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Abstract 

Background:  Bronchopulmonary dysplasia (BPD) is one of the most common and serious sequelae of prematurity. 
Prompt diagnosis using prediction tools is crucial for early intervention and prevention of further adverse effects. This 
study aims to develop a BPD-free survival prediction tool based on the concept of the developmental origin of BPD 
with machine learning.

Methods:  Datasets comprising perinatal factors and early postnatal respiratory support were used for initial model 
development, followed by combining the two models into a final ensemble model using logistic regression. Simula‑
tion of clinical scenarios was performed.

Results:  Data from 689 infants were included in the study. We randomly selected data from 80% of infants for 
model development and used the remaining 20% for validation. The performance of the final model was assessed 
by receiver operating characteristics which showed 0.921 (95% CI: 0.899–0.943) and 0.899 (95% CI: 0.848–0.949) for 
the training and the validation datasets, respectively. Simulation data suggests that extubating to CPAP is superior to 
NIPPV in BPD-free survival. Additionally, successful extubation may be defined as no reintubation for 9 days following 
initial extubation.

Conclusions:  Machine learning-based BPD prediction based on perinatal features and respiratory data may have 
clinical applicability to promote early targeted intervention in high-risk infants.
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Background
Bronchopulmonary dysplasia (BPD) was first described 
by Northway et al. in 1967 as a new lung disease of pre-
term infants following respiratory distress syndrome 
[1]. Over the past 50  years since its first characteriza-
tion, medical technology and clinical management have 
evolved. Accordingly, the pathology of BPD evolved from 

primarily necrotic bronchiolitis and fibrotic changes in 
the lung tissues to alveolar simplification in the post-
surfactant era [1, 2]. BPD is associated with long-term 
cardiopulmonary complications as well as neurodevel-
opmental disadvantages, including cerebral palsy, vision 
and hearing deficits, mental and psychomotor impair-
ments [3–9].

Due to how its defined clinically, the diagnosis of BPD 
is rather subjective. Most contemporary practices fol-
low the 2001 NICHD Workshop definition to diagnose 
BPD at 36 weeks postmenstrual age (PMA) [10]. Severity 
stratification was based on the duration of supplemental 
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oxygen and respiratory support use. A revised opera-
tional definition was proposed after the 2016 Workshop 
[11]. In 2019, a systematic approach correlating 18 opera-
tional definitions of BPD with toddler-age respiratory 
and neurodevelopmental outcomes suggested that the 
best way to diagnose and grade BPD was by respiratory 
support mode at 36  weeks PMA. Notably, the extent of 
supplemental oxygen use was not needed [12].

To our knowledge, the concept of a developmental 
origin of BPD was first explicitly mentioned by Thébaud 
et  al. recently in their extensive review article on BPD 
[13]. Indeed, gestational age (GA) is the best predictor 
of BPD [14]. Additionally, genetic factors such as race/
ethnicity and sex also play a role [15–18]. Moreover, 
modifiable perinatal factors such as maternal smoking, 
chorioamnionitis, placental insufficiency, as well as volu-
trauma, barotrauma, oxygen toxicity, and inflammation 
from prolonged mechanical ventilation use have been 
associated with BPD [19–23]. The modifiable factors 
may reflect on the trajectory of respiratory support in 
the early postnatal period. As a result, distinct patterns 
of lung disease based on supplemental oxygen use have 
been characterized as early as the first two weeks of life 
[24, 25]. These early predictors led to the development 
of the BPD outcome estimator using 4 demographic and 
2 respiratory factors which allowed risk stratification at 
six different days of life in the first 4  weeks of life [26, 
27]. After external validation has been performed, the 
predictive power was found to be lacking, with the area 
under the receiver’s operating characteristic curves rang-
ing only between 0.73–0.76 [26, 28, 29]. We and others 
also did not find it particularly useful clinically [30, 31]. 
Center effect likely plays an impactful role, and a cutoff 
probability level needs to be individualized for each unit 
[29, 30, 32].

In recent years, machine learning algorithms have 
become more accessible to clinical researchers. Machine 
learning algorithms are able to detect patterns in data 
that are invisible to the human eye, and it can be used as 
a more appropriate data analysis strategy for multifacto-
rial pathologies such as BPD. In this project, we sought to 
investigate whether perinatal features and the trajectory 
of early-life respiratory support can be used to predict 
BPD-free survival using a machine learning algorithm.

Methods
Study participants
Machine learning-based predictive modeling analyzed a 
retrospective dataset encompassing infants born between 
2013 to 2020 with a birth gestation of 30  weeks 3  days 
or less admitted to the neonatal intensive care unit 
(NICU) at the Loma Linda University Children’s Hos-
pital (LLUCH) or at Riverside University Health System 

(RUHS) [33]. The study was approved by the Institutional 
Review Boards (LLUCH IRB#: 520338; RUHS IRB#: 
1689889) of both institutes with waiver of informed con-
sent due to the retrospective nature of the study. Infants 
without complete data for perinatal and respiratory fea-
tures, those that died in the first 28 days of life (DOL), or 
those that were transferred out of NICU before an assess-
ment for a BPD diagnosis could be made, were excluded. 
Infants with gestation longer than 30 weeks 3 days were 
not included because their risk for BPD were low.

Feature engineering and data extraction
We followed the study by Morrow et al. on the risk analy-
sis of perinatal factors in association with BPD develop-
ment to design perinatal features [18], which included 
assigned sex (female or male), self-reported race/eth-
nicity (White, Black, Hispanic, Asian, or other), birth 
gestation, birth weight category, and maternal smoking 
during pregnancy. For birth gestation, instead of cat-
egorizing based on complete weeks, we used the closest 
gestation in full week for assignment. For example, an 
infant born at gestational age 29 weeks 3 days would be 
assigned to the 29-week category, whereas an infant born 
at gestational age 29 weeks 4 days would be assigned to 
the 30-week category. For birth weight category assign-
ment, we obtained sex- and gestational age-specific birth 
weight percentile using the 2013 Fenton growth charts 
[34]. Infants were then categorized into small (< 10th per-
centile), appropriate (10th-90th percentile), or large (> 90th 
percentile) for gestational age.

For respiratory features, we only included the respira-
tory support modes during model development. Our 
reasoning was that the respiratory support mode should 
reflect the severity, reversibility of illness and respiratory 
maturity levels, noting that it is the only variable strictly 
based on the current physician’s orders. The respira-
tory support modes were classified into five categories: 
(1) high-frequency ventilation (HFV, including high-
frequency jet ventilator or high-frequency oscillator), 
(2) conventional mechanical ventilation (CMV, includ-
ing pressure-control mode, volume-control mode, or 
invasive neurally-adjusted ventilatory assist (NAVA)), 
(3) non-invasive mechanical ventilation (NIMV, defined 
as non-invasive ventilatory mode which provides a peak 
inspiratory pressure, including non-invasive positive 
pressure ventilation (NIPPV) or non-invasive NAVA), (4) 
continuous positive airway pressure (CPAP) or high-flow 
nasal cannula (HFNC), and (5) low-flow nasal cannula 
(LFNC) or no support. Notably, the reason we grouped 
CPAP and HFNC together was that some providers in 
our group had a preference of using HFNC at 8–10 L per 
minute to “mimic” CPAP.
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Perinatal data were extracted from the backend data-
base of the electronic medical records (A.N.). Respira-
tory mode data were available in the daily flowsheets 
documented by the respiratory therapists. These data 
were first extracted from the backend database (A.N.), 
followed by manual curation using a custom web app 
designed specifically for the purpose. Respiratory mode 
data were collected based on the respiratory mode the 
infants were receiving at the end of each 24-h interval 
after birth for 14 consecutive intervals (instead of by cal-
endar dates). Each DOL indicates a 24-h interval, or a 
complete day, throughout the manuscript.

Outcome definition
BPD-free survival outcome was defined as survival 
until at least 36 weeks PMA and no respiratory support 
needs at 36  weeks PMA. Notably, BPD was defined 
based on the 2019 Jensen criteria, meaning that respir-
atory support in the first 28 days of life was not taken 
into consideration for BPD diagnosis [12].

Model training and validation
Supervised machine learning based on the defined out-
come as described above using a random forest algorithm 
was performed on a randomly selected 80% of the com-
plete dataset. The remaining 20% of the data was used for 
internal validation. A random forest algorithm, a deci-
sion tree-based algorithm, was the algorithm of choice 
for this study partly because all features were categori-
cal in nature. Four random-forest models each with 500 
trees planted and a tenfold cross-validation repeated 10 
times were trained using the caret (6.0–89) and ranger 
(0.13.1)packages for R [35–37].

Model 1: perinatal features only
Model 2: Respiratory data from DOL1
Model 3: Respiratory data from DOL1-7
Model 4: Respiratory data from DOL1-14

The probabilities of outcome prediction from the above 
four random-forest models were subsequently used to 
develop additional ensemble models by using a general-
ized logistic regression algorithm:

Model 5: Model 1 and Model 2
Model 6: Model 1 and Model 3
Model 7: Model 1 and Model 4

An interaction term to assess the interaction of prob-
abilities from the two random-forest models was intro-
duced in generalized logistic regression modeling.

Model performance was assessed by the receiver oper-
ating characteristic area under the curve (ROC AUC) as 
well as by overall accuracy, positive predictive value, and 
negative predictive value. Youden’s J statistics was uti-
lized to calculate the optimal cutoff threshold for binary 
outcome prediction (Yes or No for BPD-free survival) 
which was needed in order to obtain the latter perfor-
mance parameters. The pROC(1.18.0) package for R was 
used for these analyses [38]. During the validation pro-
cess using the testing dataset, the same cutoff thresh-
old generated from applying the training dataset to the 
model was applied for each corresponding model.

Simulation
Three scenarios were designed for simulation. The goal 
for the first simulation scenario was to validate the 
model. The goal for the second and the third simulation 
scenarios assessed whether the model could be used to 
answer common clinical questions about BPD.

1.	 Scenario 1

	 In this scenario, we explored if the projection of 
BPD-free survival prediction increased with increas-
ing birth gestation and decreased with longer intu-
bation time following birth. To test, we created 
three sets of simulated patients, each set born at a 
different gestational age (23, 26, and 29 weeks). All 
infants were intubated within DOL1 and placed on 
HFV. Each set contained 5 patients, all extubated at 
a different timepoint (after 1, 3, 6, and 10 complete 
days, or remained intubated for all 14 days). All the 
simulated infants were non-Hispanic White, female, 
appropriate for gestational age, and without in utero 
exposure to smoking.

2.	 Scenario 2
	 In this scenario, there were two sets of appropri-

ate-for-gestational age non-Hispanic White female 
infants born at 26 weeks’ gestation without antena-
tal smoking exposure. The infants were all intubated 
within the first 24 hrs of life and placed on HFV. In 
each set, infants were extubated at different time 
points (after DOL 1, 3, 6, or 10) to either NIMV or 
CPAP/HFNC. This scenario was used to assess the 
differences in BPD-free survival between the two 
non-invasive modes. Of note, the scenario was not 
designed to compare superiority between NIMV vs. 
CPAP/HFNC, and should not be confused with clini-
cal trials.

3.	 Scenario 3
	 In this scenario, a group of appropriate-for-gesta-

tional age, non-Hispanic White, female infants with-
out antenatal smoking exposure were born at 26 
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weeks’ gestation. The infants were intubated by the 
end of DOL1, subsequently extubated to CPAP by 
the end of DOL2, followed by reintubation after vari-
ous periods of time ranging from 1 to 12 complete 
days of extubation. After reintubation, the infant was 
placed on CMV. The control infant did not require 
reintubation. This scenario assessed the duration of 
time needed for the infant to remain extubated in 
order to have comparable BPD-free survival as com-
pared to the control infant.

Statistical analysis
Descriptive statistics were performed for demographic 
comparison. χ2 tests were used for categorical vari-
ables. Student’s t-tests or Mann–Whitney U tests were 
employed for continuous variables. P-value < 0.05 was 
considered statistically significant.

BPD-free survival prediction probabilities were com-
pared by supplying probability as mean and stand-
ard error multiplied by the square root of total trees 
planted (n = 500) as standard deviation using a Welch-
modified two-sample t-test assuming unequal variance. 
P-value < 0.05 was considered as statistically significant.

All analyses were performed at Loma Linda University. 
Only IRB approved study personnel had access to private 
health information.

Results
Out of a total of 1,191 infants who met the gestational 
age criteria, 128 died before 28  days of life and were 
excluded. Among the remaining 1,063 infants, outcome 
data were available for 935 infants, complete data for 
perinatal features were available in 847 infants, and res-
piratory data were available in 689 infants. Perinatal and 
respiratory data from these infants were used in the study 
(Fig.  1). Data from randomly selected 552 (80%) infants 
were used for model training, and data from the remain-
ing 137 (20%) infants were used for validation (Fig.  1). 
Demographic information and the number of infants 
with each respiratory support mode at various DOL are 
summarized in Tables 1 and 2, respectively.

The performances of the random forest and the 
ensemble models were listed in Table 3. Model 1 (peri-
natal features only) had a ROC AUC of 0.861 with 
the training dataset and 0.786 with the testing data-
set. Using the probability cutoff threshold calculated 
for binary outcome prediction based on the training 
dataset (55%), we found positive and negative predic-
tive values to be 0.773 and 0.802, respectively, upon 
model validation with the testing dataset. The ROC 
AUC increased with more respiratory data available 
for training, from 0.724 with only 1 day of data to 0.900 
with all 14 days of data. The ensemble model combining 

perinatal features and all 14  days of respiratory data 
(Model 7) provided the best prediction with ROC AUC 
of 0.921 in the training dataset, and 0.899 in the test-
ing dataset. Using a cutoff threshold of 48.8% for binary 
outcome prediction, the overall predicting accuracy 
was 85.1% and 81.0% in the training and the testing 
dataset, respectively. In the testing dataset, the positive 
predictive value was 0.855 and the negative predictive 
value was 0.773.

Using permutation to assess the relative importance of 
each feature, we found that gestational age was the most 
influential among all perinatal features, followed by birth 
weight z-score, male sex, maternal smoking, and race/
ethnicity in the order of importance (Fig. 2A). For respir-
atory feature, CPAP/HFNC use was the most predictive 
of the outcome (Fig. 2B-D).

It is well established that lower gestational age at birth 
and longer intubation time are associated with higher 
risk of BPD. To confirm these facts in our model, Model 
7 (perinatal features and all 14 days of respiratory data) 
was used to predict the probability of BPD-free survival 
(Scenario 1). As shown in Fig.  3, lower birth gestation 

Fig. 1  A flow chart depicting the selection of study participants
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and longer intubation time were individually associated 
with a reduced probability of BPD-free survival, provid-
ing assurance for the validity of the model.

The model continued to be utilized for further clini-
cal simulations. In scenario 2, we found that extubating 

to NIMV did not lead to a better respiratory prognosis, 
noting that the probability of BPD-free survival remained 
less than 20% even after only one day of intubation fol-
lowing birth, and that no statistically significant differ-
ence was shown between extubation and no extubation. 

Table 1  Demographic characteristics of the study participants

* Comparison between the training and the testing datasets

All Infants (n = 689) Training Dataset 
(n = 552)

Validation Dataset 
(n = 137)

P-value *

Birth gestation in week (mean ± SD) 27.6 ± 2.1 27.6 ± 2.0 27.5 ± 2.1 0.832

Birth weight in gram (mean ± SD) 1,034 ± 334 1,033 ± 333 1,042 ± 352 0.814

Birth weight z-score (mean ± SD) 0.09 ± 0.99 0.07 ± 1.00 0.16 ± 0.97 0.888

Small for gestational age, n (%) 58 (8) 51 (9) 7 (5) 0.765

Female, n (%) 346 (50) 272 (49) 74 (54) 0.107

Maternal smoking, n (%) 64 (9) 52 (9) 12 (9) 0.771

Surfactant within 24 h of life, n (%) 348 (51) 272 (49) 76 (55) 0.216

Race/ethnicity, n (%) 0.161

  White 158 (23) 129 (23) 29 (21)

  Black 107 (16) 83 (15) 24 (18)

  Hispanic 363 (53) 291 (53) 72 (53)

  Asian 36 (5) 25 (5) 11 (8)

  Other 25 (4) 24 (4) 1 (1)

No BPD 352 (51) 282 (51) 70 (51) 0.335

BPD 337 (49) 270 (49) 67 (49) 0.120

  Grade 1 176 (26) 145 (26) 31 (23)

  Grade 2 133 (19) 102 (19) 31 (23)

  Grade 3 or Died 28 (4) 23 (4) 5 (3)

Table 2  A table depicting the number of infants on each indicated respiratory support mode on Day of life 1, 7, and 14

HFV high-frequency ventilation, CMV conventional mechanical ventilation, NIMV non-invasive mechanical ventilation, CPAP continuous positive airway pressure, HFNC 
high-flow nasal cannula, LFNC low-flow nasal cannula, RA room air

Day Respiratory support Training Dataset Testing Dataset

No BPD (n = 282) BPD (n = 270) No BPD (n = 70) BPD (n = 67)

1 HFV 12 35 3 9

CMV 51 132 15 39

NIMV 53 40 16 9

CPAP/HFNC 155 62 34 10

LFNC/RA 11 1 2 0

7 HFV 6 57 2 10

CMV 19 83 5 26

NIMV 16 54 7 18

CPAP/HFNC 203 75 45 13

LFNC/RA 38 1 11 0

14 HFV 3 58 1 12

CMV 12 83 2 26

NIMV 23 52 8 15

CPAP/HFNC 165 73 35 14

LFNC/RA 79 4 24 0
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On the other hand, if an infant were able to maintain ade-
quate respiration on CPAP after extubation, the probabil-
ity of BPD-free survival was significantly higher, although 
the probability decreased with more time spent intubated 
(Fig. 4).

In Scenario 3, we observed that the longer an infant 
remained extubated before reintubation, the higher the 
probability of BPD-free survival (Fig.  5). After staying 
extubated for 9 complete days, there was no statistically 
significant difference in the probabilities of BPD-free sur-
vival between the reintubated infant and the non-reintu-
bated (control) infant.

Discussion
The literature suggests a developmental origin of BPD 
[13, 17, 18, 24, 26, 39–41]. In this study, we expanded 
on this concept to develop a machine learning BPD-free 
survival prediction model. Five non-modifiable perina-
tal factors combined with respiratory support mode data 
from the first 14 days of life were used in this model. The 
five perinatal factors selected for inclusion are based on 
the elegant work of Morrow et al. where biological, social, 
and antenatal exposure determinants were assessed for 
their association with BPD. While sex and race/ethnic-
ity are strictly non-modifiable, the impact of maternal 

smoking, fetal weight gain, and birth gestation are factors 
that may be modifiable from the obstetric standpoint. 
Together, these factors indicate that low lung tissue vol-
ume at birth plays a determinant role in the development 
of BPD. We did not include maternal conditions (chorio-
amnionitis, preeclampsia, prolonged preterm rupture of 
membrane, etc.) or maternal medications (antenatal ster-
oid, magnesium sulfate, antibiotics, etc.) due to inconsist-
ent reliability of the information. Moreover, responses 
to these exposures were expected to be reflected on the 
trajectory of respiratory support mode use, including the 
reversibility of their influences.

For respiratory data, we chose to only include res-
piratory support mode data instead of other respiratory 
parameters such as the fraction of inspired oxygen, oxy-
gen saturation, mean airway pressure, blood gas results, 
etc., because the respiratory support mode is the most 
reliable variable guided by physician orders and is less 
likely to be influenced by clinical subjectivity. Addition-
ally, documentation of respiratory mode change is less 
likely to be associated with errors. Moreover, respiratory 
parameters with normal ranges or goal ranges are not 
useful by themselves because there would not be a clear 
distinction between the two outcomes groups to guide 
prediction. On the other hand, the decision to choose a 

Table 3  A table detailing performance measures for various random forest models predicting bronchopulmonary dysplasia-free 
survival. The training dataset was used for model development. The testing dataset was used for model validation

DOL Day of life, ROC AUC​ receiver operating characteristics area under the curve, CI confidence interval, PPV positive predictive value, NPV negative predictive value
a Based on the cutoff threshold generated using the training dataset

Model ID Data included in model training ROC AUC (95% CI) Cutoff threshold Youden’s J value Accuracy (95% CI) PPV NPV

Training Dataset
  1 Perinatal features only 0.861 (0.831–0.891) 0.550 0.571 0.786 (0.750–0.820) 0.773 0.802

  2 DOL1 respiratory feature 0.724 (0.684–0.764) 0.537 0.395 0.699 (0.659–0.737) 0.680 0.726

  3 DOL1-7 respiratory features 0.866 (0.836–0.896) 0.341 0.618 0.808 (0.773–0.840) 0.849 0.773

  4 DOL1-14 respiratory features 0.900 (0.875–0.926) 0.510 0.676 0.839 (0.805–0.869) 0.816 0.866

  5 Ensemble of Models 1 & 2 0.875 (0.847–0.904) 0.521 0.624 0.812 (0.776–0.843) 0.827 0.796

  6 Ensemble of Models 1 & 3 0.911 (0.887–0.934) 0.494 0.662 0.832 (0.798–0.862) 0.829 0.834

  7 Ensemble of Models 1 & 4 0.921 (0.899–0.943) 0.488 0.702 0.851 (0.819–0.880) 0.850 0.853

Testing Dataset
  1 Perinatal features only 0.841 (0.774–0.908) 0.550a 0.507a 0.752 (0.671–0.822) a 0.810a 0.709a

  5 Ensemble of Models 1 & 2 0.867 (0.806–0.928) 0.521a 0.576a 0.788 (0.710–0.853) a 0.789a 0.788a

  6 Ensemble of Models 1 & 3 0.884 (0.827–0.940) 0.494a 0.622a 0.810 (0.734–0.872) a 0.844a 0.781a

  7 Ensemble of Models 1 & 4 0.899 (0.848–0.949) 0.488a 0.623a 0.810 (0.734–0.872) a 0.855a 0.773a

Fig. 2  Feature importance scores for A Model 1 – five perinatal features, B Model 2—respiratory model data for day of life 1, C Model 3 – respiratory 
model data for day of life 1–7, and D Model 4 – respiratory model data for day of life 1–14. Feature importance scores were calculated based on 
permuting the values of the indicated feature followed by re-building the model and calculating the decrease in prediction accuracy. The scores 
were normalized between 0 and 100, with 0 being least important, and 100 being most important. The scores were obtained by running the 
varImp() function from the caret package

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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respiratory support mode over another is heavily influ-
enced by local respiratory protocols. Consequently, a 
model developed with local data may not be as easily 
generalizable. It is important to note that  the study was 
not designed to assess the superiority of one specific res-
piratory mode over another within the same group.

The most well-developed and widely used prediction 
tool for BPD is the NICHD Neonatal Bronchopulmonary 

Dysplasia Outcome Estimator [27]. The model was devel-
oped with data from 2,415 infants that underwent inter-
nal and external validation with additional 1,214 and 722 
infants, respectively, during development [26]. The model 
was further validated by two additional study cohorts 
(PreVILIG and PREMILOC), both showing fair discrimi-
nation [28, 29]. We and others showed that the Estima-
tor performed well in predicting death or severe BPD [30, 

Fig. 3  BPD-free survival probabilities of female, appropriate for gestational age, white, antenatally non-smoking exposed infants born at 23, 26, 
and 29 weeks of gestation intubated at birth for indicated periods. The error bars indicate standard errors of the probabilities. This plot depicts the 
simulated results from Scenario 1 (see text)

Fig. 4  BPD-free survival probabilities of female, appropriate for gestational age, white, antenatally non-smoking exposed infants born at 26 weeks 
of gestation intubated at birth for the indicated periods followed by extubating to either continuous positive airway pressure (CPAP)/high-flow 
nasal cannula (HFNC) or to non-invasive positive pressure ventilation (NIPPV)/non-invasive neurally adjusted ventilatory assist (nNAVA). The error 
bars indicate standard errors of the probabilities. This plot depicts the simulated results from Scenario 2 (see text)
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31]. Unfortunately, the Estimator does have limitations 
as it does not have an option for infants of Asian descent 
nor an option for NIMV. One model was developed for 
each DOL which does not take into consideration time 
as a continuous factor. In their assessment, demographic 
factors play a more crucial role during the early days of 
life, which they justified based on a sequential addition of 
variables and the related ROC AUC values. Notably, this 
method has trouble assessing the contribution of respira-
tory trajectories to BPD risks across days of life because 
different models were built for each DOL.

In our design, we separated perinatal factors and res-
piratory data into two models during initial training. We 
combined the two models into a final ensemble model 
to ensure both perinatal and respiratory features were 
taken into consideration with equal weight. By taking 
this approach, the final model does not add more weight 
on the respiratory data for prediction. From the clinical 
standpoint, this approach not only provided us with an 
opportunity to assess the developmental origin of bron-
chopulmonary dysplasia, but will also allow us to assess 
BPD risks at four time points: at birth, at the end of the 
first 24  h, as well as at 7 and 14 complete days of life. 
The most appropriate model for risk stratification can 
be picked for use in future studies comparing efficacy 
of interventional therapies to prevent BPD development 
depending on the timing of the intervention. Although 
there is not an easily accessible and suitable algorithm 
in classic machine learning which considers repeated 

measurement in a way that is reminiscent of mixed-
modeling, we felt that using a decision tree-based algo-
rithm on a dataset with each DOL as one feature allows 
the model to assess the interrelationship of respiratory 
support modes across all days of life for each infant. This 
serves as an alternative approach to assessing changes in 
respiratory support mode over time.

The lack of improvement in BPD-free survival in 
infants extubated to a NIMV mode was unexpected 
(Scenario 2). Notably, more than 80% of the infants 
receiving NIMV received unsynchronized NIPPV 
instead of non-invasive NAVA. A multi-center pro-
spective trial comparing NIPPV and CPAP use in 
infants born < 1,000  g (about 2.2 lbs), and < 30  weeks’ 
gestation showed no difference in the risks of BPD-free 
survival [42]. A subgroup analysis showed no differ-
ence in BPD risks among infants with prior intubation. 
The use of NIPPV did not appear to provide benefit for 
preventing subsequent reintubation which occurred in 
about 60% of the infants in both groups. The severity of 
illness from morbidities or comorbidities of prematu-
rity did not differ between the two groups. These find-
ings were different from other trials which assessed 
the early use of NIPPV compared to CPAP in infants 
born at a later gestational age, which showed reduced 
intubation needs and a lower risk of BPD [43–45]. A 
Cochrane review also found no difference in BPD risks 
between NIPPV and CPAP use [46]. In the input data 
for model training, we observed a higher percentage 

Fig. 5  BPD-free survival probabilities of female, appropriate for gestational age, white, antenatally non-smoking exposed infants born at 26 weeks 
of gestation intubated at birth for one full day, followed by extubation between day of life 1 and 2, and reintubation following the indicated periods 
of time. In the control infant, there was no reintubation. Statistical comparison of the probability of BPD-free survival was made between the control 
infant and each of the infants who were reintubated individually using Student’s t-test. The asterisk sign (*) indicates p-value < 0.05. The error bars 
indicate standard errors of the probabilities. This plot depicts the simulated results from Scenario 3 (see text)
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of infants without BPD who received CPAP/HFNC 
rather than NIMV (the majority received NIPPV) or 
an invasive ventilatory mode. Clinically, sicker infants 
were more likely to require longer NIMV support due 
to unreliable respiratory drives in order to avoid intu-
bation/reintubation. Our model reflected that, which 
was different from the above-mentioned randomized 
controlled trial. Interestingly, a recent meta-analysis 
on mixed treatment comparisons found that surfactant 
administration followed by CPAP use provided supe-
rior respiratory outcomes to NIPPV use [47]. In clini-
cal practice, it would be reasonable to trial CPAP with 
early use of pharmacological intervention to prevent 
apnea of prematurity on infants who are able to sus-
tain a reliable respiratory drive, and reserve NIPPV to 
those infants who require artificial breath.

Prolonged intubation may be associated with baro-
trauma and volutrauma, while invasive ventilation 
may be necessary in poor pulmonary compliance or 
intolerance of non-invasive support. In the literature, 
extubation failure in preterm infants was inconsist-
ently defined as reintubation between 48 h and 7 days 
[48–51]. Reintubation may be associated with respira-
tory setback, leaving us with the question of whether 
the interval between first extubation and reintubation 
conveys any significance in influencing long-term res-
piratory outcomes. Our prediction model provided an 
objective way of assessing what constitutes as the best 
definition for “successful extubation” (Scenario 3). We 
explored this by comparing the probability of BPD-
free survival to a control simulated infant who did not 
require reintubation after initial extubation. Based on 
our simulation using BPD-free survival probability as 
outcome correlation, the duration required to maintain 
extubated is at least 48  h longer than the definitions 
used in most studies.

One major drawback of our model is that the source 
of the data was from infants cared for by the same 
group of neonatologists, so the study was considered as 
a single-center study, making external application of the 
model difficult. Nonetheless, studies have already sug-
gested a strong influence of center effect on BPD rate 
and predictability [29, 32]. Plus, the goal of a prediction 
model is different from that of a statistical model. A 
prediction tool may be considered useful if it provides 
a reasonable balance between bias and variance, and 
is generalizable to a target population (e.g., preterm 
infants receiving care in one NICU or by one group of 
neonatal providers). Additional limitation of our pre-
diction model was binary prediction of BPD-free sur-
vival, rather than prediction of BPD grade or severity. 
Also, the definition of BPD remained operational and 
subjective, affecting the accuracy of outcome labeling.

Conclusions
In conclusion, we developed a prediction tool for BPD-
free survival based on the developmental origin of BPD. 
The predictability of BPD using early-life predictors pro-
vides an opportunity for personalized early intervention 
targeting only the at-risk subpopulation to minimize 
potential harm to the low-risk group. Moreover, the abil-
ity to simulate respiratory support use provides clinicians 
an objective way of assessment for an optimal respiratory 
support mode to endow actual benefit to the infant. A 
web app created to demonstrate the use of the prediction 
tool developed in this study is accessible at https://​neost​
at.​shiny​apps.​io/​Resp_​Mode_​ML/.
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