization. Moreover, VEGF-165
induces EPCs proliferation and modulates the expression of adhe-
sion molecules that promote EPCs recruitment from the BM.
Indeed, it has been recently demonstrated that a de novo engi-
neered VEGF mimicking peptide, known as QK, acts in the
same biological way of VEGF, improving capillary formation
both in vitro and in vivo (Santulli et al., 2009). An important
role is also played by endothelial-nitric oxide synthase (e-NOS),
expressed by BM stromal cells, that influences EPCs recruitment
and migration through modulation of MMP-9 and production of
NO (Schmidt and Walter, 1994; Aicher et al., 2003). Furthermore
there are many cytokines, chemokines and drugs supporting the
EPCs homing to sites of re-endothelialization and the EPCs incor-
poration into sites of vascular injury (Shi et al., 1998; Baller et al.,
1999; Eliceiri and Cheresh, 1999; Peichev et al., 2000; Walter et al.,
2002; Cittadini et al., 2009; Strisciuglio et al., 2012). This means
that EPCs participate in the maintenance of vascular homeostasis
by restoring an intact endothelium and acting as the substrate for
new vessel formation promoting neoangiogenesis. Noteworthy,
physical activity seems to be a further stimulus to induce EPCs
recruitment and homing, improving several mechanisms under-
lying EPCs mobilization (Leone et al., 2009).

MECHANISMS OF PHYSICAL ACTIVITY-INDUCED CHANGES
ON EPCs
Physical activity is a potent inductor of EPCs mobilization from
the BM niche and promotes homing of these cells to sites of
ischemia (Leosco et al., 2008; Leone et al., 2009; Ribeiro et al.,
2013) (Figure 1). The effects of physical exercise training on
endothelial function and EPCs activity have been investigated
by several studies, in animal or human models, undergoing
both physical active and sedentary lifestyle (Table 1). It has been
reported that both acute and chronic exercise lead to the increase

FIGURE 1 | Effects of physical exercise on endothelial function and

EPCs.

of circulating EPCs, thus highlighting the main role of exercise
intensity and duration on EPCs mobilization (Laufs et al., 2005;
Hoetzer et al., 2007; Van Craenenbroeck et al., 2008; Jenkins et al.,
2009; Volaklis et al., 2013). Moreover, the exercise-induced alter-
ations in vascular shear stress, with increase in blood flow and
e-NOS activity, act as potent stimulus to EPCs release from the
BM. Interestingly, mice lacking the e-NOS gene showed a reduc-
tion in circulating EPCs number and function beyond endothelial
dysfunction (Huang et al., 1995; Cooke and Dzau, 1997; Kojda
et al., 2001; Aicher et al., 2003). Accordingly, some evidence
from studies conducted both in trained mice (Laufs et al., 2004)
and in human patients undergoing exercise tests (Rehman et al.,
2004), showed an increase in e-NOS activity and EPCs levels
after exercise training. Furthermore, it has been demonstrated
that exercise-induced ischemia increases VEGF levels in serum,
mainly through induction of hypoxia-inducible factor 1 (HIF-
1) (Forsythe et al., 1996), with consequent EPCs mobilization.
These findings are prominent in sedentary old population (Taddei
et al., 1995; Gerhard et al., 1996), since the effects of aging on
EPCs disability are related to both the senescence of EPCs and
the down-regulation of pro-angiogenic factors like HIF-1 and
VEGF (Torella et al., 2004; Leosco et al., 2007a). Interestingly,
physical exercise can prevent and reverse age-related endothelial
dysfunction, representing a valid strategy to stimulate EPCs in old
subjects (DeSouza et al., 2000; Smith et al., 2003; Heiss et al., 2005;
Hoetzer et al., 2007; Yang et al., 2013). In addition, physical exer-
cise leads to a significant reduction of myelosuppressive and pro-
inflammatory cytokines, like C-reactive protein (CRP) (Szmitko
et al., 2003) and tumor necrosis factor-α (TNF-α) (Agnoletti
et al., 1999), thus exerting also an anti-inflammatory role. It
is well known that in pathological condition, such as ischemia,
there are high levels of circulating inflammatory cytokines and an
increase of radical oxygen species (ROS) production, with con-
sequent NO inactivation (Ross, 1999; Brevetti et al., 2008), EPCs
apoptosis (Galasso et al., 2006) and endothelial dysfunction. EPCs
contain high levels of ROS-metabolizing enzymes that are essen-
tial to maintain their survival during tissue regeneration under
conditions of injury (Raes et al., 1987). Noteworthy, in models of
glutathione peroxidase type 1 (GPx-1)-deficient mice, EPCs were
functionally impaired, with consequent deficiency of ischemia-
induced angiogenesis (Galasso et al., 2006). Physical activity can
counteract both the lack of NO availability and the vascular
oxidative stress, by increasing extracellular superoxide dismutase
(SOD) with enhancement of vascular repair and angiogenesis,
and by reducing pro-inflammatory cytokines and ROS produc-
tion with longer EPCs survival (Fukai et al., 2000). Accordingly,
human ECs, when conditioned with sera of triathletes practicing
a moderate physical activity, showed a better proliferative poten-
tial and a longer survival (Conti et al., 2012, 2013). Furthermore,
exercise improves endothelial and EPCs function through the
activation of the adrenergic vascular system (Barbato et al., 2005;
Iaccarino et al., 2005; Ciccarelli et al., 2008; Piscione et al., 2008).
Indeed, the exercise-induced adrenergic stimulation results in
a significant reduction of cardiac β2-adrenergic-receptors (β2-
AR) down-regulation and desensitization in patients with CVD,
two mechanisms underlying the impaired endothelial vasodila-
tion and the vascular dysfunction in this clinical setting (Iaccarino
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Table 1 | Summary of the studies reporting the exercise induced effects on EPCs, in animal and human models.

Study Physical/health status Exercise program Principal findings

Hoetzer et al. (2007) Sedentary 40–50 min at 65–85% of HRRmax /aerobic EPCs migratory activity enhanced +49.6%

Laufs et al. (2005) Healthy Three different exercise protocols 30 min
at 82%; 30 min at 68%; 10 min at 68% of
VO2max

Significant increases in EPCs only after
30 min protocols (+235% and +263%,
respectively)

Van Craenenbroeck et al. (2008) Healthy Maximal cardiopulmonary exercise testing Significant increase in EPCs (+76% in
young vs. +69% in old)

Laufs et al. (2004) Animal models 30 min with 12 m/min/aerobic EPCs enhanced +267, +289, and +280%
after 7, 14, 28 days of training respectively;
reduction of EPCs apoptosis and inhibition
of neo-intima formation

Laufs et al. (2004) CAD 15–20 min at 60–80 of VO2peak /aerobic EPCs increased by 78%; apoptosis rate
reduced by 41%

Rehman et al. (2004) Chronic
disease/sedentary

Symptom-limited exercise stress test until
90% of HRpeak

Significant increase in EPCs (+258%)

Yang et al. (2013) Healthy young (25 ± 1
years)
Healthy old (61 ± 2
years)
Sedentary/endurance
trained

Three months of regular exercise training
3 times/week for 30 min

The age related decline in the EPCs
number, migratory and proliferative activity
enhanced less in endurance-trained men

Adams et al. (2004) Ischemic CAD
Non ischemic CAD

Maximal stress testing Significant increase in EPCs (+164.0%) up
to 6 h after exercise only in the ischemic
patients

Scalone et al. (2013) MVA
CAD

Exercise stress test ECFC increased less in
MVA patients after exercise

Cesari et al. (2013) ACS Five weeks of cardiac rehabilitation
program

EPCs enhanced respect to baseline;
hs-CRP and NT-ProBNP decreased

Ikeda et al. (2008) ACS 30–60 min walk daily 4 times/week by 11
days after ACS

EPCs number and exercise capacity
enhanced at 3 months from ACS

Sarto et al. (2007) Heart failure (EF%
30.5%)

55 min at 60% of HRR/aerobic EPCs enhanced +251%

Van Craenenbroeck et al. (2010) Chronic Heart failure Six months exercise training EPCs enhanced and endothelial function
improved

Mezzani et al. (2013) Heart failure Light to moderate intensity aerobic
exercise training

EPCs enhanced by 9, 20, and 98%
respectively at phase I, phase IIT and
mean response time

Erbs et al. (2010) Heart failure (EF 24%) 5–20 min at 50% of VO2max /aerobic
20–30 min at 60% of VO2max /aerobic

EPCs enhanced +80% and EPCs
migratory activity enhanced +224%

Sandri et al. (2005) PAD
Prior-PAD
CAD

Aerobic training Significant increase in EPCs only in PAD
patients

Schlager et al. (2011) PAD Two sessions of 50 min walking at speed
eliciting claudication symptoms 2
times/week for 6 months

EPCs enhanced; ADMA decreased

EPCs, endothelial progenitor cells; CAD, coronary artery disease; PAD, peripheral artery disease; EF, ejection fraction; HRR, heart rate reserve; MVA, micro-vascular

angina; ECFC, endothelial colony-forming cells; ACS, acute coronary syndrome; hs-CRP, high sensivity C-reactive protein; NT-ProBNP, N-Terminal Pro-Brain Natriuretic

Peptide; ADMA, asymmetric dimethylarginine.
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et al., 2002; Leosco et al., 2007b; Lymperopoulos et al., 2007;
Ciccarelli et al., 2008; Rengo et al., 2011; Sorriento et al., 2011;
Lymperopoulos et al., 2012). We recently showed that β2-ARs
stimulation could also induce an increase in EPCs number, act-
ing on the EPCs fraction of circulating MNC to promote EPCs
differentiation, and ameliorating EPCs-induced neoangiogenesis
both in vitro and in vivo (Galasso et al., 2013). Indeed, it was
shown that, in aged animal, myocardium exercise attenuated the
age-induced β2-ARs dysfunction by modulating the G-coupled
receptor-kynase-2 (GRK-2) levels (Leosco et al., 2003; Santulli
et al., 2013). Nevertheless, the strongest evidences of beneficial
exercise-induced effects on EPCs function and numbers derive
from studies conducted in CVD settings, including coronary
artery disease (CAD), heart failure (HF) and peripheral artery
disease (PAD).

EFFECTS OF PHYSICAL ACTIVITY ON EPCs IN CAD
In human setting of stable CAD, it was demonstrated that both 28
days of moderate exercise training and 12 weeks of running pro-
tocols led to reduced EPCs apoptosis and increased circulating
EPCs levels (Laufs et al., 2004; Hoetzer et al., 2007). Moreover,
confirming these results, further studies demonstrated that the
EPCs concentration in peripheral blood after maximal stress
test in CAD patients resulted significantly enhanced and corre-
lated with increase in VEGF and NO release, improving vascular
flow-mediated dilatation (FMD) (Adams et al., 2004). To exam-
ine in depth the effects of physical exercise on EPCs in CAD
prevention, EPCs function was evaluated also in patients with
micro-vascular angina (MVA) and CAD, both at rest and 24 h
after exercise stress test (EST). Results showed lower EPCs lev-
els in CAD subjects at rest, while there was an increased EPCs
count after 24 h of exercise, both in MVA and CAD patients
(Scalone et al., 2013). Accordingly, in patients with acute coro-
nary syndrome (ACS) there was an increase in EPCs levels,
accompanied with a significant decrease in pro-inflammatory
biomarkers, after 1 month of cardiac rehabilitation (CR) program
on a cycle-ergometer (Cesari et al., 2013). Moreover, an exer-
cise program of 30–60 min walk per day, starting 11 days after
ACS, induced increment of EPCs number in male patients with
acute myocardial infarction (AMI) (Ikeda et al., 2008). In conclu-
sion, the aforementioned evidence highlight that physical training
exerts beneficial effects on vascular integrity and on endothe-
lial function in condition of either mild or severe coronary
atherosclerosis, improving the outcome of patients with CAD
(Rengo et al., 2007, 2010).

EFFECTS OF PHYSICAL ACTIVITY ON EPCs IN HF
EPCs have been hypothesized to realize a compensatory increase
in patients with mild to moderate HF, in order to reduce vas-
cular damage of impaired heart (Valgimigli et al., 2004; Piscione
et al., 2005). Indeed, physical activity induces the activation of the
cardiac VEGF pathway, with enhancement of myocardial angio-
genesis, significant increase in myocardial perfusion and coronary
flow reserve, and improvement in left ventricular contractility.
Studies conducted in patients with HF and impaired endogenous
endothelial regenerative capacity, evaluated the effects of training
and detraining on circulating EPCs levels. After both 8 weeks or

6 months of aerobic physical activity, there was an increased num-
ber of EPCs, accompanied with higher VEGF and SDF-1 levels in
plasma of trained HF patients, while EPCs number returned to
baseline when analyzed after a appropriate period of detraining
(Sarto et al., 2007; Van Craenenbroeck et al., 2010, 2011). It has
been further demonstrated that NYHA class II patients, random-
ized to 3 months exercise or to control group, showed different
levels of circulating EPCs in response to physical training, even
if there was no difference of EPCs number in exercised or con-
trol group at baseline (Mezzani et al., 2013). In addition, even
in severe HF patients with reduction of left ventricular ejection
fraction (LVEF), randomly assigned to 12 weeks of physical train-
ing or sedentary lifestyle, exercise induced improvement in EPCs
count and migratory capacity, associated with enhancement in
neovascularization of skeletal muscle and ejection fraction (Erbs
et al., 2010). On the whole, the evidence suggest that exercise
training can induce optimization of EPCs blood levels also in
patients with severe impairment of LVFE, representing a potential
mechanism to improve life quality of this subgroup of patients.

EFFECTS OF PHYSICAL ACTIVITY ON EPCs IN PAD
Additional studies confirmed that aerobic physical exercise
exerted beneficial effects on EPCs number and activity also in
patients with PAD. Indeed, it was analyzed the mobilization of
EPCs, after 4 weeks of daily aerobic exercise, in three random-
ized controlled studies, including PAD patients, PAD patients
after successful revascularization, and stable CAD patients, and
the results showed a significant increase in EPCs blood count,
in particular in PAD patients subgroup (Sandri et al., 2005).
Accordingly, significant enhancement in EPCs levels were found
in subjects with PAD assigned to exercise or control group, even if
EPCs number decreased within 6 months after training interrup-
tion (Schlager et al., 2011). All these results suggest that physical
activity improves endothelial function and EPCs number and
activity, and outline that acute exercise in healthy as in diseased
individuals can increase the primarily EPCs recruitment from
BM, even if a sustained physical activity is necessary to preserve
these ameliorations (Haram et al., 2008).

CONCLUSIONS
Improvement of EPCs number and pro-angiogenic activity rep-
resents an innovative target to counteract negative effect of
aging and CVD. Several researches show that physical activity,
performed as part of an exercise-training program, results in
a significant increase in circulating EPCs levels and function.
Accordingly, significant improvement of endothelial function has
been demonstrated in patients with CVD who experienced exer-
cise training. Indeed, EPCs mediated neovascularization could
represent a useful way to get a therapeutic revascularization of
ischemic areas in patients with endothelial dysfunction and high
cardiovascular risk (Isner and Asahara, 1999). In particular, EPCs
therapy could represent an interesting therapeutic option in the
management of patients with stable CAD or previous myocar-
dial infarction (MI), by increasing tissue perfusion in the ischemic
area and rescue hibernating myocardium (Piscione et al., 2011).
However, further studies are required to investigate the effects
of exercise training on EPCs activity in both healthy subjects
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and patients with cardiovascular risk factors, and to refine the
best protocol of exercise-training to up regulate circulating EPCs,
clarifying the kinetics of EPCs after the suspension of different
exercise sessions (Volaklis et al., 2013). On the whole, exercise
training has a therapeutic role in CVD and can significantly atten-
uate the atherosclerotic process through its beneficial effects on
endothelial function and cardiovascular system.
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