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ABSTRACT

RNA-seq is a key technology for understanding the
biology of the cell because of its ability to profile
transcriptional and post-transcriptional regulation at
single nucleotide resolutions. Compared to DNA se-
quencing alignment algorithms, RNA-seq alignment
algorithms have a diminished ability to accurately
detect and map base pair substitutions, gaps, dis-
cordant pairs and repetitive regions. These short-
comings adversely affect experiments that require a
high degree of accuracy, notably the ability to de-
tect RNA editing. We have developed RNASequel,
a software package that runs as a post-processing
step in conjunction with an RNA-seq aligner and sys-
tematically corrects common alignment artifacts. Its
key innovations are a two-pass splice junction align-
ment system that includes de novo splice junctions
and the use of an empirically determined estimate of
the fragment size distribution when resolving read
pairs. We demonstrate that RNASequel produces im-
proved alignments when used in conjunction with
STAR or Tophat2 using two simulated datasets. We
then show that RNASequel improves the identifica-
tion of adenosine to inosine RNA editing sites on bio-
logical datasets. This software will be useful in appli-
cations requiring the accurate identification of vari-
ants in RNA sequencing data, the discovery of RNA
editing sites and the analysis of alternative splicing.

INTRODUCTION

RNA-seq is a key technology for understanding the biol-
ogy of the cell. By enabling the global profiling of the RNA
content of a sample at single nucleotide resolutions (1),
RNA-seq makes it possible to reveal the details of tran-
scriptional and post-transcriptional regulation (1–3). For
instance, a single RNA-seq experiment can simultaneously
profile transcript isoforms, gene fusions, alternative splic-

ing, RNA editing and allelic imbalance (4–8). Unfortu-
nately, the current generation of RNA-seq paired-end align-
ers suffers from shortcomings that obscure biologically im-
portant signals or which give rise to false signals. For exam-
ple, the initial identification of putative non-canonical RNA
editing has more recently been demonstrated to arise from
false positives derived from sequencing and alignment arti-
facts (9).

A typical RNA-seq experiment consists of sequencing
both ends of a cDNA fragment to generate two reads (a read
pair) separated by a variable length of sequence. The accu-
rate alignment of these read pairs is essential to the down-
stream analysis of an RNA-seq experiment, but RNA-seq
read alignment is challenging due to the non-contiguous na-
ture of mRNA transcripts (10). Critically, RNA-seq align-
ers must be able to identify exonic alignments in regions
that can be interspersed with introns that can reach hun-
dreds of thousands of kilobases in length (11). To solve this
issue paired-end RNA-seq alignment methods typically ap-
ply a distance cutoff to exclude discordantly mapped pairs.
However, these cutoffs tend to be arbitrary and very liberal.
For example, many algorithms consider mapped pairs to be
concordant up to a maximum distance of 500 kb, which is
sufficiently high to catch the rare very long intron, but also
is prone to incorrectly classifying the more common case of
discordant reads that are mapped incorrectly.

To facilitate the mapping of spliced reads while attempt-
ing to minimize common systematic errors, various RNA-
seq alignment methodologies have been developed. These
methods include tools that are dependent on, and optimized
for, a specific short read alignment tool such as Bowtie
or BWA (12–19). Other tools implement their own align-
ment algorithms that may not be as accurate as traditional
short read alignment tools, or which are less tolerant to
gaps and mismatches (20,21). RNA-seq alignment meth-
ods also differ in their usage of pre-existing splice junction
databases. Most methods perform better when a splice junc-
tion database is provided, but this hinders the identification
of novel splice junctions, and may not be feasible for less
well-characterized species (18,22). In addition, few splice
junction aware RNA-seq aligners are able to recognize and
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handle transcripts that span more than one splice junction
or contain a novel combination of existing junctions.

Other common artifacts that lead to issues with spliced
alignments include (i) the identification of false positive
splice junction alignments due to short alignment overlaps
on one side of the splice junction, which is compounded by
the reduction of base quality at read ends; (ii) false posi-
tive splice junctions due to reverse transcriptase template
switching and splicing noise; (iii) splice junctions that are
missed because the read has been incorrectly aligned to an
intron sequence rather than across a splice junction (18,22–
24). These artifacts contribute to false positives for calling
insertions, deletions, splice junctions and mismatches. For
example, many false positive sites in predicted RNA edits
tend to be located near splice sites due to incorrectly spliced
alignments (8,9). These are compounded by issues relating
to library preparation such as errors generated by reverse
transcription and random hexamer priming (25). In gen-
eral, RNA-seq aligners have a low default tolerance for in-
sertions, deletions and mismatches, which together increase
the number of unmapped bases (soft clipping) at read ends
and miss alignments to regions with a high mismatch rate.
Finally, poor repeat tolerance can also lead to false positive
mismatch calls by aligning a read pair to one paralogous
gene while missing the alignment to another.

One common method to compensate for spliced align-
ment artifacts is to execute a two-pass alignment scheme
(15,18). A two-pass alignment consists of two steps: (i) the
alignment of the reads to known splice junctions and the
reference genome for the detection of novel splice junctions;
(ii) the generation of a new index file including all, or a sub-
set of, high confidence novel splice junctions. This can dras-
tically improve the spliced alignment of reads with low short
exonic overlaps.

To address the common causes of systematic artifacts
in RNA-seq library preparation, sequencing and align-
ment we have constructed an RNA-seq realignment pro-
gram called RNASequel. RNASequel utilizes the spliced-
read output of any read mapper and de novo splice junc-
tion detection algorithm to perform an error-tolerant re-
alignment (Figure 1). It takes advantage of an empirically
determined fragment size distribution and annotated and
novel splice junctions to predict if a read pair maps concor-
dantly. We have tested RNASequel against STAR (21) and
Tophat2 (26) for de novo splice junction prediction using real
and simulated datasets, and find increases in sensitivity and
decreases in false positive predictions. We also show that
RNASequel has improved repeat alignment sensitivity that
improves the detection of potential single nucleotide vari-
ants and RNA editing sites.

RNASequel implemented in C++ is available under
the GNU Public License from: https://github.com/GWW/
RNASequel.

MATERIALS AND METHODS

Splice junction definitions and alignment scoring

We defined a canonical splice junction as any splice junction
with the following motifs: GTAG, GCAG, GCTG, GCAA,
GCGG, GTTG, GTAA, ATAC, ATAA and ATAG. The

Figure 1. RNA-seq realignment schematic. A spliced read aligner is used
to identify sample specific novel splice junctions that are used to generate
a splice junction index. Read 1 and read2 from each read pair are indepen-
dently mapped to the genome and splice junction index using a contiguous
read aligner. Low quality alignments are removed, the genomic and splice
junction alignments are merged and the read pairs are resolved using an
empirically determined fragment size distribution.

strand of a splice junction was inferred based on gene anno-
tations and the aforementioned splicing motifs. Alignments
were scored using the following scoring penalties: gap open
= −8, gap extension = −1, splice junction = −4, match =
3, mismatch = −3. For spliced alignments an extra align-
ment penalty was added for each splice junction. A penalty
of −3 was applied for GTAG splice junctions, −6 for other
canonical splice motifs and −9 for all other splice motifs.
To reduce the chances of choosing an alignment with a long
intron over an alignment with a shorter intron and a lower
score we applied an additional penalty for splice junctions
with introns over a pre-defined length (arbitrarily set at 64
kb by default). For these long introns we applied a penalty
of −(log2(isize) − 12), where isize is the size of the intron.

Splice junction discovery and splice junction index generation

The splice junction databases combined reference anno-
tations (if available) and novel splice junction predictions
from Tophat2 or STAR (if used). Only the novel splice junc-
tions meeting the following criteria were retained (used for
analysis): (i) the splice junction must be observed at least
8 bp away from the ends of at least one read; (ii) there are
at least two different alignment positions mapping across
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the pair; (iii) the predicted intron size is at least 21 bp and
no more than 500 kb in length. For each novel junction we
added to the database N base pairs of flanking sequence
on each side of the junction, where N should be chosen
based on the size of a sequencing read, for our case we
used 76 or 90. To handle cases in which a read could span
multiple splice junctions, we supplemented our index by
including multiple splice junctions on the same annotated
strand if a sequence of length N could span one or more
downstream junctions. Splice junctions with an ambiguous
strand were considered on both strands. Finally, redundant
sets of spanning splice junctions were removed to minimize
the database size. The splice junction index can then be used
with any contiguous read mapper.

Contiguous and spliced read alignment

For mapping reads to the GRCh37 reference genome (con-
tiguous alignments) and splice junction indexes, we chose
BWA-mem version 0.7.8 for its speed and accuracy (19).
However any read mapper can be used. Read 1 and read 2
from each pair were independently mapped to the reference
genome and the splice junction index. For each splice junc-
tion alignment, we resolved the alignments back to the ge-
nomic co-ordinates and removed contiguous alignments. To
avoid alignment artifacts that occur due to reads improperly
aligning to intronic sequences, alignments were trimmed if
they overlapped a splice site within six base pairs of the end
of the alignment. For each alignment the score was calcu-
lated as described above and we defined the minimum align-
ment score to be 2 × (aligned bases); any alignments with a
score less than this were discarded. The retained alignments
for read 1 and read 2 were then paired by identifying every
potential alignment combination that matched the follow-
ing criteria: (i) the alignments were on the same chromo-
some; (ii) the alignments were in the correct orientation and
(iii) the distance between the read pairs was <1 Mb.

Estimating the empirical fragment size distribution

As noted earlier, the current generation of RNA-seq align-
ers uses an arbitrary cutoff to remove read pairs that map
too far away from each other. RNASequel uses two different
methods to solve this problem in a more disciplined man-
ner. Only read-pairs that mapped uniquely after discarding
alignments that had a score less than (the highest alignment
score)––12 were used for fragment size estimation. We used
a score difference of 12, which equates to four mismatches
with our default mismatch penalty of three. This number
can be adjusted if an increased repeat sensitivity is desired.
In the case in which a gene annotation file is available for
the organism under study, we estimated the expected frag-
ment size distribution from the annotated gene model in-
trons. For organisms with gene annotations we identified
pairs that mapped to long exons (>250 bp) that should be
larger than the insert size of the library or pairs that mapped
to single isoform genes (7). In the case in which gene an-
notations were unavailable, we used maximum distance cri-
teria of 1500 bp between the read pairs. In both cases we
set a size cutoff to 1500 bp and required at least 100 000
fragment size observations. Both methods for estimating the

fragment size distribution may lead to rare cases where an
intron is included and the fragment size is overestimated.
To compensate, the empirical distribution was normalized
and a confidence interval retaining the smallest 99% of the
observations was applied.

Resolving read pair alignments

To identify potential concordant read pairs we examined all
of the potential combinations between the alignments for
read 1 and read 2 that were correctly oriented, mapped to
the same chromosome and were <1 Mbp apart. For each
of these potential pairs every potential fragment size us-
ing different combination of splice junctions between the
pairs was compared to the empirically determined frag-
ment size distribution. Each potential fragment was then
assigned a score of 10 × |(normalized fragment distribution
score)/(maximum fragment distribution score)| + (read 1
alignment score) + (read 2 alignment score). The highest
scoring pair was marked as primary; any pair with a score
difference of <12 was marked as secondary and the remain-
ing alignments were discarded. The score difference when
calling repeat alignments should be carefully chosen based
on the desired repeat tolerance, for our purpose we found
that 12, which is equivalent to a difference of four mis-
matches, was reasonable. If no valid pairs were found using
the fragment size distribution and the potential read pair
was uniquely aligned it was outputted and marked as dis-
cordant. Furthermore, we implemented two different fall-
back methods depending on whether or not gene annota-
tions were provided. Both of these methods are optional
and deactivated by default. In the case where gene anno-
tations were provided if both pairs mapped within the same
annotated gene and were less than a user-defined distance
apart they were considered concordant. If no gene anno-
tations were provided we considered a pair concordant if
the distance between the pair was at least a user-defined
distance apart. For alignments where there were no valid
alignments for one of the reads in a pair we reduced the
score difference threshold to six, since we are only examin-
ing a single read rather than both reads in a pair. The highest
scoring singleton alignment was marked as primary and the
remaining alignments were marked as secondary.

Simulated dataset benchmarking

The simulated datasets were downloaded from ArrayEx-
press using the accession number E-MTAB-1728 (22) and
alignments that mapped to ‘random’ and ‘NA’ chromo-
somes were removed. To simplify the comparison of align-
ment pipeline outputs to the ‘ground truth’ of the simu-
lated datasets, we removed read pairs if either read had an
edit distance of 25 or more. We left-shifted gaps, trimmed
spliced alignments with less than eight base pairs of exonic
overlap at the read ends and converted spliced alignments
into deletions for predicted introns with a length <21 bp.
For repeat mapped alignments we considered only the pri-
mary alignment. An alignment was considered perfect if the
paired alignment exactly matched the true alignment. Par-
tial alignments overlapped the true alignment but may have
been soft clipped or included alternate insertions or dele-
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tions. Singleton alignments were classified as paired align-
ments in which either read 1 or 2 was unmapped. For spliced
read alignment comparisons we counted a junction as cor-
rect only if the junction was present in the true alignment. A
spliced alignment was considered partially correct if it con-
tained at least one of the correct junctions and no incorrect
junctions (this also encompasses the case in which the align-
ment contained all of the correct junctions but some of them
were lost due to soft clipping). Finally, alignments that were
mapped but did not meet the criteria for a perfect or partial
alignment were marked as failed.

Identifying putative adenosine to inosine RNA editing events

The reads from the poly(A)-depleted YH lymphoblastoid
cell line were mapped with the same alignment algorithm
combinations as the benchmarking datasets. The align-
ments were retained if they had no more than two aligned
ambiguous bases and no more than 10 soft clipped bases at
either end. The retained alignments were then searched for
potential edits using the following criteria to discard low
quality calls: (i) positions mapping to tandem repeats using
trf (27) or low complexity and simple regions according to
RepeatMasker were discarded, (ii) for positions overlapping
an inverted repeat annotated by einverted (28) or a repeat el-
ement identified by RepeatMasker we used a less stringent
coverage criteria and required at least 10× coverage and a
10% alternative allele frequency, for positions with no re-
peat overlap we required 16× coverage and a 20% alterna-
tive allele frequency, (iii) at least one of the reads supporting
the alternative base was outside of the first and last eight
base pairs of the read ends, (iv) potential changes for which
more than 90% of the supporting reads contained an in-
sertion or deletion were removed, (v) potential sites where
more than 70% of the supporting alignments contained dif-
ferent kinds of mismatches were discarded. After removing
low quality calls, we also discarded changes found in the
UCSC Genome Browser ‘Common SNP’ track, which is
derived from dbSNP v141 if no genome sequence was avail-
able. For the GM12878 and YH datasets SNPs that were
called from genome sequencing data were discarded (see
Supplementary Methods) (29,30).

RESULTS

Developing an accurate RNA-seq realignment tool

We have developed RNASequel, an accurate and error-
tolerant paired-end RNA-seq realignment tool, which func-
tions as a post-processing step attached to an RNA-seq
alignment algorithm. Our implementation allows the user
to utilize his or her preferred aligner and future-proofs the
tool: it can be used to improve the accuracy of any current
or future RNA-seq alignment software that emits its results
in standard BAM format. The tool refines the splice junc-
tion predictions prior to realignment by removing junctions
that experience has shown are likely to be false positives, for
example junctions found only in the end of reads or junc-
tions found within repeat alignments. To improve paired-
end alignment accuracy the reads from each pair are in-
dependently mapped to the genome sequence (genomic in-
dex) and a database of splice junctions (splice junction in-

dex) (Figure 1). An advantage of aligning the reads inde-
pendently to the genome and splice junction index is the
reduction of indexing time, since indexing the reference se-
quence can take a long time while indexing the RNASequel-
generated splice junction database is comparatively fast.
These four alignments can be performed in parallel using
a computational cluster. The genomic and splice junction
database alignments for each read are merged and align-
ments are discarded based on user-configured filtering pa-
rameters. Lastly, we refine paired-end read analysis by val-
idating that each potential read pair alignment falls within
an empirically determined fragment size distribution. This
is in contrast to most spliced alignment methods that con-
sider a read pair concordant if it aligns within a preset dis-
tance.

RNASequel realignment leads to improved alignment accu-
racy

To benchmark RNASequel realignment we tested two dif-
ferent de novo splice junction prediction tools, Tophat2
and STAR with gene model annotations (Tophat2 Ann.
and STAR Ann) and without annotations (Tophat2 and
STAR). The novel splice junctions identified from each of
these tools were used for realignment with RNASequel. We
also compared RNASequel realignment against STAR with
two passes where the splice junctions predicted in the first
pass are used to generate a new index for a second pass
(STAR Two Pass and STAR Ann. Two Pass). Finally, to
benchmark RNASequel without de novo splice junctions
RNASequel was used with gene annotations alone in a sin-
gle pass alignment (Annotation Only). We chose Tophat2
because of its popularity as one of the first RNA-seq align-
ment tools and STAR for its use within the ENCODE
project, its high accuracy and its fast alignment rate (22).
Two 2 × 76 bp simulated datasets used by each dataset have
roughly 3.7 × 107 read pairs (22). The second of the two
simulated datasets was generated with a higher mismatch
(∼3× more), gap (∼5× more) and novel splice junction
rate (1.5× more). Overall, RNASequel improved the num-
ber of reads that perfectly recapitulated the simulated align-
ment; this was especially the case for the second simulated
dataset (Supplementary Tables S1 and S2, Figure 2A and
B). For the first simulated dataset RNASequel alignments
produced the highest number of perfect alignments, ∼90
versus 80–87% for the other methods, however, on the sec-
ond simulated dataset RNASequel identified 12–20% more
perfect alignments. The performance of the algorithms with
and without gene annotations was similar for both sim-
ulated datasets. Finally, Tophat2 had the fewest number
of partial alignments and the highest number of singleton
alignments, likely due to one read in the pair having more
mismatches than Tophat2’s default cutoff. For both simu-
lated datasets RNASequel realignment demonstrated an in-
creased repeat sensitivity, the number of correct alignments
to repetitive elements was typically ∼4× higher for the first
simulated dataset and ∼2× higher for the second dataset.
This improved alignment accuracy is also reflected in re-
gions in both simulated datasets (Supplementary Figures
S1–S4).
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Figure 2. Alignment rates as percentages of the total number of pairs for
the first (A) and second (B) simulated datasets with the indicated alignment
methods. For a description of the alignment types see the benchmarking
methods description.

Realignment to a splice junction database improves spliced
read accuracy

A major challenge for de novo splice junction identification
is that a single pass alignment scheme may incorrectly align
reads with short exonic alignments because the true splice
junction has not been discovered. To mitigate this issue
we applied a filtering scheme to identify and remove false
positives that occurred due to repetitive region mappings,
splice junctions occurring exclusively in the ends of a read
and/or non-canonical splice motifs. To maximize our abil-
ity to align reads across multiple splice junctions we supple-
mented sample-specific splice junction index with groups of
novel and annotated splice junctions that could be spanned
by a single sequencing read. For both simulated datasets,
realignment with RNASequel or STAR with two passes in-
creased the number of perfectly mapped spliced reads by
2–10% (Supplementary Figure S5). When gene annotations
were present the number of perfect alignments increased by
4–10%. This was particularly evident for reads that spanned
multiple splice junctions, which demonstrates the useful-
ness of our splice index alignment (Supplementary Fig-
ure S6). RNASequel realignment had the lowest number
of incorrect spliced alignments and the highest number of
perfect alignments compared to STAR. The rate of incor-
rect alignments was higher when using Tophat2 for de novo
splice junction predictions. This may be due to Tophat2’s
higher false negative rate. The importance of including de
novo splice junctions for alignment is highlighted by exam-
ining RNASequel using only gene annotations which had
the highest number of incorrect spliced reads. The number
of perfect spliced reads was more pronounced for the sec-
ond simulated dataset where the number was increased by
∼10% and the number of failed alignments decreased by 5%
without annotations and 2% with annotations for RNASe-

Figure 3. Alignment characteristics for the second simulated dataset. The
recall and precision as a percentage of the number of correctly aligned
reads for annotated junctions (A), novel junctions (B), insertions (C) and
deletions (D). The alignment algorithms used are indicated according to
the legend and the arrows indicate the improvement by RNASequel and
are colored according to the legend. (E) Receiver-operator curve demon-
strating the relationship of correctly called sequence variants (Y axis) to the
number of falsely called variants (X axis) for each read pair across each of
the alignment methods. Note that the X-axis scale is false positive variant
calls per 100 000 reads.

quel realignment versus STAR with two passes. Overall,
RNASequel realignment had the highest precision for both
annotated and novel splice junctions (Figure 3A and B,
Supplementary Figure S7A and B, Supplementary Tables
S1 and S2). For annotated splice junctions RNASequel re-
alignment had the highest recall for both simulated datasets
and comparable precision. The increase was small for the
first simulated dataset, but 7–30% higher for the second sim-
ulated dataset. As expected, the recall and precision were
highest when gene model annotations were supplied.

For the identification of novel splice junctions, RNASe-
quel had a slightly lower recall rate due to our filtering
scheme, but a ∼3–5% higher precision than STAR for the
first simulated dataset. The slight decrease in recall and the
increase in precision demonstrates the tradeoff when apply-
ing a filtering scheme to novel splice junctions prior to re-
alignment. For the second simulated dataset, RNASequel
realignment increased the recall by 6–23% and the preci-
sion by 2–4%. We examined the false negative splice junc-
tion alignments and observed that majority of them (23–
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60%) were within 15 bp of the 3′ end of the read sequence.
These may have been missed due to the simulated read qual-
ity degradation near the 3′ ends (Supplementary Figures S8
and S9).

In summary, by generating a splice junction database and
mapping the reads with an accurate error-tolerant realign-
ment we have increased the splice junction accuracy, espe-
cially in the case of datasets with high error rates.

RNASequel realignment improves alignments with insertions
and deletions

Gapped alignments are a challenge for RNA-seq alignment.
For example, a higher gap tolerance threshold can result in
additional false positive splice junction predictions by in-
serting a gap to bridge an alignment to an incorrect splice
junction. Furthermore, false positive gaps can be inserted
within an alignment that incorrectly aligns to an intronic se-
quence. To overcome this we have combined RNASequel’s
accurate splice junction indexing strategy with a gap tol-
erant alignment using BWA mem followed by a trimming
of alignments that map to intron sequences. Using this ap-
proach, RNASequel increased the gap recall by ∼20% com-
pared to STAR and Tophat2 (Figure 3C and D, Supplemen-
tary Figure S7C and D, Supplementary Tables S1 and S2).
The insertion precision was comparable between all of the
methods used while the deletion precision after RNASequel
realignment was ∼20–25% higher compared to STAR. For
each of the alignment algorithms the false negatives for in-
sertions and deletions tended to occur in the first and last
10 bp of each read where aligners are more likely to soft clip
the alignment rather than insert a gap (Supplementary Fig-
ures S8 and S9). Intriguingly, STAR alignments produced
a higher percentage of false positive deletions through the
middle of the read compared to Tophat2 and RNASequel
realignment. Tophat2 had a slightly higher false positive
rate near the read ends due to using an underlying global
rather than local alignment algorithm.

The effect of RNASequel’s increased gap tolerance is
to reduce read artifacts such as mismatches and incorrect
splice junction calls due to incorrect gapped alignment.

RNASequel realignment increases mismatch tolerance and
accuracy

High mismatch tolerance for RNA-seq alignment can lead
to an increase in accuracy, but it can also lead to more
false positive splice junction alignments or alignments that
should be spliced but are contiguously aligned into an in-
tron sequence. The RNASequel splice junction filtering step
helps reduce some of these false positives while our attempt
to trim alignments that overlap splice sites near the read
ends reduces many false positives. The simulated datasets
are dominated by alignments with low numbers of mis-
matches and to assess the performance of the tools and
RNASequel on read pairs with high and low levels of mis-
matches, we plotted the number of true positive and false
positive mismatches stratified by the true number of mis-
matches in each read pair (Figure 3E, Supplementary Fig-
ure S7E). RNASequel realignment had the highest mis-
match recall and precision compared to the other tools

(Supplementary Tables S1 and S2). Tophat2 had the low-
est mismatch accuracy due to a low mismatch tolerance by
default. As observed in the splice junction and gap tests, the
majority of the false negative and false positive mismatches
were near the ends of reads, particularly the 3-prime end
of the read (Supplementary Figure S10A and B). This is
due to the higher number of mismatches near the 3-prime
end of the read from the simulated read quality degrada-
tion. It should be noted that we could have improved the
other tools’ accuracy by hand-optimizing their alignment
parameters, but we felt that the default parameters repre-
sented a typical laboratory use case. Furthermore, adjust-
ing the alignment tools mismatch parameters may lead to
undesirable alignment artifacts, for example, a higher false
positive spliced read alignment rate.

RNASequel execution speed and memory requirements

RNASequel realignment is reasonably fast. The splice junc-
tion index generation takes <15 min. The reference and
splice junction alignment steps are dependent on the chosen
alignment tool, for BWA-mem this takes 2–3 h per 100M
reads with 16 threads for the reference alignment and 1
h per 100M reads for the splice junction index alignment.
BWA-mem uses 40GB of memory for both alignment types.
The merge step processes ∼35M pairs per hour with eight
threads and uses 20GB of memory. It should be noted that
all four of the BWA-mem alignments could be parallelized
on a computational cluster decreasing the RNASequel pro-
cessing time substantially. As a comparison STAR pro-
cesses roughly 50M pairs per hour with eight threads and
∼60GB of memory. Tophat2 processes roughly 8M pairs
per hour with eight threads and <20GB of memory.

RNASequel realignment improves alignment characteristics
on biological datasets

Simulated datasets do not capture all of the potential
sources of errors present in a biological RNA-seq library.
For example, there may be reads derived from spurious
transcripts in non-coding regions of the genome such as
pseudogenes. There are also other sequencing errors unique
to a biological dataset such as reverse transcriptase tem-
plate switching (23,24). To compare the alignment accu-
racy of RNASequel to Tophat2 and STAR, we applied our
program to three biological datasets, one derived from a
lymphoblastoid cell line (YH) and two replicates derived
from the lymphoblastoid cell line GM12878 (31,32). The
YH RNA-seq sample used a library that was poly(A) and
ribosomal RNA depleted and was deeply sequenced to a
depth of ∼400M 2 × 90 bp pairs. The GM12878 samples
were sequenced to a depth of ∼100M 2 × 75 bp poly(A) se-
lected pairs. For all three samples RNASequel realignment
lead to the concordant mapping of more read pairs. For
the YH sample, realignment with RNASequel realignment
leads to the concordant mapping of ∼90% of the read pairs
while Tophat2 mapped ∼60% and STAR mapped ∼84%
(Supplementary Figure S12A, Table S3). For GM12878-
1 the paired alignment rates were ∼80% for STAR and
RNASequel while Tophat2 mapped ∼48% (Supplementary
Figure S12B, Table S4). Finally, for the GM1278-2 sample
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RNASequel mapped ∼80% of the pairs, while star mapped
∼70% and Tophat2 mapped ∼45% (Supplementary Figure
S12C, Table S5). In all three of the cases RNASequel iden-
tified 0.3–6% more pairs as repeat mapping compared to
STAR and Tophat2. For the YH dataset STAR with two
passes mapped a similar number of repeat pairs to RNASe-
quel while mapping 2–3 times less for the GM12878-1
dataset. To further investigate the read mapping improve-
ments conferred by RNASequel we compared STAR Ann.
plus RNASequel to STAR Ann. with two passes with an ad-
ditional 25 poly(A) RNA-seq samples from the ENCODE
project (Supplementary Figure S13, Table S6). On average
RNASequel mapped 2.75% more pairs and identified an av-
erage of 5.5% more repeat mapped pairs.

RNASequel realignment attempts to predict whether a
read pair is concordant using the empirically determined
fragment size distribution, splice junction predictions and
gene annotations. To compare the effect of this on paired
alignment we used our fragment size determination algo-
rithm on the alignments produced by STAR and Tophat2
to predict whether the paired alignments have a valid frag-
ment size using the junctions predicted by the tool and gene
annotations. We found that ∼1–2% of the pairs uniquely
mapped by STAR and Tophat2 had a fragment size outside
of the empirical range determined by our algorithm (Sup-
plementary Figure S11). It should be noted that Tophat2
does take advantage of a user-provided fragment size mean
and standard deviation. These numbers were also similar
for repeat alignments where all or a subset of the alignments
had a fragment size that was not within the empirically de-
termined distribution. These represent a small proportion
of the alignments that include cases where the fragment size
was outside of the tail of fragment size cases with missing
splice junction annotations and false positive alignments.
For STAR ∼60–80% for unique pairs and ∼20–40% for re-
peat pairs fall within 50 bp of our confidence interval (data
not shown). However, these alignments can contribute to
artifacts in downstream analysis, especially when identify-
ing variant or RNA editing calls.

RNASequel realignment generates more robust RNA editing
calls

In vertebrates, the ADAR family of enzymes is responsi-
ble for the conversion of adenosine to inosine (A-to-I) in
RNA (33). This type of RNA editing is thought to be used
as a regulatory mechanism (34). In RNA-sequencing, A-
to-I edits manifest either as A-to-G or T-to-C substitu-
tions depending on the strand of the transcript. The iden-
tification of RNA editing sites using RNA-seq is difficult
due to a number of sequencing and alignment artifacts. To
demonstrate the degree to which RNASequel realignment
improves RNA editing calls we compared our realignment
algorithm with Tophat2 and STAR with and without gene
model annotations. The potential nucleotide changes were
then filtered to remove common sources of false positives
including alignments to tandem repeats and changes bi-
ased to the ends of reads. We removed somatic polymor-
phisms (if available) or common polymorphisms in dbSNP
(if genome annotations were not available). Prior to filter-
ing the YH and GM12878 datasets RNAsequel realignment

yielded comparable numbers (+/-1–3%) of A-to-I changes
as STAR and Tophat2 RNASequel yielded 20% more A-to-
I changes for the YH dataset and 8–10% fewer changes for
the GM12878 datasets (Supplementary Figures S14, S15,
S16). For non-A-to-I changes RNASequel yielded 4–11%
fewer changes compared to STAR and 23–40% fewer com-
pared to Tophat2. We also compared the total SNV calls be-
tween STAR Ann. with RNASequel and STAR Ann. with
two passes for 25 additional ENCODE RNA-seq samples.
We found an average decrease in the number of A-to-I calls
by 0.52% and a decrease in non-A-to-I calls by 3.7% (Sup-
plementary Figures S17 and S18). These results suggest that
RNASequel realignment leads to fewer potential false pos-
itives prior to filtering than STAR and Tophat2. These re-
sults are also consistent with our simulated dataset results
that demonstrated the reduction in false positive mismatch
calls facilitated by RNASequel realignment compared to
Tophat2 and STAR.

After filtering potential false positives we observed that
RNASequel and STAR found similar somatic SNV calls
(∼1% difference) (Supplementary Figures S14–S16). For
Tophat2 alignments RNASequel realignment yielded 20–
40% more somatic SNV or dbSNP calls. We also observed
an average 3.1% reduction in dbSNP calls for ENCODE
samples (Supplementary Figures S17 and S18A). For A-to-
I calls we observed a comparable number of changes be-
tween STAR and RNASequel for the YH dataset (∼0.1–
1% increase after realignment) and ∼4–10% fewer changes
for the GM12878 datasets and for Tophat2 alignments
we found 2–3 times as many A-to-I calls. For non-A-to-I
changes we observed a 15–25% decrease in the number of
calls after RNASequel realignment compared to STAR and
a 1.4–3 times as many compared to Tophat2. For the 25 EN-
CODE datasets we found an average of 7.3% fewer A-to-I
changes and 10.4% fewer non-A-to-I changes. Combined
together these results suggest that RNASequel realignment
yields fewer false positive SNV calls compared to STAR due
to RNASequel realignment reducing the number of non-A-
to-I changes. Furthermore, for the YH-1 dataset we found
more somatic SNV’s suggesting an improved false nega-
tive score compared to STAR and Tophat. Tophat2 uses
a global alignment algorithm and low mismatch tolerance
that leads to a higher false negative rate for reads with more
than two mismatches and a higher false positive rate at the
read end for reads with few mismatches. In conclusion, we
feel that RNASequel realignment shows that the false posi-
tive is reduced with minimal effect on the false negative rate.

Finally, to explore the features of RNASequel realign-
ment that leads to improved SNV and RNA editing calls
we assessed the impact of RNASequel’s improved repeat de-
tection and fragment size estimation algorithms. To assess
the impact of repeat mapped reads on calling of RNA edit-
ing sites, we collected the union of pairs that mapped across
any of the variant sites by either the base alignment pro-
gram or the alignment program with RNASequel. Pairs that
were multi-mapped by one tool and uniquely mapped by
the other were discarded and the edit sites were called and
filtered again. To assess the impact of our fragment size de-
termination algorithm on identifying concordant read pairs
we removed uniquely mapped reads that did not have a valid
fragment size as determined by our algorithm. We found
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Figure 4. Comparision of the alignment type between the union of all
reads that support a genomic SNV, dbSNP entry, retained A-to-I change or
retained non-A-to-I change for YH (A) GM12878–1 (B) and GM12878–2
(C). The bar on the left indicates the percentage of alignment types for the
labeled tool, the bar on the right indicates the alignment rate for the tool
with RNASequel realignment. For STAR with two passes, the alignment
rate for RNASequel with STAR as a single pass is used for comparison.

that within the union of alignments RNASequel marked 4–
10% of the reads as multi-mapping, compared to STAR and
Tophat2, which marked ∼1% as multi-mapping with the ex-
ception of STAR with two passes which had 2.7% for the
YH sample (Figure 4, Supplementary Table S7). We also
identified more alignments marked as singleton compared
to STAR (1–10 versus 0%) and fewer than Tophat2 (1–9 ver-
sus 17–35%). For the 25 ENCODE samples we observed an
average of 13% multi-mapped reads with RNASequel ver-
sus 1.3% with STAR with two passes (Supplementary Fig-
ure S19, Table S8). RNASequel realignments mapped more
pairs where 0.6–4% of the reads were unmapped compared
to STAR and Tophat2 where 4–25% of the pairs were un-
mapped. RNASequel also mapped more of the alignments
than STAR for the 25 ENCODE datasets 1 versus 4%. A
portion of the alignments identified by STAR as concordant
pairs were marked as discordant pairs by RNASequel (0.1–
0.8% of the alignments). Tophat2 marked the highest pro-
portion of reads as discordant but this was also the case for
the simulated and full set of reads for the biological datasets.
Finally, our fragment size estimation algorithm identified
∼1% of the reads mapped as unique by STAR or Tophat2 as
being discordant. After removing the alignments that were
marked as unique by STAR and reads marked as discordant
with our fragment size determination algorithm the differ-
ence in the number of calls was lessened or increased in favor
of RNASequel (Supplementary Figures S14–S16 and S18).

For example, the number of non-A-to-I edits is reduced af-
ter removing reads that were uniquely mapped by STAR but
were repeat mapped by RNASequel. Collectively, these re-
sults imply that the improvements in alignment characteris-
tics, particularly increased repeat sensitivity and improved
identification of concordantly mapped read pairs leads to
an improved alignment for the purposes of calling SNVs
and RNA edits.

DISCUSSION

By systematically mitigating common artifacts that oc-
cur during RNA-seq library preparation and alignment,
RNASequel increases the accuracy of splice junction, gap
and mismatch calling while decreasing the false discovery
rate. When applied to the challenging problem of RNA
editing detection, the RNASequel post-processing method
reduces the number of apparent false positives without
adversely affecting sensitivity. We have found that using
RNASequel in combination with STAR provides the best
accuracy metrics. Crucially, we show that despite our higher
error tolerance, we identify fewer non-canonical edits com-
pared to STAR on a biological dataset. This implies that
many potential RNA editing calls are due to systematic
alignment errors that can be mitigated with RNASequel re-
alignment thereby strengthening the interpretation of bio-
logical datasets. STAR is also preferred because it has bet-
ter performance characteristics than Tophat2. RNASequel
realignment is agnostic to the underlying aligners used for
splice junction prediction and contiguous read alignment
leading to an adaptable RNA-seq alignment tool that can
take advantage of new alignment methods. In the future,
we are investigating methods to improve the performance
and disk space usage of RNASequel by calling the under-
lying contiguous aligner as a library. We are also investigat-
ing methods to capture aligned pairs that fall within the tail
of the fragment size distribution to increase the number of
concordantly mapped pairs. The improvements facilitated
by RNASequel realignment are useful for the analysis of
alternative splicing, gene and isoform expression, sequence
variant calling and RNA editing.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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