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Abstract
Research	on	individual	trait	variation	has	gained	much	attention	because	of	its	implica-
tion	for	ecosystem	functions	and	community	ecology.	The	effect	of	individual	varia-
tion	 on	 population	 and	 community	 abundance	 (number	 of	 individuals)	 variation	
remains	 scarcely	 tested.	Using	 two	established	ecological	 scaling	 laws	 (Taylor’s	 law	
and	abundance–size	relationship),	we	derived	a	new	scaling	relationship	between	the	
individual	size	variation	and	spatial	variation	of	abundance.	Tested	against	multi-	plot	
tree	 data	 from	Diaoluo	Mountain	 tropical	 forest	 in	Hainan,	China,	 the	 new	 scaling	
	relationship	showed	that	individual	size	variation	reduced	the	spatial	variation	of	com-
munity	assemblage	abundance,	but	not	of	taxon-	specific	population	abundance.	The	
different	responses	of	community	and	population	to	individual	variation	were		reflected	
by	the	validity	of	the	abundance–size	relationship.	We	tested	and	confirmed	this	scal-
ing	framework	using	two	measures	of	individual	tree	size:	aboveground	biomass	and	
diameter	 at	 breast	 height.	 Using	 delta	 method	 and	 height-	diameter	 allometry,	 we	
	derived	the	analytic	relation	of	scaling	exponents	estimated	under	different	individual	
size	measures.	In	addition,	we	used	multiple	regression	models	to	analyze	the	effect	of	
taxon	richness	on	the	relationship	between	individual	size	variation	and	spatial	varia-
tion	of	population	or	community	abundance,	for	taxon-	specific	and	taxon-	mixed	data,	
respectively.	 This	 work	 offers	 empirical	 evidence	 and	 a	 scaling	 framework	 for	 the	
negative	effect	of	individual	trait	variation	on	spatial	variation	of	plant	community.	It	
has	implications	for	forest	ecosystem	and	management	where	the	role	of	 individual	
variation	 in	 regulating	 population	 or	 community	 spatial	 variation	 is	 important	 but	
understudied.

K E Y W O R D S

aboveground	biomass,	Diaoluo	Mountain,	individual	size	variation,	plant	community,	spatial	
variation,	taxonomy

1  | INTRODUCTION

Ecological	research	concerns	the	functioning	and	interaction	of	char-
acteristics	among	individuals,	populations,	and	communities.	In	partic-
ular,	 population	 ecology	 and	 community	 ecology	 emphasize	 species	

and	 their	differences	and	downplay	 the	 role	of	 individual	variations.	
On	the	other	hand,	individual	trait	variation	has	been	advocated	as	a	
key	variable	 in	 regulating	population	dynamics	and	ecosystem	func-
tions	(Bjørnstad	&	Hansen,	1994;	Bolnick	et	al.,	2011;	Dochtermann	&	
Gienger,	2012).	Forsman	and	Wennersten	(2016)	reviewed	numerous	
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field	and	laboratory	studies	reporting	that	individual	genetic	or	pheno-
typic	variation	enhanced	ecological	performances	of	species	popula-
tions.	Specifically,	they	cited	five	works	documenting	how	individual	
genetic	 variation	 could	 reduce	 population	 fluctuation.	 In	 all	 works	
mentioned	above,	individual	variation	was	used	to	infer	temporal	sta-
bility	of	species	abundance.	The	effect	of	 individual	variation	on	the	
spatial	 variation	 of	 population	 and	 community	 abundance	 is	 under-
studied.	On	the	other	hand,	research	about	the	influence	of	individual	
variation	on	spatial	variation	of	abundance	often	blurs	the	boundary	
between	population	and	community.

Our	goal	here	 is	 to	examine	the	relation	between	 individual	size	
variation	and	spatial	variation	of	abundance	of	 taxon-	specific	popu-
lations	 and	 taxon-	mixed	 community.	 Spatial	 variation	 of	 abundance	
reflects	 species	 adaptation	 to	 heterogeneous	 habitats,	 resource	
acquisition,	 and	 competition	 that	 are	 relevant	 to	 conservation	 and	
human	health,	such	as	in	species	invasion	(Hansen	et	al.,	2013;	Latzka,	
Hansen,	Kornis,	&	Vander	Zanden,	2016)	 and	host-	parasite	 systems	
(Morand	&	Krasnov,	2008).	 Incorporating	 individual	variation	adds	a	
new	 dimension	 to	 the	 studies	 of	 underlying	 mechanisms	 of	 spatial	
variation	of	 abundance.	 For	 example,	 in	 tick-	borne	diseases,	 impact	
of	deer	distribution	on	spatial	variation	of	tick	population	is	one	of	the	
key	areas	in	Lyme	disease	research	(Kilpatrick	et	al.,	2017).	Analysis	of	
variations	 in	 the	diet	 preference,	 parasite	 resistance,	 body	 size,	 and	
other	traits	among	deer	individuals	can	shed	light	on	the	understand-
ing	of	spatial	distribution	of	ticks,	so	that	effective	control	plan	can	be	
designed.

Despite	recognition	of	the	influence	of	individual	size	variation	on	
abundance	variation,	a	theoretical	framework	that	can	account	for	their	
relation	is	still	lacking.	Moreover,	how	individual	variation	affects	the	
spatial	variation	of	community-	level	and	population-	level	abundance	
remains	largely	untested	empirically.	In	this	work,	we	used	two	widely	
tested	ecological	scaling	laws	(i.e.,	Taylor’s	law	and	abundance–size	re-
lationship)	to	derive	analytically	a	new	scaling	relationship	relating	the	
variance	of	individual	size	to	spatial	variance	of	population	or	commu-
nity	abundance	(Xu,	2016).	We	then	tested	empirically	these	existing	
and	new	scaling	patterns	using	 taxon-	specific	 and	 taxon-	mixed	 tree	
data	separately	from	the	Diaoluo	Mountain	tropical	forest	in	Hainan,	
China.	Our	 results	 are	 as	 follows:	 (i)	 Spatial	variation	of	 assemblage	
abundance	was	a	negative	power-	law	function	of	the	 individual	size	
variation	 for	 tree	community,	 as	 confirmed	by	 the	new	scaling	 rela-
tionship;	(ii)	Individual	size	variation	and	spatial	variation	of	abundance	
were	 not	 significantly	 correlated	 for	 taxon-	specific	 populations;	 (iii)	
Power	exponent	of	the	new	scaling	relationship	can	be	predicted	ana-
lytically	using	the	parameter	estimates	of	Taylor’s	law	and	abundance–
size	relationship	for	community-	level	data;	and	(iv)	Allometric	theory	
provided	analytic	insight	into	the	relation	of	scaling	parameters	under	
different	 individual	size	measures.	Based	on	our	findings,	we	specu-
lated	that	taxonomic	variation	 in	resource	acquisition	and	 intertaxo-
nomic	competition	explained	the	observed	discrepancy	in	the	effects	
of	individual	size	variation	on	spatial	variation	of	abundance	between	
population	and	community.

The	 analytic	 derivation	 of	 the	 scaling	 framework	 used	 here	
was	 done	 in	 Xu	 (2016).	 We	 reviewed	 briefly	 Taylor’s	 law	 and	

abundance–size	relationship	as	they	were	the	building	blocks	of	our	
theory.	We	 gave	 historical	 background	 and	 ecological	 interpreta-
tions	 of	 these	 existing	 scaling	 patterns.	Moreover,	we	 elaborated	
on	how	common	variables	 shared	by	 these	patterns	 allowed	 their	
integration,	which	was	used	to	derive	the	relationship	between	indi-
vidual	size	variation	and	spatial	variation	of	abundance	at	population	
and	community	levels.

Taylor’s	law	states	that	the	variance	of	population	abundance	of	a	
single	or	a	group	of	species	is	a	power	function	of	the	mean	population	
abundance	(Taylor,	1961):

Equation	(1)	 (or	 its	 log-	linear	form)	has	been	confirmed	for	thou-
sands	of	biological	 taxa	 (Eisler,	Bartos,	&	Kertész,	2008).	The	power	
exponent	b	of	Taylor’s	law	was	believed	to	contain	species-	specific	in-
formation	about	how	population	aggregates	in	space,	with	larger	b	in-
dicating	higher	degree	of	aggregation.	Despite	numerous	dynamic	and	
spatial	models	have	been	proposed	to	explain	Taylor’s	law	(Anderson,	
Gordon,	Crawley,	&	Hassell,	1982;	Ballantyne,	2005;	Cohen	&	Saitoh,	
2016;	Kilpatrick	&	Ives,	2003;	Shi,	Sandhu,	&	Reddy,	2016),	a	unified	
theory	that	can	account	for	its	presence	in	various	ecological	systems	
is	still	lacking.	Recently	developed	statistical	models	reproduced	suc-
cessfully	 the	 mean–variance	 scaling	 relationship	 (Equation	1),	 but	
failed	to	explain	the	specific	value	of	b	under	biologically	realistic	con-
ditions	(Cohen	&	Xu,	2015;	Xiao,	Locey,	&	White,	2015).	In	Xu	(2016)	
and	 the	current	work,	we	applied	Taylor’s	 law	 to	 individual	 size	and	
hypothesized

We	 called	Equations	(1)	 and	 (2)	 as	 the	Taylor’s	 law	 for	 abundance	
and	 Taylor’s	 law	 for	 individual	 size,	 respectively.	We	 tested	 both	
equations	 using	 taxon-	specific	 and	 taxon-	mixed	 data	 separately.	
We	 further	 tested	 Equation	(2)	 with	 aboveground	 biomass	 (AGB)	
and	diameter	at	breast	height	 (dbh)	as	 the	 individual	size	measure	
separately.

Abundance–size	relationship	manifests	in	many	different	forms,	
with	 two	 particular	 forms	 (local	 size–density	 relationship	 and	
cross-	community	scaling	relationship,	see	White,	Ernest,	Kerkhoff,	
&	 Enquist,	 2007)	 testable	 for	 individuals	 in	 a	 single	 community.	
Specifically,	 local	 size–density	 relationship	 links	average	body	size	
of	a	species	to	its	population	abundance.	It	often	exhibited	weak	or	
triangular	patterns	due	to	taxonomic	differences	in	resource	acqui-
sition	(Brown	&	Maurer,	1987)	or	limited	body	size	variation	within	
single	 taxon	 (Currie,	 1993).	 On	 the	 other	 hand,	 cross-	community	
scaling	relationship	describes	the	assemblage	abundance	of	an	en-
tire	community	as	a	function	of	the	average	body	size	of	all	individ-
uals	within	 the	 community.	The	 commonly	 found	power-	law	 form	
of	 cross-	community	 scaling	 relationship	 reflects	 the	 energy	 parti-
tioning	 among	 individuals	 of	various	 sizes.	A	 power-	law	exponent	
of	minus	 one	 indicated	 energy	 equivalence	within	 the	 community	
(Long	&	Morin,	2005);	however,	 such	observation	was	not	univer-
sal	(Isaac,	Storch,	&	Carbone,	2011).	Here,	we	tested	both	forms	of	

(1)variance of abundance=a(mean abundance)
b, a>0.

(2)variance of individual size= c(mean individual size)
d, c>0.
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the	abundance–size	relationship	using	AGB	and	dbh	as	size	measure	
separately.	 It	 is	worth	noting	 that,	 in	our	empirical	 analysis	 at	 the	
site	scale,	we	used	mean	abundance	per	plot	within	a	site	(for	taxon-	
specific	 and	 taxon-	mixed	 abundance	 separately)	 and	 assumed	 the	
abundance–size	relationship

Abundance–size	 relationship	 (Equation	3)	 linked	 the	 explana-
tory	 variables	 in	 Taylor’s	 law	 for	 abundance	 (“mean	 abundance”	 in	
Equation	1)	and	Taylor’s	law	for	individual	size	(“mean	individual	size”	
in	Equation	2).	Based	on	this	observation	and	simple	algebra,	we	re-
lated	the	response	variables	in	Equations	(1)	and	(2)	as	(see	equation	7	
in	Xu,	2016)

We	 called	 Equation	(4)	 the	 abundance–size	 variance	 relationship.	
The	derived	power-	law	functional	form	and	the	negative	exponent	
(βb/d < 0	as	β	<	0,	b > 0,	and	d > 0)	(last	term	in	Equation	4)	indicated	
that	variance	of	individual	size	and	spatial	variance	of	abundance	are	
negatively	 correlated.	 Our	 analysis	 tested	 the	 power-	law	 form	 of	
the	 abundance–size	variance	 relationship	 and	 compared	 its	 power	
exponent	estimated	 from	data	and	predicted	 from	Equations	(1–3)	
(=βb/d).	 We	 repeated	 this	 analysis	 for	 taxon-	specific	 and	 taxon-	
mixed	data	under	different	individual	size	measures	(AGB	and	dbh)	
separately.

2  | MATERIALS AND METHODS

2.1 | Study site and data

Data	used	for	analysis	were	collected	from	the	Diaoluoshan	(Diaoluo	
Mountain)	tropical	forest	 (18.75°N,	109.87°E),	 located	in	the	south-
east	of	the	Hainan	province,	China	(Figure	1,	Table	1).	The	region	re-
sides	in	a	tropical	maritime	monsoon	climate	zone,	with	rainy	season	
from	May	to	October	and	dry	season	from	November	 to	April.	The	
forest	soil	types	are	mainly	moist,	acidic,	and	mountain	yellow.	Its	an-
nual	average	temperature	is	24.4°C	with	an	average	annual	rainfall	of	
2,180.9	millimeters	(mm).	Diaoluo	Mountain	covers	large	areas	of	pri-
mary	evergreen	forests	and	secondary	forests.	The	secondary	forests	
were	mainly	 recovered	 from	 the	 overlumbered	 areas	 in	 the	 1950s.	
The	average	height	of	the	plant	community	is	10	meters	(m)	with	flat	
crown.

Tree	sampling	was	carried	out	in	15	50	×	50	m	sites	with	different	
latitudes,	slopes,	and	aspects	(direction	that	a	slope	faces,	in	angular	
degree)	in	the	Diaoluo	Mountain	tropical	forest	in	2010	and	2015	sep-
arately.	Each	sampling	site	was	divided	into	25	contiguous	10	×	10	m	
plots.	During	each	year	and	within	each	plot,	individual	trees	with	di-
ameter	at	breast	height	(dbh)	>2	centimeters	(cm)	were	sampled.	One	
sampled	 tree	 from	 each	 plot	was	 selected	 randomly	 and	measured	
by	altimeter	for	its	height	(m).	All	other	sampled	trees	from	the	same	
plot	were	compared	with	this	measured	tree	visually,	and	their	heights	
were	 estimated	 by	 field	 workers.	 For	 each	 sampled	 individual,	 its	
Latin	name,	dbh	(cm),	tree	height	(m),	undercrown	height	(cm),	crown	

(3)mean abundance=α(mean individual size)
β,α>0,β<0.

(4)
variance of abundance= γ (variance of individual size)

η

=
aαb

c
βb

d

(variance of individual size)
βb

d .

F IGURE  1 Geographic	locations	of	15	sampling	sites	(blue	stars)	of	Diaoluo	Mountain	in	Hainan,	China
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diameter	(cm)	from	west	to	east,	and	crown	diameter	(cm)	from	south	
to	north	were	recorded.

To	 analyze	 the	 effect	 of	 individual	 variation	 at	 different	 taxo-
nomic	ranks,	we	classified	each	 individual	tree	 into	species,	genus,	
family,	order,	 and	superorder	 following	 the	Angiosperm	Phylogeny	
Group	 (APG	III	and	APG	IV)	classification	system	(The	Angiosperm	
Phylogeny	 Group,	 2009;	 2016).	 We	 retrieved	 these	 taxonomic	
names	 from	 the	 plant	 database	 Tropicos	 (www.tropicos.org)	 and	
added	them	into	our	raw	data	set.	In	total,	our	data	contained	649	
species,	255	genera,	91	families,	40	orders,	and	11	superorders	of	
tree	taxa.

We	calculated	the	aboveground	biomass	(AGB,	in	g)	of	each	indi-
vidual	from	its	dbh	(cm),	height	(converted	to	cm),	and	wood	density	
(g/cm3)	as

where	0.4	was	the	experimental	 form	factor	 for	 fixed	broadleaf	 for-
ests	 in	Hainan	 (Lin,	1964,	1974).	The	wood	density	of	each	species	
was	obtained	from	the	literature	(Bao	&	Jiang,	1998;	Cheng,	Yang,	&	
Liu,	1992;	Drescher	et	al.,	2016;	IWICAF	(Institute	of	Wood	Industry,	
Chinese	Academy	of	Forestry),	1982;	Jiang,	Cheng,	&	Yin,	2010;	Zhu,	
Shi,	 Fang,	 Liu,	&	Ji,	 2015)	 and	 the	TRY	 trait	 database	 (https://www.
try-db.org/TryWeb/Home.php,	Kattge	et	al.,	2011).	For	species	whose	
wood	density	was	not	available	(54	species),	its	density	was	approxi-
mated	using	that	of	a	species	from	the	same	genus	or	family.	For	ex-
ample,	 the	wood	density	 of	Hopea Chinese	was	 not	 available	 in	 the	
literature	 and	 was	 approximated	 using	 the	 wood	 density	 of	 Vatica 
mangachapoi,	 a	 species	 from	 the	 same	 family	 (Dipterocarpaceae)	 as	
Hopea Chinese.	Three	of	the	54	species	(four	individuals)	were	the	only	
member	 in	 their	 corresponding	 genus	 or	 family	 and	were	 excluded	
from	the	analysis	using	AGB.

The	tree	sample	data	(Table	S1,	available	on	Dryad),	with	14,904	
individuals	 in	 2010	 and	14,658	 individuals	 in	 2015,	were	used	 to	
derive	two	data	sets	for	analysis.	The	first	data	set	 included	all	 in-
dividuals	with	positive	dbh,	positive	height,	positive	wood	density,	
and	 consequently	positive	AGB	estimates.	The	number	of	deleted	
individuals	in	the	first	data	set	was	61	(61/14,904	≈	0.41%)	in	2010	
and	 377	 (377/14,658	≈	2.57%)	 in	 2015.	 The	 second	 data	 set	 in-
cluded	all	 individuals	with	positive	dbh	measurements	 (all	 records	
with	NA	dbh	were	 deleted).	The	 number	 of	 deleted	 individuals	 in	
the	second	data	set	was	14	(14/14,904	≈	0.09%)	in	2010	and	320	
(320/14,658	≈	2.18%)	 in	 2015.	The	discrepancy	 in	 the	 number	 of	
individuals	 between	 the	 two	 data	 sets	 for	 analysis	 was	 because	
some	individuals	(47	in	2010	and	57	in	2015)	in	the	second	data	set	
(with	positive	dbh)	did	not	have	height	or	wood	density	records,	and	
were	 therefore	absent	 from	the	 first	data	set.	 In	a	given	year,	 the	
minimum	number	of	 individuals	 (regardless	of	 taxon)	 in	a	plot	was	
three,	and	the	minimum	number	of	individuals	(regardless	of	taxon)	
in	a	site	was	548.	We	used	the	first	and	second	data	sets	to	test	the	
scaling	relationships	with	AGB	and	dbh	as	individual	size	measure,	
respectively.

2.2 | Community- level analysis using taxon- 
mixed data

We	tested	the	scaling	relationships	(Equations	1–4)	for	taxon-	mixed	
data	in	each	sampling	year.	In	a	given	year,	we	defined	the	plot-	level	
assemblage	abundance	by	tallying	the	number	of	individuals	(regard-
less	of	taxon)	within	each	plot	from	each	site.	We	then	calculated	the	
spatial	mean	and	 the	spatial	variance	of	 the	assemblage	abundance	
across	all	plots	within	each	site.	On	the	other	hand,	we	calculated	the	
mean	and	variance	of	individual	body	size	(using	AGB	and	dbh	sepa-
rately)	across	all	 individuals	 (regardless	of	 taxon)	within	a	site.	Each	

(5)AGB=0.4π

(

dbh

2

)2

×
(

height + 300
)

×(wood density) ,

TABLE  1 Locations	and	characteristics	of	15	sampling	sites	in	the	Diaoluo	mountain	tropical	forest,	Hainan	province,	China

Code Location Latitude Longitude Altitude (m) Slope (%) Aspect (°)

1 Dali	Ridge 18.770 109.936 475 19.816 39.920

2 Xiaomei	Reservoir 18.723 109.947 250 16.984 103.074

3 Back	mountain	of	Beurea	of	retired	staff 18.679 109.931 245 9.297 190.923

4 Shuixin 18.685 109.910 270 7.715 92.386

5 Shuixin	Hydropower	Station 18.698 109.906 395 16.403 85.054

6 Nanxi	Station	Citrus	reticulata	forests 18.672 109.896 255 22.788 186.553

7 Opposite	forest	of	Southxi	Station 18.672 109.893 265 23.708 172.807

8 Baishuikeng	pit 18.675 109.873 515 19.368 228.252

9 Five	kilometer	far	away	from	Baishuikeng	
pit

18.675 109.873 555 23.605 250.980

10 Baishui	Pond 18.711 109.838 640 11.499 223.877

11 Baishui	primary	Forest 18.719 109.847 750 8.566 218.157

12 Dousi	Bridge 18.697 109.878 665 14.679 75.665

13 Yilian	Hydrologic	Station 18.731 109.867 940 12.121 119.932

14 Back	mountain	of	vacation	village 18.733 109.861 1,130 21.561 109.599

15 Big	Diaoluo 18.728 109.891 935 9.620 53.797

http://www.tropicos.org
https://www.try-db.org/TryWeb/Home.php
https://www.try-db.org/TryWeb/Home.php
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of	the	15	sites	was	associated	with	one	quadruple	of	mean	individual	
size,	variance	of	 individual	size,	spatial	mean	abundance,	and	spatial	
variance	of	abundance.

To	test	the	power-	law	patterns	in	Equations	(1–4)	at	the	site	scale,	we	
fitted	each	bivariate	relationship	at	doubly	logarithmic	scale.	For	example,	
when	testing	Taylor’s	law	for	assemblage	abundance,	we	fitted	log(vari-
ance	of	abundance)	as	a	function	of	log(mean	abundance)	across	the	15	
sites	using	least-	squares	linear	regression.	We	fitted	least-	squares	qua-
dratic	regression	to	the	same	data	to	check	if	the	relationship	between	
log(mean	 abundance)	 and	 log(variance	 of	 abundance)	 was	 nonlinear	
(Taylor,	Woiwod,	&	Perry,	1978).

If	 the	 slope	 of	 linear	 regression	was	 significantly	 different	 from	
zero	(95%	confidence	interval	(CI)	did	not	contain	zero)	and	the	qua-
dratic	coefficient	of	quadratic	regression	(e	in	Equation	6)	was	not	sig-
nificantly	 different	 from	 zero	 (95%	CI	 contained	 zero),	 then	Taylor’s	
law	for	assemblage	abundance	was	not	rejected	(Table	2).

In	addition,	we	tested	Taylor’s	law	for	individual	size	(Equation	2)	
and	 abundance–size	 relationship	 (Equation	3)	 at	 the	 plot	 scale.	 In	
Equation	(2),	 mean	 and	 variance	 of	 individual	 size	 (using	 AGB	 and	
dbh	 separately)	were	 calculated	 across	 all	 individuals	 (regardless	 of	
taxon)	within	a	plot.	In	Equation	(3),	mean	abundance	was	replaced	by	
plot-	level	abundance.	Regression	analysis	performed	at	the	site	scale	
was	repeated	at	the	plot	scale	(Table	S2).	Taylor’s	law	for	abundance	
(Equation	1)	 and	 abundance–size	 variance	 relationship	 (Equation	4)	
were	not	testable	at	the	plot	scale,	because	they	involved	variance	of	
abundance	that	can	be	calculated	at	the	site	scale	only.

2.3 | Population- level analysis using taxon- 
specific data

We	 repeated	 the	 above	 analyses	 for	 taxon-	specific	 individuals	 and	
populations	of	each	species,	genus,	family,	order,	and	superorder	sep-
arately.	We	only	tested	each	taxon	with	at	least	five	mean–variance	
pairs	of	abundance	or	individual	size,	at	the	site	and	plot	scale	sepa-
rately.	 The	number	of	 taxa	 tested	 for	 the	 four	 scaling	 relationships	
(Equations	1–4)	 and	 the	 proportion	 of	 nonsignificant	 linear	 regres-
sions,	at	each	combination	of	taxonomic	rank	(species,	genus,	family,	
order,	and	superorder),	individual	size	measure	(AGB	and	dbh),	spatial	
scale	(site	and	plot)	were	listed	in	Table	3	and	Table	S3.	We	calculated	
the	Clopper–Pearson	binomial	95%	CI	(Clopper	&	Pearson,	1934)	of	
these	 proportions	 to	 check	whether	 the	 observed	 significant	 linear	
regression	can	occur	as	random	event.	If	the	95%	CI	contained	0.05,	
then	it	meant	that	those	significant	regressions	occurred	around	5%	
of	the	total	regressions	and	maybe	caused	by	chance	alone.	We	cal-
culated	the	average	of	adjusted	coefficient	of	determination	(adj.	R2)	
per	linear	regression	across	taxa	at	each	taxonomic	rank.	Regression	
statistics	and	plots	can	be	found	in	Tables	S4–S7	and	Figs	S4–S58.

In	addition	to	the	analysis	for	each	taxon	individually,	we	tested	the	
four	scaling	relationships	(Equations	1–4)	using	lumped	taxon-	specific	
means	and	variances	from	all	taxa,	at	each	rank	separately.	For	example,	

at	 the	 species	 rank,	when	 testing	Taylor’s	 law	 for	 individual	 size,	we	
lumped	the	means	and	variances	of	individual	body	size	(in	AGB	or	dbh)	
of	each	species	and	fitted	a	linear	regression	and	a	quadratic	regression	
to	log(variance	of	individual	size)	as	a	function	of	log(mean	individual	
size).	We	also	fitted	a	Loess	function	(Cleveland	&	Devlin,	1988)	to	the	
lumped	data	 to	 detect	 any	 trend.	Regression	 statistics	 and	plots	 for	
lumped	data	can	be	found	in	Tables	S8–S11	and	Figs	S59–S70.

2.4 | Effect of species richness on abundance–size 
variance relationship

To	examine	whether	and	how	species	richness	changes	the	effect	of	
individual	size	variation	on	spatial	variation	of	abundance	of	commu-
nity	 and	population,	we	 added	 species	 richness	 (number	 of	 distinct	
species)	 within	 a	 site	 to	 the	 abundance–size	 variance	 relationship	
(Equation	4),	using	taxon-	mixed	and	taxon-	specific	 (lumped)	data	 (at	
each	taxonomic	rank),	 respectively.	On	doubly	 logarithmic	scale,	we	
modified	Equation	(4)	as

In	Equation	(7),	η	was	the	power	exponent	of	the	abundance–size	
variance	relationship	(Equation	4),	λ	and	μ	quantified,	respectively,	the	
effect	of	species	richness	on	the	intercept	and	slope	of	abundance–
size	 variance	 relationship.	 For	 example,	 if	 μ	 was	 significantly	 larger	
than	zero,	 then	 it	meant	 that	greater	species	 richness	 increased	the	
slope	of	abundance–size	variance	relationship.	We	fitted	Equation	(7)	
using	AGB	and	dbh	as	individual	size	measure	separately.

In	 this	work,	 log	=	log10	 unless	 specified	 otherwise.	 Significance	
level	of	a	hypothesis	test	was	set	at	0.05.	Least-	squares	regressions	
and	confidence	intervals	were	done	in	R	3.4.0	(R	Core	Team	2017).

2.5 | Relation between scaling parameters under 
different size measures

Taylor’s	law	for	individual	size,	abundance–size	relationship,	and	abun-
dance–size	variance	 relationship	 involved	variables	 at	 the	 individual	
level.	 In	 our	 empirical	 analysis,	 each	of	 the	 above	 relationships	was	
tested	with	AGB	and	dbh	as	size	measure	separately.	Using	the	delta	
method	(Cramér,	1946;	Oehlert,	1992),	 the	variance	of	product	for-
mula	 (Goodman	 1960),	 the	 biomass	 equation	 (Equation	5),	 and	 the	
allometry	between	tree	height	and	dbh,	for	each	of	the	three	scaling	
relationships,	we	derived	an	analytic	formula	linking	its	power	expo-
nent	 estimated	 under	 different	 individual	 size	measures.	We	 tested	
our	theory	using	community-	level	data	from	the	Diaoluo	Mountain.

We	analyzed	 the	allometry	between	 tree	height	and	dbh	at	 in-
dividual	 level.	We	fitted	a	least-	square	linear	regression	to	log(indi-
vidual	height)	as	a	function	of	log(individual	dbh)	across	all	sampled	
individuals	 in	 each	 year	 and	 used	 its	 slope	 as	 the	 exponent	 es-
timate	 of	 the	 allometric	 relationship.	 We	 also	 fitted	 a	 quadratic	

(6)
log (variance of abundance) = log (c)+d log (mean abundance)

+e
[

log (mean abundance)
]2

(7)

log (variance of abundance)

= log (γ)+η log (variance of individual size)

+λ (species richness)

+μ
[

log (variance of individual size) :species richness
]
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regression	to	examine	the	curvature	between	log(individual	height)	and	 
log(individual	dbh)	(Figure	2).

3  | RESULTS

3.1 | Taxon- mixed scaling

At	 the	 site	 level,	 power-	law	 pattern	 of	 the	 four	 scaling	 relationships	
(Equations	1–4)	was	confirmed,	under	each	combination	of	year	and	size	
measure.	Specifically,	linear	regressions	fitted	to	Taylor’s	law	for	abun-
dance	 and	 individual	 size	 showed	 significantly	 positive	 slopes;	 linear	
regressions	fitted	to	abundance–size	relationship	and	abundance–size	
variance	 relationship	 showed	 significantly	 negative	 slopes.	Quadratic	
coefficient	of	each	fitted	quadratic	regression	was	not	significantly	dif-
ferent	from	zero	in	any	relationship	(Figure	3	and	Fig.	S2,	Table	2).

Moreover,	empirical	estimates	of	the	power	exponents	of	Taylor’s	
law	for	abundance,	Taylor’s	law	for	individual	size,	and	abundance–size	
relationship	predicted	reasonably	the	power	exponent	of	abundance–
size	 variance	 relationship	 (Equation	4).	 Specifically,	 predicted	 expo-
nent	of	the	abundance–size	variance	relationship	([−0.3947]	×	1.571
8/2.6965	≈	−0.2301	for	AGB	in	2010;	[−0.4317]	×	1.5988/2.7069	≈	
−0.2550	for	AGB	in	2015;	[−1.6799]	×	1.6168/4.1662	≈	−0.6519	for	
dbh	in	2010;	[−1.7336]	×	1.6463/4.2539	≈	−0.6709	for	dbh	in	2015)	
fell	within	the	corresponding	95%	confidence	interval	 (CI)	estimated	
from	data	([−0.4219,	−0.1834]	for	AGB	in	2010;	[−0.4281,	−0.1581]	
for	 AGB	 in	 2015;	 [−1.0602,	 −0.4862]	 for	 dbh	 in	 2010;	 [−1.0313,	
−0.3679]	for	dbh	in	2015)	(Table	2).

At	 the	plot	 scale,	 slope	of	 the	 linear	 regression	 fitted	 to	Taylor’s	
law	for	individual	size	was	significantly	positive,	under	each	combina-
tion	of	year	and	size	measure.	Quadratic	coefficient	of	the	quadratic	

TABLE  3 Proportion	of	significant	linear	regressions	fitted	to	taxon-	specific	data	for	each	of	the	four	scaling	relationships	(Equations	1–4)	at	
the	site	scale,	under	each	combination	of	year,	individual	size	measure,	and	taxonomic	rank	separately.	Numbers	in	each	parenthesis	showed	
the	95%	binomial	confidence	interval	of	the	percentage	of	taxa	with	significant	linear	regression	slopes.	Second	line	in	each	cell	gave	the	
number	of	positive	(+)	and	negative	(−)	linear	relationships,	as	shown	by	the	linear	regressions

Scaling relationship Year
Size 

measure Species Genus Family Order Superorder

Taylor’s	law	for	
individual	size

2010 dbh 67/101	(0.56,	0.75) 
+99,	−2

61/81	(0.64,	0.84)	 
+79,	−2

39/47	(0.69,	0.92)	 
+46,	−1

19/22	(0.65,	0.97)	 
+22,	−0

7/7	(0.59,	1)	 
+7,	−0

AGB 89/101	(0.80,	0.94)	 
+101,	−0

71/81	(0.78,	0.94)	 
+81,	−0

45/47	(0.85,	0.99)	 
+47,	−0

22/22	(0.85,	1)	 
+22,	−0

7/7	(0.59,	1)	 
+7,	−0

2015 dbh 57/98	(0.48,	0.68)	 
+94,	−4

57/79	(0.61,	0.82)	 
+76,	−3

41/47	(0.74,	0.95)	 
+46,	−1

20/22	(0.71,	0.99)	 
	+22,	−0

7/7	(0.59,	1)	 
+7,	−0

AGB 84/99	(0.76,	0.91)	 
+99,	−0

71/80	(0.80,	0.95)	 
+79,	−1

46/47	(0.89,	1)	 
+46,	−1

22/22	(0.85,	1)	 
+22,	−0

7/7	(0.59,	1)	 
+7,	−0

Taylor’s	law	for	
abundance

2010 dbh 40/51	(0.65,	0.89)	 
+49,	−2

50/58	(0.75,	0.94)	 
+57,	−1

37/42	(0.74,	0.96)	 
+41,	−1

19/19	(0.82,	1)	 
+19,	−0

7/7	(0.59,	1)	 
+7,	−0

AGB 40/51	(0.65,	0.89)	 
+49,	−2

50/58	(0.75,	0.94)	 
+57,	−1

37/42	(0.74,	0.96)	 
+41,	−1

19/19	(0.82,	1)	 
+19,	−0

7/7	(0.59,	1)	 
+7,	−0

2015 dbh 35/45	(0.63,	0.89)	 
+44,	−1

45/53	(0.72,	0.93)	 
+53,	−0

37/40	(0.80,	0.98)	 
+40,	−0

19/19	(0.82,	1)	 
+19,	−0

7/7	(0.59,	1)	 
+7,	−0

AGB 35/45	(0.63,	0.89)	 
+44,	−1

45/53	(0.72,	0.93)	 
+53,	−0

37/40	(0.80,	0.98)	 
+40,	−0

19/19	(0.82,	1)	 
+19,	−0

7/7	(0.59,	1)	 
+7,	−0

Abundance–size	
relationship

2010 dbh 3/51	(0.01,	0.16)	 
+20,	−31

2/58	(0.004,	0.12)	 
+26,	−32

6/42	(0.05,	0.29)	 
+19,	−23

3/19	(0.03,	0.40)	 
+7,	−12

4/7	(0.18,	0.90)	 
+0,	−7

AGB 3/51	(0.01,	0.16)	 
+21,	−30

4/58	(0.02,	0.17)	 
25,	−33

7/42	(0.07,	0.31)	 
+17,	−25

4/19	(0.06,	0.46)	 
+8,	−11

3/7	(0.10,	0.82)	 
+1,	−6

2015 dbh 5/45	(0.04,	0.24)	 
+15,	−30

2/53	(0.005,	0.13)	 
+22,	−31

4/40	(0.03,	0.24)	 
+16,	−24

2/19	(0.01,	0.33)	 
+4,	−15

4/7	(0.18,	0.90)	 
+0,	−7

AGB 6/45	(0.05,	0.27)	 
+16,	−29

5/53	(0.03,	0.21)	 
+22,	−31

6/40	(0.06,	0.30)	 
+17,	−23

4/19	(0.06,	0.46)	 
+7,	−12

4/7	(0.18,	0.90)	 
+1,	−6

Abundance–size	
variance	
relationship

2010 dbh 5/51	(0.03,	0.21)	 
+22,	−29

8/58	(0.06,	0.25)	 
+23,	−35

9/42	(0.10,	0.37)	 
+18,	−24

4/19	(0.06,	0.46)	 
+5,	−14

4/7	(0.18,	0.90)	 
+1,	−6

AGB 4/51	(0.02,	0.19)	 
+26,	−25

8/58	(0.06,	0.25)	 
+27,	−31

8/42	(0.09,	0.34)	 
+22,	−20

3/19	(0.03,	0.40)	 
+7,	−12

4/7	(0.18,	0.90)	 
+1,	−6

2015 dbh 4/45	(0.02,	0.21)	 
+20,	−25

6/53	(0.04,	0.23)	 
+21,	−32

7/40	(0.07,	0.33)	 
+17,	−23

3/19	(0.03,	0.40)	 
+6,	−13

4/7	(0.18,	0.90)	 
+1,	−6

AGB 5/45	(0.04,	0.24)	 
+24,	−21

6/53	(0.04,	0.23)	 
+24,	−29

5/40	(0.04,	0.27)	 
+20,	−20

3/19	(0.03,	0.40)	 
+6,	−13

4/7	(0.18,	0.90)	 
+1,	−6
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regression	was	significantly	positive	for	AGB	in	2015	and	significantly	
negative	for	dbh	in	2010.	For	abundance–size	relationship,	under	each	
combination	of	year	and	size	measure,	slope	of	the	fitted	linear	regres-
sion	was	significantly	negative,	and	quadratic	coefficient	of	the	qua-
dratic	regression	was	not	different	from	zero	(Figs	S2	and	S3,	Table	S2).

3.2 | Taxon- specific scaling

At	the	site	scale,	 for	majority	of	taxa	tested	 individually,	 linear	rela-
tionship	between	log(mean	abundance)	(or	log(mean	individual	size))	
and	log(variance	of	abundance)	(or	log(variance	of	individual	size))	was	
significant	and	positive,	regardless	of	sampling	year,	size	measure,	and	

spatial	scale	(Table	3).	This	indicated	that	Taylor’s	law	for	abundance	
and	Taylor’s	 law	 for	 individual	 size	were	 reasonable	models	 for	 the	
corresponding	mean–variance	 relationship.	For	 taxa	with	 significant	
linear	regressions,	across	years	and	taxonomic	ranks,	the	slope	esti-
mates	 ranged	 from	1.07	 to	5.38	 in	Taylor’s	 law	for	abundance,	and	
from	1.15	to	9.62	and	from	1.27	to	10.42	in	Taylor’s	law	for	individual	
size	with	AGB	and	dbh	as	 respective	 size	measure.	Average	adj.	R2 
ranged	from	0.71	to	0.82	in	Taylor’s	law	for	abundance,	and	from	0.78	
to	0.92	and	from	0.50	to	0.75	in	Taylor’s	law	for	individual	size	with	
AGB	and	dbh	as	respective	size	measure	(Tables	S4	and	S6).	On	the	
other	hand,	linear	regression	fitted	to	taxon-	specific	abundance–size	
relationship,	and	abundance–size	variance	relationship	was	significant	

F IGURE  2 Log(individual	height)	
plotted	against	log(individual	dbh)	
across	all	trees	in	(a)	2010	and	(b)	2015	
separately.	Solid	and	dashed	lines	were	
fitted	linear	and	quadratic	regression	
lines,	respectively.	The	linear	regression	
equations	and	parameter	confidence	
intervals	(in	parenthesis)	were	log(individual	
height)	=	0.3980	(0.3929,	0.4032)	+	0.5146	
(0.5085,	0.5207)	×	log(individual	dbh)	in	
2010	and	log(individual	height)	=	0.3890	
(0.3836,	0.3944)	+	0.5199	(0.5137,	
0.5261)	×	log(individual	dbh)	in	2015.	
The	quadratic	regression	equations	
and	parameter	confidence	intervals	
(in	parenthesis)	were	log(individual	
height)	=	0.2590	(0.2457,	0.2723)	+	0.8613	
(0.8300,	0.8926)	×	log(individual	dbh)	−	
0.1919	(−0.2089,	−0.1749)	×	[log(individual	
dbh)]2	in	2010	and	log(individual	
height)	=	0.2392	(0.2251,	0.2533)	+	0.8830	
(0.8507,	0.9152)	×	log(individual	dbh)	−	
0.1960	(−0.2131,	−0.1789)	×	[log(individual	
dbh)]2	in	2015
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F IGURE  3 Four	scaling	relationships	for	taxon-	mixed	data	in	2010	using	(a)	AGB	and	(b)	dbh	as	size	measure	separately,	with	one	circle	per	
site.	Solid	line	and	dashed	line	in	each	panel	were	the	least-	squares	linear	and	quadratic	regression	lines,	respectively.	Regression	statistics	were	
reported	in	Table	2
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with	small	probabilities,	mostly	not	or	only	marginally	different	from	
0.05,	 as	 shown	 by	 the	 95%	 binomial	 confidence	 interval	 (Table	3).	
For	both	relationships,	the	sign	of	fitted	regression	was	neither	uni-
formly	positive	nor	uniformly	negative.	Average	adj.	R2	ranged	from	
0.02	 to	0.34	 and	 from	0.01	 to	0.37	 in	 abundance–size	 relationship	
with	AGB	and	dbh	as	respective	size	measure	and	from	0.04	to	0.34	
and	from	0.04	to	0.35	 in	abundance–size	variance	relationship	with	
AGB	and	dbh	as	respective	size	measure,	across	years	and	taxonomic	
ranks	 (Tables	S4	and	S6).	Analysis	of	Taylor’s	 law	for	 individual	size	
and	abundance–size	relationship	at	the	plot	scale	reached	the	same	
conclusion	(Tables	S3,	S5,	and	S7).

Using	lumped	taxon-	specific	means	and	variances,	under	each	com-
bination	of	year	and	taxonomic	rank,	the	slope	of	linear	regression	was	
significantly	positive	in	Taylor’s	law	for	abundance	and	Taylor’s	law	for	
individual	size,	but	not	significantly	different	from	zero	in	abundance–
size	relationship	and	abundance–size	variance	relationship	at	the	site	
scale,	 agreeing	with	 the	prediction	 from	Equation	(4)	 (βb/d = 0	when	
β	=	0).	Quadratic	 regression	 (Equation	6)	 and	 Loess	 function	 showed	
significant	concavity	on	doubly	logarithmic	scale,	rejecting	the	power-	
law	pattern	in	each	scaling	relationship	(Equations	1–4)	(Tables	S8	and	
S10).	Taylor’s	law	for	individual	size	and	abundance–size	relationship	at	
the	plot	scale	showed	the	same	conclusion	(Tables	S9	and	S11).

3.3 | Species richness has weak effect on abundance 
variation at population and community levels

At	 the	community	 level,	 species	 richness	did	not	show	significant	ef-
fect	on	the	slope	or	the	intercept	of	abundance–size	variance	relation-
ship,	 regardless	of	year	and	size	measure.	Adding	species	 richness	 to	
the	model	 (Equation	7)	made	 the	effect	of	variance	of	 individual	 size	
insignificant	 in	 the	 abundance–size	 variance	 relationship.	Adj.	R2	was	
not	substantially	different	with	or	without	species	richness	in	the	model.

At	the	population	level,	regardless	of	year,	size	measure	and	tax-
onomic	 rank,	 inclusion	 of	 species	 richness	 in	 the	 abundance–size	
variance	 relationship	did	not	 change	 the	observation	 that	 individual	
size	variation	had	no	significant	effect	on	spatial	variation	of	 taxon-	
specific	population	abundance.	 In	 addition,	 species	 richness	did	not	
significantly	change	the	intercept	or	slope	of	abundance–size	variance	
relationship,	nor	did	it	change	substantially	the	adj	R2.

3.4 | Allometric theory links exponents of scaling 
relationship under different individual size measures

We	showed	that,	for	each	of	the	three	scaling	relationships	(Taylor’s	
law	for	individual	size,	abundance–size	relationship,	and	abundance–
size	variance	relationship),	the	power	exponent	estimated	under	dif-
ferent	individual	size	measures	(AGB	and	dbh)	was	related	analytically.	

Specifically,	denoting	 the	power	exponents	of	Taylor’s	 law	 for	 indi-
vidual	 size,	 abundance–size	 relationship,	 and	 abundance–size	 vari-
ance	relationship,	respectively,	as	dAGB,	βAGB,	and	ηAGB	when	AGB	was	
the	size	measure,	and	as	ddbh,	βdbh,	and	ηdbh	when	dbh	was	the	size	
measure,	we	obtained

and

Here g	 is	 the	power-	law	exponent	of	height-	dbh	allometry	esti-
mated	from	linear	regression	(see	Figure	2	legend).	Using	taxon-	mixed	
data	at	 the	site	scale	 in	Diaoluo	Mountain,	we	found	that	dAGB	pre-
dicted	from	Equation	(8)	was	not	significantly	different	from	the	cor-
responding	value	 estimated	 from	data;	 but	βAGB	 and	ηAGB	predicted	
from	Equations	(9)	and	(10),	 respectively,	were	significantly	different	
from	the	corresponding	values	estimated	from	data.	Analytic	deriva-
tions	of	Equations	(8–10)	and	their	empirical	testing	were	detailed	in	
the	Appendix.

4  | DISCUSSION

To	 summarize	 our	 findings	 here,	 we	 used	 Taylor’s	 law	 and	 abun-
dance–size	relationship	to	derive	a	new	scaling	pattern	(called	abun-
dance–size	variance	relationship)	relating	individual	size	variation	to	
spatial	 variation	 of	 abundance.	 The	 power-	law	 scaling	 framework	
was	confirmed	for	taxon-	mixed	plant	communities,	but	not	for	taxon-	
specific	plant	populations,	under	different	spatial	scales	(site	and	plot)	
and	individual	size	measures	(AGB	and	dbh)	separately.	Based	on	our	
theoretical	 framework,	 the	 community-	level	 spatial	 variation	 of	 as-
semblage	 abundance	was	 negatively	 correlated	with	 the	 individual	
size	 variation	 in	 a	 power-	law	 form,	 of	 which	 the	 power	 exponent	
can	be	predicted	from	Taylor’s	law	and	abundance–size	relationship.	
The	lack	of	power-	law	relationship	between	individual	size	variation	
and	 spatial	 variation	 of	 population	 abundance	 can	 be	 attributed	 to	
the	 weak	 abundance–size	 relationship	 for	 taxon-	specific	 popula-
tions.	Species	richness	did	not	change	the	 intercept	or	the	slope	of	
abundance–size	 variance	 relationship,	 regardless	 of	 individual	 size	
measures	 and	 taxonomic	 ranks.	 Negative	 abundance–size	 variance	
relationship	 at	 the	 community	 level	 suggested	 that	 interindividual	
variation	 of	 body	 size	 dampens	 the	 spatial	 variation	 of	 community	
assemblage	abundance.

(8)dAGB≈
2g+ddbh+2

g+2
,

(9)βAGB≈
βdbh

g+2
,

(10)ηAGB≈
ddbh×ηdbh

2g+ddbh+2
.

F IGURE  4 Comparison	of	ranges	of	log(mean	individual	size)	at	the	site	scale	between	taxon-	specific	population	data	and	taxon-	mixed	
community	data,	using	(a)	AGB	and	(b)	dbh	as	size	measure	separately.	Histogram	in	each	panel	showed	the	frequency	distribution	of	the	range	
of	log(mean	individual	size)	per	taxon	at	each	rank	in	2010	(top	row)	and	2015	(bottom	row)	separately.	Dashed	vertical	line	was	the	range	
of	log(mean	individual	size)	for	the	community	data.	Range	was	calculated	as	the	maximum	log(mean	individual	size)	within	a	site	minus	the	
minimum	log(mean	individual	size)	within	a	site	(for	each	taxon	or	regardless	of	taxon)
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A	central	question	arisen	from	our	results	is:	Why	did	the	scaling	
relationships	 (Equations	1–4)	 show	 different	 patterns	 at	 population	
and	community	levels?

A	statistical	reason	may	contribute	to	the	lack	of	negative	power-	
law	 relationship	 between	 taxon-	specific	 mean	 (or	 variance	 of)	 indi-
vidual	size	and	spatial	mean	(or	spatial	variance	of)	abundance.	That	
is,	taxon-	specific	individuals	may	show	limited	size	variation	that	can	
hide	 the	 true	 relationship	 from	 detection.	 However,	 empirical	 evi-
dence	from	the	current	work	was	against	such	claim.	First,	comparison	
of	size	variation	among	taxon-	specific	individuals	(at	each	taxonomic	
rank)	and	among	taxon-	mixed	individuals	did	not	show	substantial	dif-
ference,	regardless	of	year	and	size	measure	(Figure	4),	probably	due	
to	 the	 averaging	 effect	 among	 taxa.	 In	 particular,	 community-	level	
range	of	 log(mean	 individual	size)	 fell	within	the	corresponding	95%	
confidence	 interval	 of	 population-	level	 range	of	 log(mean	 individual	
size)	 (results	not	shown).	Second,	 lumping	 taxon-	specific	means	and	
variances	 across	 taxa	 enlarged	 the	 range	 of	 individual	 size	 and	 its	
variation,	but	failed	to	produce	a	negative	power-	law	relationship	as	
expected	(Figs	S61,	S62,	S64,	S67,	S68,	and	S70).	Biological	mecha-
nisms	must	be	at	work	to	explain	the	observed	discrepancy	between	
population	and	community.

At	 the	 population	 level,	 abundance–size	 relationship	 (and	 abun-
dance–size	 variance	 relationship)	 for	 single	 taxon	 yielded	 different	
signs.	This	may	be	attributed	to	the	taxonomic	variation	 in	resource	
requirement	and	acquisition,	where	positive	relationship	showed	tax-
on’s	ability	of	adapting	to	the	local	habitat	and	exploiting	its	ecological	
niche,	and	negative	relationship	indicated	that	taxon’s	spatial	spread	
was	refrained	by	local	resources.	It	may	also	reflect	the	taxon’s	demo-
graphic	difference	caused	by	high	species	turnover	in	diverse	commu-
nities	 (Allan	et	al.,	2011),	where	positive	 relationship	suggested	 that	
taxon	was	at	its	early	development	of	growth,	and	negative	relation-
ship	suggested	that	taxon	entering	mature	or	old	status	was	regulated	
by	self-	thinning	(Mohler,	Marks,	&	Sprugel,	1978).

The	negative	effect	of	individual	size	variation	on	spatial	variation	
of	 assemblage	 abundance	 at	 the	 community	 level	 can	 be	 explained	
by	 the	 intertaxonomic	 competition	 through	portfolio	effect	 (Bolnick	
et	al.,	2011).	Suppose	the	abundance	of	taxon	i	was	Ni	(i = 1,	2,	…,	S),	
where S	was	the	number	of	taxa	within	the	community.	Then,	accord-
ing	to	the	formula	for	the	variance	of	the	sum	of	correlated	random	
variables,	the	variance	of	assemblage	abundance	N	(=

∑S

i=1
Ni	)	was

Following	our	empirical	result	at	the	population	level,	var(Ni)	was	
independent	of	individual	size	variation.	As	more	taxa	were	included,	
individual	 size	 variation	 increased	 due	 to	 intertaxonomic	 variation,	
and	

∑S

i=1
var

�

Ni

�

	 increased.	On	the	other	hand,	negative	density	co-
variance	 (cov

(

Ni,Nj

)

	 )	 between	 competing	 taxa	 reduced	 the	 overall	
variance	of	assemblage	abundance.	The	negative	power-	law	pattern	
observed	in	the	abundance–size	variance	relationship	at	the	commu-
nity	level	reflected	that	negative	density	dependence	induced	by	inter-
taxonomic	competition	was	stronger	than	the	positive	additive	effect	
of	taxonomic	variation	in	individual	size.

The	analytic	relationship	of	scaling	parameters	estimated	using	
different	size	measures	(AGB	and	dbh)	can	be	derived	for	other	bio-
mass	equations	(Chave	et	al.,	2005).	For	example,	the	general	model	
I	 in	 Chave	 et	al.	 (2005)	 stated	 that	AGB	was	 proportional	 to	 the	
product	of	wood	density,	dbh	squared,	and	height.	Their	model	dif-
fered	from	our	biomass	equation	(Equation	5)	only	in	that	the	former	
did	not	have	the	adjusting	constant	for	height	(300	in	Equation	5).	
This	difference	did	not	alter	the	analytic	formulas	(Equations	8–10)	
or	their	predictions.	This	suggested	that	the	scaling	framework	de-
veloped	here	is	robust	to	the	particular	form	of	biomass	equations	
and	 is	 an	 intrinsic	 property	of	 the	plan	 community.	On	 the	other	
hand,	the	general	model	II	in	Chave	et	al.	(2005)	was	based	on	the	
polynomial	allometric	relationship	between	log(height)	and	log(dbh)	
(Niklas,	 1995).	 Interestingly,	 we	 observed	 similar	 pattern	 in	 the	
height-	dbh	allometry	using	 the	Diaoluo	Mountain	data	 (Figure	2).	
It	is	worth	investigating	the	analytic	relation	of	scaling	parameters	
when	 the	height-	dbh	allometry	deviates	 from	 the	power	 law.	We	
leave	this	possibility	as	a	research	topic	in	the	future.

The	 idea	of	 integrating	established	scaling	patterns	to	create	a	
new	pattern	has	been	proposed	 (Marquet	et	al.,	2005)	and	 tested	
(Cohen,	Xu,	&	Schuster,	2012;	Lagrue,	Poulin,	&	Cohen,	2015)	pre-
viously.	 In	 Cohen	 et	al.	 (2012),	 the	 authors	 used	Taylor’s	 law	 and	
abundance–size	 relationship	 to	 derive	 a	 new	 scaling	 relationship	
between	the	individual	mean	body	mass	and	population	abundance	
variance,	 called	 variance-	mass	 allometry.	 The	 analytic	 difference	
between	variance-	mass	allometry	and	abundance–size	variance	re-
lationship	examined	here	was	elaborated	using	a	conceptual	prob-
ability	distribution	model	 in	Xu	 (2016).	Compared	 to	 the	previous	
meta-	analysis	 (Xu,	 2016),	 the	 current	 work	 provided	 an	 in-	depth	
analysis	 of	 the	 scaling	 relationships	 using	 a	 comprehensive	 plant	
data	set.	The	plot-	site	data	structure	allowed	the	first	empirical	test-
ing	of	a	spatial	abundance–size	variance	relationship	up	to	date.	In	
addition,	we	were	able	to,	for	the	first	time,	compare	the	effects	of	
individual	size	variation	on	spatial	variation	of	abundance	between	
population	and	community	levels.	Findings	from	this	work	improved	
our	understanding	of	the	mechanisms	of	spatial	variation	of	tropical	
plant	 population	 and	 community,	which	 can	 provide	 insights	 into	
the	 management	 and	 conservation	 of	 the	 forest	 biodiversity	 and	
productivity.

5 | DATA ACCESSIBILITY

Diaoluo	Mountain	tree	sample	data	are	available	on	Dryad	 (https://
doi.org/10.5061/dryad.87n81).
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