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Abstract

Juvenile hormone (JH) regulates development and reproductive maturation in insects. The

corpora allata (CA) from female adult mosquitoes synthesize fluctuating levels of JH, which

have been linked to the ovarian development and are influenced by nutritional signals. The

rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which

is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A

comprehensive study of the changes in enzymatic activities and precursor pool sizes have

been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the

present studies, we used two different quantitative approaches to describe and predict how

changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we

constructed generalized additive models (GAMs) that described the association between

changes in specific metabolite concentrations with changes in enzymatic activities and sub-

strate concentrations. Changes in substrate concentrations explained 50% or more of the

model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzy-

matic activities almost always improved the fitness of GAMs built solely based on substrate

concentrations. GAMs were validated using experimental data that were not included when

the model was built. In addition, a system of ordinary differential equations (ODE) was

developed to describe the instantaneous changes in metabolites as a function of the levels

of enzymatic catalytic activities. The results demonstrated the ability of the models to predict

changes in the flux of metabolites in the JH pathway, and can be used in the future to design

and validate experimental manipulations of JH synthesis.
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1. Introduction

Mosquito-transmitted parasitic diseases are among the major causes of mortality in the world.

The wide-spread resistance of mosquitoes to insecticides underscores the need for new control

approaches based on a better understanding of mosquito biology. Juvenile hormone (JH) regu-

lates reproductive maturation in female insects [1]. JH is biosynthesized de novo by the corpora
allata (CA), a pair of endocrine glands connected to the brain [2]. The biosynthetic pathway of

JH III in mosquitoes involves 13 discrete enzymatic reactions which are divided into early

(mevalonic acid pathway—MVAP) and late (JH-branch) steps. The early steps of JH III bio-

synthesis follow the mevalonate pathway to form farnesyl pyrophosphate (FPP) [3]. The late

steps involve the hydrolysis of FPP to farnesol (FOL), followed by oxidation to farnesal (FAL)

[4] and farnesoic acid (FA) [5]. FA is finally converted to JH III by the activity of a methyl

transferase [6, 7], and a P450 epoxidase [8, 9].

Female mosquitoes show dynamic changes in JH synthesis, which have been related to their

reproductive physiology [10, 11]. Studies in several insect species have shown a correlation

between JH biosynthesis and the expression and activities of JH biosynthetic enzymes [12, 13,

9]. Increases or decreases in the catalytic activities of the JH biosynthetic enzymes are generally

concurrent with increases or decreases in JH synthesis [10]. Furthermore, it has been demon-

strated that exogenous additions of precursors stimulate JH biosynthesis in a developmental-

dependent mode [14, 9]; indicating that the enzymes of the JH pathway are frequently in

excess. Studies of the levels of all JH III precursors in Aedes aegyptiCA revealed global changes

in the metabolite pool sizes, and identified four developmental switches that alter JH synthesis

by modulating the flux at distinctive points in the pathway [10].

A model for the regulation of juvenile hormone titers in hemolymph have been proposed

for two insect species, a cricket and a moth [15]. In that model, JH titer was determined by

three factors: JH rate of synthesis, rate of degradation, and the degree to which JH is pro-

tected from degradation by binding to a diversity of JH-binding proteins [15]. Although

transport and degradation are important factors, numerous studies indicate that JH biosyn-

thesis is a major regulator of JH titer. It is also widely accepted that JH is not stored in the

CA and therefore the amount of JH “released” to the incubation medium or hemolymph

accurately represents the amount of JH synthesized [16]. Tightly concomitant changes in JH

biosynthesis and JH hemolymph titers have been described during the gonotrophic cycle of

female mosquitoes [17].

A key step toward further understanding the regulation of CA activity is the establishment

of numerical models that could describe and predict how changes on the individual metabolic

reactions in the JH pathway affect JH synthesis. In this study, we applied two different quanti-

tative approaches that using experimental data on enzymatic activities and/or metabolites con-

centrations modeled variations in the flux of metabolites in the JH pathway: 1) generalized

additive models (GAMs) that are regression models used to describe non-linear relationship

between response and explanatory variable(s), and 2) ordinary differential equations (ODEs)

that are mathematical models that allows us to gain insight on the temporal behavior of metab-

olites concentrations in the JH pathway using enzymatic activities as parameters.

2. Materials and methods

2.1. Databases on enzymatic activities and intermediate metabolites

data

The experimental data on enzymatic activities and CA metabolite concentrations, used for

model building (S1 Table) and validation analyses (S2 Table), were obtained as previously
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reported [10]. Briefly, data are from female pupae and adult Aedes aegyptimosquitoes. Enzy-

matic activities were measured using “in vitro” assays that evaluated the capacity of CA extracts

to metabolize MVAP and JH-branch intermediates, and are expressed as fmol/h/CA. Metabo-

lite concentrations are the sizes of the precursor pools detected in CA extracts, and expressed

as fmol/CA.

2.2. Generalized additive models (GAM)

2.2.1. Definitions. In classical linear regression models, response variables (dependent

variable) are continuous, and predictor variables (independent variables) can be a collection of

continuous or categorical variables [18]. Linear models are used to explore linear relationship

between responses and predictor variables; however, these relationships are often not linear.

In this work, Generalized Additive Models (GAM) were used to describe the relationship

between predictor variables and response variables. GAM are regression models involving a

sum of smooth functions of covariates [19]. These functions allow to describe the shape (linear

or non-linear) of relationships between responses and predictor variables. A general represen-

tation of a GAM can be written as:

gðmÞ ¼ aþ f1X1 þ f2X2 þ f3X3 . . . þ fnXn

Where g is a smooth monotonic link function, μ is the expected value of the response variable,

α is the intercept, f are the smooth functions, and X are the predictor variables.

2.2.2. Model variables. Two variables were established to construct our models: 1)

response variable (P), which were the reaction products within the JH biosynthesis pathway,

and 2) predictor variables, which included the substrate concentrations (S) and, when avail-

able, the reaction velocities or activities of the biosynthetic enzymes (E). A general and simple

representation of the GAM can be written as:

P ¼ aþ f1ðSÞ þ f2ðEÞ

Where P is the expected value of the reaction product within the JH biosynthesis pathway, f
are the smooth functions (thin plate regression spline) [20], S is the observed substrate concen-

tration, and E is the reaction velocity of the enzyme. All GAMs were fitted in R (R Core Team,

2015) version 3.2.0, using the mgcv package version 1.8–6 [20], assuming a Gaussian family

distribution for the response variable.

2.2.3. Model building procedure. There are two common approaches to obtain the “min-

imal adequate model”, also described as the “best-fitted model”, which includes the most rele-

vant predictor variables: 1) to first build the maximal model (containing all the predictor

variables), and subsequently remove non-significant predictor variables at each step (backward

stepwise progression) [19], 2) the alternative is to first build the minimal model (null model),

and afterwards add a single predictor variables at each step, measuring its contribution to the

previous model (forward stepwise progression) [21]. The null model (just one parameter, the

overall mean) is a conceptual model used in regression analyses to get the full variation (devi-

ance) of the data. The criterion to include a new predictor variable in the null model is based

on the reduction of deviance (i.e. explaining the variation of the response variable). In this

work, the forward stepwise progression approach was used to get the best-fitted models.

Akaike information criterion (AIC) [19] and F test or chi-squared test [22] are two statisti-

cal approaches frequently used to assess the statistical significance of a decrease in residual

deviance that results when a given predictor variable is added to the preceding model. In this

work, AIC was used to determinate if adding a new variable increased the fitness of the model,

with the best-fitted models showing the lower AIC value.

Modeling the JH synthesis pathway
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2.2.4. Interpretations of GAMs. Interpretations of GAM results were performed using

partial dependence plots, which describe a predictor’s contribution (i.e. the shape of the rela-

tionship) to the fitted model. Partial dependence plots represent the effect of a predictor vari-

able on the response variable [23].

2.2.5. Model validation. To validate the statistical models, we utilized a new set of experi-

mental data that were not used to construct the original models. Predictions of concentrations of

metabolites were visualized using partial dependence plots. Validating experimental data points

on metabolite concentrations and enzymatic activities were integrated into the model plots.

2.3. Ordinary Differential Equations models (ODE)

We used two different sets of ordinary differential equations to model the temporal behavior

of precursors, intermediate metabolites and final products synthesized in defined segments of

the MVAP and JH-branch (Fig 1). For the MVAP, data were available for the activities of 3

enzymes (HMG−CoA synthase, mevalonate kinase and phosphomevalonate kinase), which

allowed us to use a set of 4 ODEs to model a segment of the MVAP that involves the conver-

sion of aceto-acetylCoA to diphospho-mevalonate. Because the activity of HMGCoA-R that

converts HMGCoA into mevalonate was not known, we had to take the liberty of considering

the transformation of aceto-acetylCoA directly into mevalonate. The dependent variables in

the model were AaCoA (aceto-acetylCoA), Mev (mevalonate), Mev5P (phospho-mevalonate)

and Mev5PP (diphospho-mevalonate). This set of ODEs can be written as:

dAaCoAðtÞ
dt

¼ � kHMGS AaCoAðtÞ

dMevðtÞ
dt

¼ � kHMGS AaCoAðtÞ � kMKMevðtÞ

dMev5PðtÞ
dt

¼ � kMK MevðtÞ � kPMKMev5PðtÞ

dMev5PPðtÞ
dt

¼ � kPMK Mev5PðtÞ

Where kx is the level of activity of the enzyme x, expressed as fmol/h/CA (S1 Table).

For the JH branch, data were available for the activities of 4 sequential enzymes, farnesyl

diphosphate phosphatase (FPPase), farnesol oxidase (FOLSDR), farnesal dehydrogenase

(FALDH) and juvenile hormone acid methyl transferase (JHAMT), which allowed us to model

a segment that involves the conversion of farnesyl diphosphate to methyl farnesoate. The

dependent variables in the model were FPP (farnesyl diphosphate), FOL (farnesol), FAL (far-

nesal), FA (farnesoic acid), and MF (methyl farnesoate). This set of ordinary differential equa-

tions (ODEs) can be written as:

dFPPðtÞ
dt

¼ � kFPPase FPPðtÞ

dFOLðtÞ
dt

¼ kFPPaseFPPðtÞ � kFOLSDR FOLðtÞ

dFALðtÞ
dt

¼ kFOLSDR FOLðtÞ � kFALDH FALðtÞ

Modeling the JH synthesis pathway
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Fig 1. JH biosynthesis pathway: Mevalonic pathway and JH synthesis branch metabolites and enzymes. Boxes show

the part of the pathways that were modeled using ODEs.

doi:10.1371/journal.pone.0171516.g001
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dFAðtÞ
dt

¼ kFALDH FALðtÞ � kJHAMT FAðtÞ

dMFðtÞ
dt

¼ kJHAMT FAðtÞ

ODE systems were integrated numerically using the explicit method of Euler [24] with an inte-

gration time step of 10-10h implemented in Mathematica 9.1 (Wolfram Research).

3. Results

3.1. General additive models of the JH biosynthesis pathway

Changes in specific metabolite concentrations, as a result of changes in enzymatic activities

and substrate concentrations, were estimated using GAMs based on experimental data from

previous studies [10] (S1 Table). A summary of the statistics of the fitted models is presented

for all the metabolites included in the MVAP (Table 1) and JH-branch (Table 2).

The amounts of products generated by the seven enzymatic reactions included in the

MVAP were modeled as a function of: 1) substrate, 2) enzymatic activity and, 3) the combina-

tion of substrate and enzymatic activity (Table 1). The adjusted R2, explained deviance (%)

Table 1. Summary statistics of the fitted models applied for mevalonate pathway.

Model Adj R2 Explained deviance (%) AIC

Acetoacetyl-CoA

g(μi) = α 0 0 557.5

g(μi) = α + f1(Acetyl − CoA) 0.04 7.0 522.9

HMG-CoA

g(μi) = α 0 0 319.2

g(μi) = α + f1(Acetoacetyl − CoA) 0.18 21.7 315.1

g(μi) = α + f2(HMGS) 0.25 34.9 314.6

g(μi) = α + f1(Acetoacetyl − CoA) + f2(HMGS) 0.55 62.6 302.5

Mevalonate

g(μi) = α 0 0 630.3

g(μi) = α + f1(HMG − CoA) 0.43 52.4 593.1

Mevalonate-5P

g(μi) = α 0 0 601.4

g(μi) = α + f1(Mevalonate) -0.02 0.8 603.2

g(μi) = α + f2(MK) 0.15 25.7 599.2

g(μi) = α + f1(Mevalonate) + f2(MK) -0.02 4.0 604.1

Mevalonate-5PP

g(μi) = α 0 0 309.6

g(μi) = α + f1(Mevalonate − 5P) 0.74 77.8 278.7

g(μi) = α + f2(PMK) 0.21 32.1 306.2

g(μi) = α + f1(Mevalonate − 5P) + f2(PMK) 0.83 87.6 269.1

Isopentenyl-PP

g(μi) = α 0 0 409.3

g(μi) = α + f1(Mevalonate − 5PP) -0.01 1.3 410.9

Geranyl-PP

g(μi) = α 0 0 687.5

g(μi) = α + f1(Isopentenyl − PP) 0.10 23.4 616.9

doi:10.1371/journal.pone.0171516.t001
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and Akaike information criterion (AIC) scores were calculated for each model. Due to the lack

of enzymatic activity data, four of the models (acetoacetyl-CoA, mevalonate, isopentenyl-PP

and geranyl-PP) were constructed using only substrate concentrations. From those four mod-

els, the synthesis of mevalonate showed the highest adjusted R2 (0.43) and best fit explained

deviance (52.4%).

For the MVAP models in which data for both variables were available, the highest adjusted

R2 was observed when both substrate and enzymatic activity were considered in the model;

with explained deviances above 60% for HMG-CoA and Mev5PP. Furthermore, both models

showed the lowest AIC values, suggesting that the models constructed were the most parsimo-

nious for the given data. In contrast, the models built for Mev5P showed the lowest adjusted

R2 and explained deviance, as well as the highest AIC, indicating that these models did not

have significant statistical support for the given data, and pointing that synthesis of Mev5P

may be strongly influenced by other factors.

For the JH-branch, six enzymatic reactions were modeled (Table 2). Models from the first

five metabolites (FPP, FOL, FAL, FA and MF) were constructed using data on substrate con-

centration and enzymatic activities. The transformation of MF into JH was only modeled as a

function of substrate due to the lack of experimental data on epoxidase activity. The model for

the production of FPP by FPPS showed the highest adjusted R2 value, as well as the major

Table 2. Summary statistics of the fitted models applied for JH branch.

Model Adj R2 Explained deviance (%) AIC

Farnesyl-PP

g(μi) = α 0 0 206.9

g(μi) = α + f1(Geranyl − PP) -0.05 0.0 208.9

g(μi) = α + f2(FPPS) 0.68 74.4 186.9

g(μi) = α + f1(Geranyl − PP) + f2(FPPS) 0.84 88.2 173.9

Farnesol

g(μi) = α 0 0 317.3

g(μi) = α + f1(Farnesyl − PP) 0.14 18.6 313.9

g(μi) = α + f2(FPPase) 0.04 7.8 317.0

g(μi) = α + f1(Farnesyl − PP) + f2(FPPase) 0.19 28.2 313.7

Farnesal

g(μi) = α 0 0 500.3

g(μi) = α + f1(Farnesol) 0.38 43.6 484.3

g(μi) = α + f2(FOL − SDR) 0.05 8.06 499.0

g(μi) = α + f1(Farnesol) + f2(FOL − SDR) 0.37 44.6 486.1

Farnesoic acid

g(μi) = α 0 0 509.9

g(μi) = α + f1(Farnesal) 0.37 43.9 494.3

g(μi) = α + f2(FALDH) 0.45 48.3 487.9

g(μi) = α + f1(Farnesal) + f2(FALDH) 0.45 49.6 488.7

Methyl farnesoate

g(μi) = α 0 0 395.0

g(μi) = α + f1(Farnesoic acid) 0.35 43.7 384.9

g(μi) = α + f2(JHAMT) 0.19 27.8 390.8

g(μi) = α + f1(Farnesoic acid) + f2(JHAMT) 0.74 81.1 359.0

Juvenile Hormone III

g(μi) = α 0 0 503.2

g(μi) = α + f1(Methyl farnesoate) 0.78 81.3 427.2

doi:10.1371/journal.pone.0171516.t002
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explained deviance (88%); followed by the models constructed for JH (81.3%), MF (81.1%), FA

(49.5%) and FAL (44.6%). The only bad-fitted model from the JH-branch was the FOL model,

with an adjusted R2 of 0.19 and deviance explaining 28.2% of the data.

3.2. Interpretations of the GAMs

Partial dependence plots were constructed to describe the relationships between substrates

and reaction products, as well as enzyme activities and reaction products for the MVAP (S1

Fig) and JH-branch (Figs 2 and 3). The best-fitted models for the MVAP metabolites showed

two different patterns: 1) an oscillatory dynamic behavior (e.g. mevalonate), and 2) a hyper-

bolic pattern (e.g. Mev5PP). The oscillatory pattern observed on the mevalonate model sug-

gests that there is a substantial basal level of mevalonate production, which eventually rises as a

consequence of increased concentrations of substrate (S1 Fig). The relative low score of the

model (substrate vs. product) suggests than changes in enzymatic activities play more impor-

tant roles than substrate concentration on the mevalonate synthesis. On the contrary, the pro-

duction of Mev5PP is mainly governed by increases in substrate concentration until reaching a

high threshold (S1 Fig), since its model is well supported by changes in substrate concentration

(0.74), with the addition of the enzymatic activity data contributing only with an increase of

0.09 in the fitness of the model (0.83).

The best-fitted models for JH-branch metabolites are shown in Figs 2 and 3. Two different

patterns were observed for models in which only substrate and product concentrations were

considered: 1) an inverse relationship and 2) an oscillatory dynamic behavior. The production

of FAL presented an oscillatory model when substrate concentration was considered (Fig 2E).

When the enzymatic activity of FOLSDR was used, the partial dependence plot for FAL indi-

cated that the reaction was not primarily affected by changes in enzymatic activities, but other

factors that were not plotted were certainly influencing the synthesis of FAL.

The FA model showed that higher concentrations of FAL did not lead to the production of

more FA, which might be related to the toxicity of FAL in cells (Fig 3A). On the other hand, it

is clear, that higher activities of farnesal dehydrogenase (FALDH) resulted in major produc-

tions of FA (Fig 3B).

The MF model displayed two potential thresholds that might affect its synthesis; one based

on substrate concentration (Fig 3C), and a second on JHAMT activity (Fig 3D). In both cases,

the models predicted oscillatory increases in the production of MF. Interestingly, the JH III

model in which only the substrate concentration was considered, displayed similar high fitness

score than the MF model, suggesting that there is significant correlation between MF and JH

III concentrations. The JH III model implies that elevated production of JH III (over 80 fmol)

were only achieved with high concentrations of MF (over 350 fmol).

3.3. GAM validations

Validation of the models were performed using experimental data that were not included in

the building of the model (S2 Table). Predicted values for the FA, FAL and MF models are

shown in Fig 4. Most of the predicted values were within the estimated confidence interval

shown in the plots, suggesting that the models can be used to predict the behavior of the inter-

mediates in the JH-branch.

3.4. Ordinary Differential Equations models

The temporal changes in the concentration of precursors, intermediate metabolites and final

products, in a defined segment of the MVAP, were obtained by the numerical integration of

ODEs; using enzyme activities from four biologically relevant different conditions: female

Modeling the JH synthesis pathway
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Fig 2. Partial dependence plots of GAMs for FPP, FOL and FAL production. Left panel: X axis is the substrate

and Y axis the metabolite synthesized (product of reaction). Right panel: X axis is the enzymatic activity and Y axis

the metabolite synthesized. All data are on fmol concentrations. Gray area indicates a 95% confidence interval for

the smoothed lines. Lines on the bottom of the X axis indicate the observed values of the predictor variable.

doi:10.1371/journal.pone.0171516.g002
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Fig 3. Partial dependence plots of GAMs for FA, MF and JH III production. Left panel: X axis is the substrate

and Y axis the metabolite synthesized (product of reaction). Right panel: X axis is the enzymatic activity and Y axis

the metabolite synthesized. All data are on fmol concentrations. Gray area indicates a 95% confidence interval for

the smoothed lines. Lines on the bottom of the X axis indicate the observed values of the predictor variable.

doi:10.1371/journal.pone.0171516.g003
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Fig 4. Partial dependence plots for the validation of GAMs for FAL, FA and MF production. Left panel: X axis is the

substrate and Y axis the metabolite synthesized (product of reaction). Right panel: X axis is the enzymatic activity and Y axis the

metabolite synthesized. All data are on fmol concentrations. Gray area indicates a 95% confidence interval for the smoothed lines.

Lines on the bottom of the X axis indicate the observed values of the predictor variable. Red dots indicate data not used for the

model construction.

doi:10.1371/journal.pone.0171516.g004
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pupae 24h before adult eclosion (Fig 5A), newly eclosed adult female (Fig 5B), and sugar-fed

females 12h and 24h after adult eclosion (Fig 5C and 5D, respectively). We used the same

amount of the original precursor (AaCoA = 1000 fmol) as the initial condition in the four

models, which were run for 20 min. Our simulations indicated that 24h before eclosion the

rate of change in the concentrations were slow, in agreement with the low activity of JH syn-

thesis by the pupae CA (Fig 5A). The first step in the segment, the conversion of AaCoA into

HMG-CoA, was very fast when compared with the subsequent reactions. On the other hand,

the conversion into Mev5P was quicker than its transformation into the final product

(Mev5PP). This last conversion was the rate-limiting step in this section of the MVA pathway,

with most of the initial precursor transformed into Mev5PP in around 20 minutes. At the end

of the pupal stage (0h) the conversion into Mev5P and its subsequent transformation into

Mev5PP have increased their kinetic rates around two-folds (Fig 5B). After adult eclosion

there is a generalized increment in the activity level of all the enzymes, and the time needed to

reach the final concentration of Mev5PP, was only 10 seconds (Fig 5C and 5D). We also

detected an increment in the activity of the mevalonate kinase in relation to the activity of the

phosphomevalonate kinase, which resulted in the transient accumulation of Mev5P. This accu-

mulation was more evident 24h after adult eclosion (inset of Fig 5D).

Fig 5. ODE simulations of a defined segment of the MVAP. Temporal evolution of the concentrations of AaCoA (red line), HMGCoA + Mev

(green), Mev5P (blue line) and Mev5PP (magenta line). Simulation of CA activities in: A) Female pupae, 24h before adult eclosion. B) Female at

adult eclosion (0h). Sugar-fed female at C) 12h and D) 24h after adult eclosion. Inset in panels C and D: details of pathway dynamics at higher

temporal resolution. In all these simulations the initial concentration of precursor (AaCoA) was 1000 fmol, while all other initial concentrations

were zero. Simulations were run for 20 min.

doi:10.1371/journal.pone.0171516.g005
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We also used ODEs to model a segment of the JH branch. The time course of the changes

in the concentration of the initial precursor (FPP, red line), intermediate metabolites and the

final product (MF, black line) are depicted in Fig 6. These concentrations were obtained by

numerical integration of the ODE system in the same four biological conditions described for

the MVAP simulations: 24h before adult eclosion (Fig 6A), newly eclosed adult (Fig 6B), and

sugar-fed females 12h and 24h after adult eclosion (Fig 6C and 6D, respectively). For these

models, we used 1000 fmol of FPP as the initial precursor. In the pupae 24h before eclosion all

the enzymatic activities were very low, and the time needed to reach the steady state concentra-

tion of FA was over the 20 minutes that lasted the simulation. The enzymatic activity of

JHAMT was almost undetectable; consequently, the concentration of MF was also too low to

detect (Fig 6A). This landscape changed dramatically after eclosion, when there is a remarkable

increase in the activity of JHAMT, as well of the activities of all the other JH-branch enzymes.

As a consequence of these higher enzymatic activity levels, the steady state concentration of

the final product (MF) were reached in around 5 min. After adult eclosion the conversion of

Fig 6. ODE simulations of a defined segment of the JH-branch pathway. Temporal evolution of the concentrations of FPP (red line), FOL (green

line), FAL (blue line), FA (magenta line) and MF (black line). Simulation of CA activities in: A) Female pupae, 24h before adult eclosion. B) Female at adult

eclosion (0h). Sugar-fed female at C) 12h and D) 24h after adult eclosion. Inset in panels B, C and D: details of pathway dynamics at higher temporal

resolution. In all these simulations the initial concentration of precursor (FPP) was 1000 fmol, while all other initial concentrations were zero. Simulations

were run for 20 min.

doi:10.1371/journal.pone.0171516.g006
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FA into MF was very fast when compared with the other metabolic steps, which lead to a fast

depletion of the FA pool (Fig 6B, 6C and 6D). Twenty-four hours after eclosion, a reduction in

the activity of farnesal dehydrogenase made possible to observe a transient small accumulation

of FAL, which was rapidly metabolized to FA (Fig 6D).

We also simulated the changes in these same segments of the MVAP and JH-branch using

the enzymatic activity levels recorded 24h after blood feeding, when the CA activity is greatly

depressed. Fig 7 shows the results of these simulations, where one can see an evident reduction

of the overall output of the two pathways.

4. Discussion

4.1. Juvenile hormone pathway architecture

It is challenging to construct accurate models for metabolic pathways that can be rigorously fit-

ted to experimental data. Pathway modelling has been extensively used to understand prokary-

otic metabolism [25], but remains largely undeveloped for eukaryotic systems.

The importance of JH in the regulation of development and reproduction in mosquitoes

stimulated the study of the biosynthetic pathway, and resulted in the collection of unique exper-

imental data on changes in the levels of metabolites, as well as information on enzymatic activi-

ties from CA extracts [10]. These types of data were used in this study to model the enzymatic

reactions included into the JH biosynthetic pathway in the CA of female A. aegyptimosquitoes.

The dynamic JH III pathway encompasses changes in 14 metabolites catalyzed by the activi-

ties of 13 enzymes, that are linked in a linear track (Fig 1). Acetyl-CoA molecules feed the path-

way, and after transforming into 12 different compounds, exit the CA as JH III. In our models,

we tried to predict the changes in the formation of each of these 13 compounds, as the result of

changes in the amounts of their correspondent substrates, as well as the fluctuations in specific

catalytic enzymatic activities. Each reaction, although modeled individually, is integrated into

the pathway, and therefore influenced by other factors, besides the specific changes in substrate

concentration and the activity of a particular enzyme. A few premises need to be accepted

when building the GAMs and ODEs, 1) the pathway is linear, 2) all substrates are available to

their respective enzymes, and 3) cofactor concentrations are not limiting the reactions.

An important point at issue is the linearity of the pathway; the MVAP consists of a main

trunk followed by sub-branches that produce a diverse range of compounds; branch point reg-

ulation is an important mechanism controlling carbon flow in the MVAP; the FPP produced

by the MVAP can be shunted to many metabolic branches for the synthesis of critical mole-

cules such as ubiquinone, dolichol, or prenylated proteins [3]. Insects lack the cholesterol-syn-

thetic branch present in vertebrates, but in the CA the MVAP branches into the synthesis of

JH. Because the CA is a specialized site of production of JH, branching of MVAP into non JH

molecules is probably very minor quantitatively, at least during periods of high JH synthesis.

An additional branch is the IPP- DMAPP branch, as the sesquiterpenoid is built from one

starting block and two additions. So one third of the IPP is diverted to DMAPP, which could

lead to complications of numerical models.

In addition to branching, we have documented in the CA of mosquitoes the existence of at

least one reversal of flux directionality (farnesal back to farnesol) [5], as well as feed-back loops

[26]; therefore, the absolute linearity of the pathway is questionable.

4.2. Precursor pools changes

In the JH biosynthetic pathway, the 13 enzymes are connected by metabolite pools that are

common to them, for example FOL is the product of FPPase activity and the substrate for far-

nesol dehydrogenase. The pools are the links in the system interactions, consequently pool

Modeling the JH synthesis pathway

PLOS ONE | DOI:10.1371/journal.pone.0171516 February 3, 2017 14 / 21



Fig 7. ODE simulations of defined segments of the MVAP and JH-branch 24h after blood feeding. Temporal

evolution of the concentrations of metabolites are as Figs 5 and 6. In all these simulations the initial concentration of

precursor (AaCoA or FPP) were 1000 fmol, while all other initial concentrations were zero. Simulations were run for

20 min.

doi:10.1371/journal.pone.0171516.g007
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concentrations and fluxes (which are flows into and out of pools) are vital variables in JH regu-

lation. Just about adult eclosion, when JH synthesis increases, the fast metabolism of MVAP

precursors results in a depletion of MVAP intermediate pools [10] (S1 Table). These declines

in precursors were reflected into partial dependence plots where maximum production of

metabolites, such as Acetoacetyl-CoA or HMG-CoA were observed in the misleading

“absence” of their respective substrates (negative or inverted relationships). In reality, what we

were detecting was the fast catalysis and lack of accumulation of those two metabolites (Ace-

tyl-CoA and Acetoacetyl-CoA respectively). As changes in pathway are fast, a shorter temporal

sampling of the enzymes activities could change the reported negative relationships. It is

important to emphasize that the experimental values for the pool sizes are revealing only the

amount of metabolites that we were able to detect in CA extracts; they are not describing the

amount of precursor available to the corresponding enzyme.

There are other factors that might add additional levels of complexity that affect model

interpretations, such as the compartmentalization of metabolite pools; we have described that

the CA of a newly emerged female mosquito, which has a very large FA pool but limited JH

synthesis, can be strongly stimulated by exogenous supply of FA [9, 10]. These results suggest

differences in the channeling of “endogenous” and “exogenous” FA derived pools, and possi-

bly other precursor pools. MF is another example of pool compartmentalization, it has

extremely low solubility, so it probably partitions into the ER membrane, where it is metabo-

lized by the epoxidase. Consequently, there is likely not a direct relation between MF levels in

the CA and MF concentration as substrate for the epoxidase. These has been experimentally

validated for the MF epoxidase in the locust Locusta migratoria [27].

In addition, there is at least one example of a reversal of the flux in the JH synthesis pathway

in mosquitoes that also affects pool sizes; specifically, the deficiency of farnesal dehydrogenase

activity at 24 h after blood feeding results in a large increase of the FAL pool that cannot be

converted into FA. Consequently, the accumulation of the potentially toxic FAL stimulates the

activity of a reductase that converts FAL back into FOL, resulting in FOL leaking out of the

CA [5]. Again, these metabolic features are evident into partial dependence plots, where maxi-

mum production of FAL was observed in the “absence” of FOL (negative or inverted relation-

ships); while in fact what we were detecting was the normal generation of FOL, accumulation

of FAL, followed by a reversal of the flux with disposal of the newly generated FOL.

Furthermore, in the CA of mosquitoes, some MVAP precursor pools are controlled by feed-

back regulation imposed by metabolites upwards in the pathway; such as the example of GPP

and FPP having a negative feedback on the activity of mevalonate kinase, and therefore affect-

ing the mevalonate and mevalonate-5P pools [26]. In summary, despite these limitations, our

GAMs confirmed that availability of endogenous intermediates is one of the most critical

parameter for the regulation of the total flux in the pathway, with changes in substrate concen-

trations explaining 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed.

4.3. Enzymatic activities changes

The activities of 8 of the 13 JH biosynthetic enzymes have been monitored in vitro in CA

extracts of mosquitoes under 5 different developmental and physiological conditions [10]. The

catalytic activities of the enzymes of the MVAP and JH-branch changed in a coordinated fash-

ion in the “active” and “inactive” CA. Changes in enzymatic activities were generally concur-

rent with increases or decreases in JH synthesis, but it is less clear how much these changes in

enzymatic activities are affecting the flux in the pathway.

In physiological systems, enzymatic flux capacities (enzyme Vmax values) are often in excess

of maximum physiological flux rates or loads (v) [28]. It has been proposed that in a synthetic
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pathway containing numerous enzymes, almost all the enzymes will appear to be “in excess”,

in the sense that individual quantities or activities can be considerably reduced without appre-

ciable effect on the flux [29]. This seems to be the case for the enzymes of the JH synthesis

pathway; flux control theory was used to correlate the effect of mevinolin, a potent competitive

inhibitor of HMG-CoA reductase on reductase activity and JH III synthesis in the CA of

Diploptera punctata cockroaches [30]; results indicated that HMG-CoA reductase has a low

control coefficient on JH III synthesis both on CA with high and low rates of JH synthesis.

HMG-CoA synthase [31] and HMG-CoA reductase [32] activities change over 6- to 10-fold

over the gonotrophic cycle of D. punctata. The mean activities of these two enzymes during

the peak of JH synthesis were in large excess of the rate needed to account for the level of JH

synthesis by CA of that age [31, 32]. Thus, the patterns of HMG-CoA synthase and HMG-CoA

reductase changes during the cycle of activity, and the effects of inhibitors all argue against a

rate-limiting role of any of these two enzymes in JH III biosynthesis. Stimulation of JH synthe-

sis with exogenous precursors has been reported for the CA of many insect species, and it

seems that having an excess of enzymes is common in most insects studied. In A. aegypti, the

individual addition of 200 μM of any of 9 different precursors (ACoA, MVA, MevP, MevPP,

FPP, FOL, FAL, FA and MF) resulted in a stimulation of 2–3 fold on JH synthesis [33]; con-

firming that enzymatic flux capacities were higher that the basal flux rates observed in

controls.

It is important to point out that we have observed striking differences in the levels of activi-

ties among the 8 enzymes studied; with HMGS and JHAMT displaying activities in the high

nanomolar range (500–1000 nmol/h), while FPPase maximum values were merely around 75

fmol/h. In addition, the activity of a particular enzyme, such as JHAMT, fluctuated between

200 fmol/h and 1400 nmol/h. Nevertheless, enzymatic activity levels need to surpass minimum

thresholds to achieve a net flux of precursors through a biosynthetic pathway [29, 34].

Although our GAMs confirmed that availability of endogenous intermediates is the most criti-

cal parameter for the regulation of the total flux in the pathway, the statistical values of the

models (R2, deviances and AIC scores) showed in some cases better fitness for models based

on changes in enzymatic activities (HMG-CoA, Mev-5P, FPP and FA), than models based on

substrate concentration. On the other hand, addition of information on enzymatic activities

usually improved the fitness of models built solely based on substrate concentrations.

4.4. What can we learn from these models?

In biochemical models, when Km is similar to S, then vwill be directly related to S; but when S

is much larger, v is limited by Vmax. Our models are not explicitly biochemical models, where

we could determine and calculate Km and Vmax by relating enzymatic reaction rates (v) to sub-

strate concentrations [S]. In contrast, they are kinetic models, where Vmax is an approximation

to enzyme concentration [E], and pools sizes of substrates are considered concentrations of

substrate [S].

Our models evaluated how changes in substrate and enzymatic activities affected product

yielding. High scores from the GAM models indicated that there were reactions from the

MVAP and JH-branch that were mainly governed by changes in the availability of substrate

and/or enzymatic activity. On the contrary, reactions showing less than a 50% explained devi-

ance, suggested that additional factors might play more significant roles controlling these

reactions.

Several cofactors are critical for JH synthesis (Fig 1), such as ATP, NAD+, NADP+,

NADPH+, Mg2+ and S-adenosine methionine (SAM). Nicotinamide adenine dinucleotide

coenzymes are essential for several enzymatic steps in the pathway, and their pool sizes can
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also be limiting factors in the mosquito CA [7, 5]; however, Diploptera CA shunted one third

of the glucose provided through the pentose pathway (that generate NADPH), suggesting that

unlikely this cofactor would be a limiting factor in the cockroach [35]. Reductions in the size

of the ATP pool could also have detrimental effects on JH synthesis, since 9 molecules of ATP

are used to build each FPP molecule. The FPPase activity in the mosquito CA is Mg2+ depen-

dent; and FPPS also displays its activity only in the presence of metal cofactors; with the prod-

uct condensation depending on the divalent cation. Mg2+ ions lead to the production of FPP,

while the presence of Co2+ ions lead to GPP production [36].

SAM is a critical cofactor for JHAMT activity [4]. CA incubated in methionine-free

medium synthesize only a small amount of JH III; showing that the intra-glandular pool of

methionine is minute. There is an absolute dependence of JH III synthesis on exogenous

methionine supply, with increases in the concentration of methionine in the incubation

medium resulting in a linear increase in JH III synthesis [37]. We did not have access to exper-

imental values on changes in the availability of all these cofactors, therefore these data were

not included in the models; adding any of them as new predictor variables most likely would

increase the fitness of the GAMs.

Several GAMs showed oscillatory dynamic behaviors. Enzymatic systems may display rhyth-

mic behavior in two types of circumstances, which may be referred to as “endogenous” or

“exogenous”, depending on whether the rhythm originates from within the system or through

its coupling with some external periodic process. In other words, either changes in enzymes and

substrate concentrations are at the core of the oscillatory mechanism, or they are driven by

some external oscillation [38]. Oscillations might occur as a result of feedback regulation, driven

by cofactor fluctuations or changes in the activity of regulatory molecules such as allatostatin-C

[33]. Those factors affect the amplitude, period, and waveform of the oscillations produced by

changes in substrate or enzymatic activity. These oscillations occur in a range bounded by two

critical threshold values, in some cases (MF and JH III production), we observed explosive syn-

thesis of the product occurring as soon as the substrate exceeds a threshold. Enzyme saturation

eventually puts an upper bound on the enzyme reaction rate. Oscillations in enzymatic activities

could be controlled through phosphorylation–dephosphorylation, through enzyme synthesis

and degradation, and through association with protein inhibitors [38].

4.5. Conclusions

In previous studies, principal component analysis (PCA) of the metabolic pools indicated that

in reproductive female mosquitoes, at least four developmental switches alter JH synthesis by

modulating the flux of isoprenoids at distinct points. Metabolic analysis delimited four distinct

CA physiological conditions that were named: inactive, active, modulated and suppressed CA

[10]. The molecular bases for regulation of JH synthesis, as well as the roles of brain factors or

other endocrine regulators changed during these four phases. Modeling the JH pathway can

help to integrate experimental knowledge into a coherent picture and to test and/or support

hypothesis about different mechanisms of JH synthesis regulation. In these models, we were

able to integrate changes in precursors and enzymes involved in the synthesis of each interme-

diate metabolite for the JH synthesis. We tested the model by using experimental data and

proved that the best fitted models can be used to predict the level of metabolites for in vitro
experiments. Although limited by the absence of a complete set of experimental data, our

ODEs underscored that in a sugar-fed female enzymatic activities were not limiting. This was

also suggested by the GAMs that showed that changes in substrate concentrations explained

50% or more of the model deviances in 7 of the 13 metabolic steps analyzed, in other words

substrate concentrations are primarily limiting the flux. In addition, when comparing the sizes
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of the intermediate pools (100–1000 fmol/CA) with the activities of most of the enzymes (103–

106 fmol/CA/h), the enzymatic activities are in excess and therefore the processing of the sub-

strates is often very fast.

Prediction of the output of metabolic pathways by modelling their reaction networks is

important because pathways provide a higher level of organization that facilitate the compre-

hension of the network, allowing the calculation in silico of the effect of potential disturbances

on the enzymes or metabolites in the JH pathway.

Supporting information

S1 Fig. Partial dependence plots for GAMs for MVAP metabolites production. Left panel:

X axis is the substrate and Y axis the metabolite synthesized (product of reaction). Right panel:

X axis is the enzymatic activity and Y axis the metabolite synthesized. All data are on fmol con-

centrations. Gray area indicates a 95% confidence interval for the smoothed lines. Lines on the

bottom of the X axis indicate the observed values of the predictor variable.

(TIF)

S1 Table. Experimental data on enzymatic activities and CA metabolite concentrations,

used for model building. Data are from female pupae and adult Aedes aegyptimosquitoes,

and were obtained as previously reported [Rivera-Perez C, Nouzova M, Lamboglia I, Noriega

FG. Metabolic analysis reveals changes in the mevalonate and juvenile hormone synthesis

pathways linked to the mosquito reproductive physiology. Insect Biochem. Molec. Biol. 2014;

51:1–9.]. Enzymatic activities were measured using “in vitro” assays that evaluated the capacity

of CA extracts to metabolize MVAP and JH-branch intermediates, and are expressed as fmol/

h/CA. Metabolite concentrations are the sizes of the precursor pools detected in CA extracts,

and expressed as fmol/CA.

(XLSX)

S2 Table. Experimental data on enzymatic activities and CA metabolite concentrations,

used for validation analyses. Data are from female pupae and adult Aedes aegyptimosquitoes,

and were obtained as previously reported [Rivera-Perez C, Nouzova M, Lamboglia I, Noriega

FG. Metabolic analysis reveals changes in the mevalonate and juvenile hormone synthesis

pathways linked to the mosquito reproductive physiology. Insect Biochem. Molec. Biol. 2014;

51:1–9.]. Enzymatic activities were measured using “in vitro” assays that evaluated the capacity

of CA extracts to metabolize MVAP and JH-branch intermediates, and are expressed as fmol/

h/CA. Metabolite concentrations are the sizes of the precursor pools detected in CA extracts,

and expressed as fmol/CA.

(XLSX)
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