
MOLECULAR CANCER THERAPEUTICS | TARGETING DRUG RESISTANCE

Overcoming Gemcitabine Resistance in Pancreatic
Cancer Using the BCL-XL–Specific Degrader DT2216
Dinesh Thummuri1, Sajid Khan1, Patrick W. Underwood2, Peiyi Zhang3, Janet Wiegand1, Xuan Zhang3,
Vivekananda Budamagunta1, Amin Sobh4, Abderrahmane Tagmount4, Alexander Loguinov4,
Andrea N. Riner2, Ashwin S. Akki5, Elizabeth Williamson6, Robert Hromas6, Christopher D. Vulpe4,
Guangrong Zheng3, Jose G. Trevino2,7, and Daohong Zhou1

ABSTRACT
◥

Pancreatic cancer is the third most common cause of cancer-
related deaths in the United States. Although gemcitabine is the
standard of care formost patients with pancreatic cancer, its efficacy
is limited by the development of resistance. This resistance may be
attributable to the evasion of apoptosis caused by the overexpression
of BCL-2 family antiapoptotic proteins. In this study, we investi-
gated the role of BCL-XL in gemcitabine resistance to identify a
combination therapy tomore effectively treat pancreatic cancer.We
used CRISPR-Cas9 screening to identify the key genes involved in
gemcitabine resistance in pancreatic cancer. Pancreatic cancer cell
dependencies on different BCL-2 family proteins and the efficacy of
the combination of gemcitabine and DT2216 (a BCL-XL proteolysis
targeting chimera or PROTAC) were determined by MTS,
Annexin-V/PI, colony formation, and 3D tumor spheroid assays.

The therapeutic efficacy of the combination was investigated in
several patient-derived xenograft (PDX) mouse models of pancre-
atic cancer. We identified BCL-XL as a key mediator of gemcitabine
resistance. The combination of gemcitabine and DT2216 synergis-
tically induced cell death in multiple pancreatic cancer cell lines
in vitro. In vivo, the combination significantly inhibited tumor
growth and prolonged the survival of tumor-bearing mice com-
pared with the individual agents in pancreatic cancer PDX models.
Their synergistic antitumor activity is attributable to DT2216-
induced degradation of BCL-XL and concomitant suppression of
MCL-1 by gemcitabine. Our results suggest that DT2216-mediated
BCL-XL degradation augments the antitumor activity of gemcita-
bine and their combination could be more effective for pancreatic
cancer treatment.

Introduction
Pancreatic cancer is one of the most aggressive human cancers with

a 5-year survival rate of approximately 9% and a median survival of
<11 months in the United States (1–3). It is the third most common
cause of cancer-related deaths. Gemcitabine, a deoxycytidine analogue
that inhibits DNA replication, is currently the first-line standard of
care chemotherapy for pancreatic cancer. Unfortunately, the thera-
peutic efficacy of gemcitabine is limited by the innate and acquired
resistance leading to treatment failure and recurrent disease in most
patients (4–7). Although FOLFIRINOX (a combination of 5-fluoro-

uracil, leucovorin, irinotecan, and oxaliplatin) treatment has increased
the survival of patients with high-grade pancreatic cancer compared
with gemcitabine, it is associated with increased toxicities and a
decreased quality of life (8, 9). Therefore, the identification of the
molecular basis of gemcitabine resistance and developing rational
combination therapies that canmore effectively treat pancreatic cancer
are of a critically unmet medical need.

BCL-2 family antiapoptotic proteins (BCL-2, BCL-XL, andMCL-1)
are involved in cancer progression and resistance to chemotherapy and
radiation. Among these antiapoptotic proteins, BCL-XL plays a crucial
role in pancreatic cancer (5, 10, 11). Previous reports have shown that
in pancreas-specific KRASG12D mice, BCL-XL expression was gradu-
ally increased during the progression of pancreatic intraepithelial
neoplasia (PanIN) to pancreatic ductal adenocarcinoma (PDAC;
ref. 12). Another study showed that tumor tissues from approximately
90% of patients with pancreatic cancer expressed increased levels of
BCL-XL (13). These high levels of BCL-XL in pancreatic cancer have
been shown to be associated with gemcitabine resistance; therefore,
BCL-XL inhibition sensitizes pancreatic cancer cells to gemcitabine
treatment (14–17). Unfortunately, the direct targeting of BCL-XL with
a conventional small-molecule inhibitor is not a clinically viable
approach due to the on-target and dose-limiting thrombocytopenia
caused by BCL-XL inhibition in platelets (18, 19). Recently, using
emerging Proteolysis Targeting Chimera (PROTAC) technology, we
successfully converted ABT263 (a BCL-XL/2 inhibitor) into DT2216, a
platelet-sparing BCL-XL-selective PROTAC that targets BCL-XL to the
Von Hippel-Lindau (VHL) E3 ligase for ubiquitination and proteasomal
degradation (20). DT2216 has shown promising antitumor activities in
BCL-XL–dependent hematologicmalignancieswhenused as single-agent
therapy and inmultiple solid tumors when combined with conventional
chemotherapy (20–22). Therefore, it has recently been authorized as an
investigational new drug for dose-finding clinical trials by the FDA
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(NCT04886622). The lack of single-agent efficacy of DT2216 in solid
tumors is mainly due to redundant expression of BCL-2, BCL-XL, and
MCL-1 in these tumors, whichmakes them codependent on two ormore
of these proteins (23–26). This is because the interaction of proapoptotic
proteins (e.g., BIM)withmultiple partnersmay lead to these proapoptotic
proteins switching interaction between different antiapoptotic proteins
upon single inhibitor treatment. For instance, the displacement of BIM
from BCL-XL and BCL-2 by ABT263 treatment led to its increased
association with MCL-1 (27, 28). These findings underscore the
importance of cotargeting multiple antiapoptotic BCL-2 proteins for
effective antitumor therapy.

To identify druggable genes important to and commonly involved
in the development of gemcitabine, 5-fluorouracil (5FU), and nira-
parib resistance in pancreatic cell lines, we conducted CRISPR screen-
ing using a custom library targeting drug targets, termed the Thera-
peutic Genome (RxG) Library. We found the BCL2L1 gene that
encodes BCL-XL is important in providing resistance to these three
agents.We selected gemcitabine to study in combination withDT2216
against various established and primary pancreatic cancer cells in vitro
and in vivo in a xenograft mouse model, as well as in patient-derived
xenograft (PDX) mouse models. We observed that the DT2216–
gemcitabine combination synergistically kills various pancreatic can-
cer cells in vitro.More importantly, the combination was found to be
more effective than the individual agents at inhibiting tumor growth
and increasing the survival of the mice without causing any significant
normal tissue toxicities. Our mechanistic investigation revealed that
the downregulation of MCL-1 by gemcitabine coupled with BCL-XL

degradation by DT2216 are implicated in their synergistic activity.
Collectively, our results suggest that the combination of gemcitabine
and DT2216 can synergistically suppress pancreatic tumor growth,
and therefore, may reduce resistance to gemcitabine.

Materials and Methods
Cell culture

AsPC-1 (catalogNo. CRL-1682), BxPC3 (catalogNo. CRL-1687),Mia
PaCa2 (catalog No. CRL-1420), and PANC-1 (catalog No. CRL-1469)
humanpancreatic cancer cell lineswere purchased from theATCC.G-46
and G-68 patient-derived primary pancreatic cancer cell lines were
established, characterized, and authenticated using methods described
previously (29, 30). PANC-1 and Mia PaCa2 cells were cultured in
DMEM (catalog No. 12430054, Thermo Fisher Scientific). AsPC-1 and
BxPC3 cells were cultured in RPMI medium (catalog No. 22400–089,
ThermoFisher Scientific).G-46 andG-68 cells were cultured in advanced
DMEM medium (catalog No. 12430054, Thermo Fisher Scientific). All
the cell lines were cryopreserved from early passages and were cultured
for no more than 12 passages following thawing. Cell lines were authen-
ticated prior to use by short tandem repeat (STR) profiling. Cultures were
confirmed forMycoplasma negativity using the MycoAlert Mycoplasma
Detection Kit (catalog No. LT07–318, Lonza). All culture mediums were
supplemented with 10% heat-inactivated FBS (catalog No. S11150H,
Atlanta Biologicals), 100U/mL penicillin and 100mg/mL streptomycin
(Pen-Strep, catalog No. 15140122, Thermo Fisher Scientific). All the cell
lines were maintained in a humidified incubator at 37� C and 5% CO2.

Chemical compounds
DT2216 was synthesized in Dr. Guangrong Zheng’s laboratory

(University of Florida, Gainesville, FL) according to the previously
described protocol (20). Gemcitabine (catalog No. S1714), 5FU (catalog
No. S1209), niraparib (catalog No. S2741), A1155463 (catalog No.
S7800), ABT199 (catalog No. S8048), S63845 (catalog No. S8383), and

ABT263 (catalog No. S1001) were purchased from SelleckChem. All
the compounds were dissolved in DMSO at 10 mmol/L stock solution
for in vitro assays.

CRISPR screening using the therapeutic genome (RxG) library
Briefly, we designed a custom sgRNA library, the RxG library,

targeting 996 genes for which therapeutic interventions have been
identified (Supplementary Methods and Supplementary Excel File).
We carried out CRISPR screens with the RxG library in theAsPC-1 cell
line to identify candidate genes, which when targeted for disruption
modulate sensitivity to three chemotherapeutics, gemcitabine, 5FU,
and niraparib. Each screen was carried out in triplicate (IC30-IC50 of
each drug) for 16 days (T16D) at approximately 500X library coverage.
Triplicate puromycin selected samples (T0 PURO) prior to exposure
without treatment were collected as controls. Cells from each screen
were harvested, genomic DNA prepared, sgRNAs amplified, and
quantified by next-generation sequencing (NGS). MAGeCK, which
utilizes a-RRA (Robust Ranking Algorithm) to rank candidate genes,
was used to identify candidate genes for which the corresponding
sgRNAs showed significantly altered distribution between treated and
T0 PURO control samples (31). Additional details are provided in the
Supplementary Methods, and the CRISPR screening raw data are
accessible at Dryad (https://doi.org/10.5061/dryad.m905qfv22).

Animal studies
NOD-scid IL2Rgammanull (NSG) mice aged 5 to 6 weeks were

purchased from The Jackson Laboratory (Stock No. 005557). The mice
were allowed to acclimatize for 1 week. Animals were housed in the
Association for Assessment and Accreditation of Laboratory Animal
Care (AAALAC)-accredited animal facilities at the University of Florida
under pathogen-free conditions. All animals received food and water ad
libitum. G-68 PDX cells at 5 � 106 per mouse in 50% Matrigel (catalog
No. 356237, Corning) in PBS were injected subcutaneously (s.c.) into the
right flank region of the NSG mice (30). Pancreatic cancer PDX models
(G192-p4, G176-p4, and LM12-p3) were established and characterized
by Dr. Trevino at the University of Florida, and were propagated inNSG
mice as reported previously (32). The tumors were harvested after they
reached 1,500 mm3, cut into 2-mm fragments, and were implanted
subcutaneouslyafter submerginginMatrigel inadditionalNSGmice (32).
Tumor size was measured twice a week with digital calipers, and tumor
volume was calculated using the formula (length�width2�0.5) as
described previously (20). The animals were randomized into different
treatment groups when the tumors reached 100 to 200 mm3. Animals
were treated with vehicle, gemcitabine [20 mg/kg, once a week (every 7
days), i.p.], DT2216 [15 mg/kg, every 4 days, i.p.] and a combination of
gemcitabine and DT2216. Gemcitabine was dissolved in normal saline,
andDT2216was formulated in50%phosal 50PG, 45%miglyol 810Nand
5% polysorbate 80. They were administered in 100 mL of vehicle (saline
for gemcitabine and 50% phosal 50 PG, 45% miglyol 810N, and 5%
polysorbate 80 forDT2216) permouse.DT2216 treatmentwas initiated 2
days before gemcitabine treatment and continued as described previ-
ously.Micewere euthanizedwhen they becamemoribund, or their tumor
sizes reached humane endpoint as per Institutional Animal Care andUse
Committee (IACUC) policy. For euthanasia, animals were sacrificed by
CO2 suffocation followed by cervical dislocation. The tumors were
subsequently harvested, fixed in buffered formalin, and processed for
histopathology.

Study approval
Animal procedures were performed in accordance with the rules of

IACUC at the University of Florida. The primary human pancreatic
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cancer G-68 and G-46 cell lines and G192-p4, LM12-p3 and G176-p4
human pancreatic cancer PDXs were generated from deidentified
tissues collected from patients. Informed written consent for the
collection, and use of the tissues for research was obtained from all
patients, and the use of these patient-derived cells and tissues for this
study was approved by the University of Florida Institutional Review
Board.

Statistical analysis
For analysis of the means of three or more groups, ANOVA tests

were performed. In the event that ANOVA justified post hoc compar-
isons between group means, the comparisons were conducted using
Tukey multiple-comparisons test. A two-sided unpaired Student t test
was used for comparisons between themeans of two groups. Apoptosis
and spheroid assays statistical analyses were done by two-way
ANOVA with Tukey post hoc test. A Kaplan–Meier test was used for
the survival analysis, and the data were statistically analyzed using the
log-rank (Mantel–Cox) test. P < 0.05 was considered to be statistically
significant.

All other methods are described in Supplementary Information due
to space limitation.

Results
CRISPR screening with the RxG library found that targeting of
BCL2L1 increases sensitivity of AsPC-1 cells to gemcitabine,
5FU, and niraparib

We constructed the RxG library, which targets 996 human
target genes for which a pharmaceutical modulator had been
identified (Supplementary Methods; Supplementary Tables S1 and
S2). We carried out CRISPR screening in AsPC-1 pancreatic

cancer cells using the RxG library to identify druggable genes
that modulate sensitivity/resistance of AsPC-1 cells to gemcita-
bine, 5FU, and niraparib. (Fig. 1A). Briefly, AsPC-1 cells were
transduced with the RxG library, puromycin selected (T0 PURO),
and exposed to DMSO (vehicle), gemcitabine (3.2 mmol/L), 5FU
(2.5 mmol/L), and niraparib (10 mmol/L) for 8 days in triplicate.
Genomic DNA was isolated from each sample, sgRNA amplified,
and the abundance of each sgRNA determined by next-generation
sequencing. We assessed the depletion/enrichment of each gene
in the treated samples as compared with the T0 PURO control
using the MAGeCK algorithm (Fig. 1A; Supplementary Methods).
Strikingly, targeted disruption of BCL2L1, which encodes BCL-XL,
resulted in a significant reduction of AsPC-1 cells in gemcitabine-,
5FU-, and niraparib-treated samples but not in the DMSO-treated
cells (Fig. 1B–D). These findings suggest that BCL-XL may
enhance resistance to these agents in AsPC-1 cells. These results
agree with previous findings, demonstrating that BCL-XL plays a
crucial role in the development of chemoresistance in pancreatic
cancer cells (5).

Expression of the BCL-2 family proteins in and sensitivity of
pancreatic cancer cells to BH3 mimetics

To gain more insight into the role of the BCL-2 family of proteins
in the development of chemoresistance in pancreatic cancer cells,
we analyzed the Cancer Cell Line Encyclopedia (CCLE) database
and found that BCL2L1 mRNA is predominantly overexpressed
in pancreatic cancer cell lines compared with the cell lines that
were derived from other malignancies (Supplementary Fig. S1A).
Similarly, when we evaluated the expression of the BCL-2 family
of proteins in four commonly used pancreatic cancer cell lines
(i.e., AsPC-1, BxPC-3, Mia PaCa-2, and PANC-1) and two newly

Figure 1.

BCL2L1 (BCL-XL) provides resistance togemcitabine treatment in pancreatic cancer.A,Representation of the TherapeuticGenome (RxG)CRISPR library screening to
identify genes important for resistance to gemcitabine (GEM), 5FU, and niraparib (NIR) in the AsPC-1 pancreatic cancer cell line. B–D, Log2 volcano plots showing the
results of the screening for gemcitabine (B), 5FU (C), or niraparib (D). Several biologically interesting hits (including BCL2L1) identified from the screening are
highlighted in red. Each gene targeted by the library was ranked based on the Model-based Analysis of Genome-wide CRISPR-Cas9 Knockout (MAGeCK) positive
selection score. FDR, False discovery rate; FC, Fold change.
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generated patient-derived primary pancreatic cancer cell lines (i.e.,
G-46 and G-68; Supplementary Table S3; ref. 30), we found that
BCL-XL and MCL-1 are abundantly expressed across all the pan-
creatic cancer cell lines, while BCL-2 expression was more variable
(Supplementary Fig. S1B). Next, we determined the sensitivity of
these pancreatic cancer cells to different BCL-2 family antiapoptotic
protein inhibitors (commonly known as BH3 mimetics) including
A1155463 (a BCL-XL-selective inhibitor), ABT199 (a BCL-2-selec-
tive inhibitor), S63845 (an MCL-1-selective inhibitor), ABT263 (a
dual BCL-XL and BCL-2 inhibitor), and DT2216 (a BCL-XL specific
PROTAC or degrader) as single agents as well as in different
combinations. All of the pancreatic cancer cell lines tested were
found to be largely resistant to these inhibitors when used indi-
vidually (Supplementary Fig. S1C), suggesting that unlike many
leukemia and lymphoma cells, pancreatic cancer cells are not
dependent on single BCL-2 family members for survival. Next, we
tested different combinations of the BH3 mimetics and found that
all of these pancreatic cancer cell lines were resistant to the
combination of A1155463 and ABT199 as well as S63845 plus
ABT199, but were highly sensitive to the combination of S63845
with any of these BCL-XL–targeting agents including DT2216.
However, MCL-1 inhibition causes severe toxicities including car-
diotoxicity and hepatotoxicity, and these toxicities are exacerbated
with dual targeting of MCL-1 and BCL-XL (33–35). Hence, to avoid
these toxicities, alternative pharmacologic agents that could cause
MCL-1 suppression selectively in tumor cells would be of great
importance to develop highly effective combination therapies with a
platelet-sparing BCL-XL–targeting agent such as DT2216 (23, 26).

A combination of gemcitabine and DT2216 synergistically kills
pancreatic cancer cells in vitro

The priming of cancer cells to apoptosis with chemotherapeutic
drugs has been shown to significantly increase the effectiveness of
BCL-2 family inhibitors. In our RxG CRISPR screening, we identified
that BCL-XL plays a crucial role in the development of gemcitabine
resistance. Thus, to improve the efficacy of gemcitabine, we investi-
gated the potential to use the combination of gemcitabine andDT2216
for the treatment of pancreatic cancer.

First, we determined the effect of gemcitabine and DT2216 as single
agents and in combination against different pancreatic cancer cell
lines. Flow-cytometric analysis clearly showed that the combination of
gemcitabine and DT2216 significantly increased apoptosis compared
with the individual agents in four commonly used pancreatic cancer
cell lines (AsPC-1, BxPC-3, Mia PaCa-2, and PANC-1; Fig. 2A,
Supplementary Fig. S2A) as well as two newly generated patient-
derived primary pancreatic cancer cell lines (G-68 and G-46; Fig. 2B;
Supplementary Fig. S2B and S3A, B).Weobserved that, although, basal
levels of BCL-XL protein expression were different among the tested
cell lines, all the cell lines were found to be sensitive to the combination
of gemcitabine and DT2216, and that of gemcitabine and S63845
(Fig. 2A andB; Supplementary Fig. S1C), indicating that the efficacy of
DT2216 may be independent of the basal expression of BCL-XL.
Furthermore, the combination of gemcitabine and DT2216 was found
to synergistically reduce viability, colony formation, and tumor spher-
oid growth in the G-68 andG-46 cell lines (Fig. 2C–G; Supplementary
Fig. S3C–S3G). These data confirm a synergistic interaction between
gemcitabine and DT2216 against pancreatic cancer cells in vitro.

Figure 2.

The combination of DT2216 and gemcitabine synergistically kills pancreatic cancer cells in vitro.A, Percentage of total apoptotic cells (the sum of early [Annexin Vþ]
and late [PIþ/Annexin Vþ] apoptotic cells) after the cells were treated with vehicle (Veh) or with the indicated concentrations of DT2216 (DT) or gemcitabine (GEM)
alone or in combination for 72 hours. Data are presented as themean�SDof four independent experiments for each cell line and condition. a,b and c,P<0.05 versus.
Veh, DT and GEM, respectively. B, Percentage of total apoptotic G-68 primary pancreatic cancer cells after they were treated with vehicle (Veh) or the indicated
concentrations of DT or gemcitabine alone or in combinations for 72 hours. Data are presented as mean� SD (n¼ 3 independent experiments). �, P < 0.05; ����, P <
0.0001. Representative flow cytometric quadruple graphs for A and B are shown in Supplementary Fig. S2A and S2B, respectively. C, Percentage viability of G-68
cells after theywere treatedwith increasing concentrations of DT, gemcitabine, or their combination (GEMþDT; 1:1 ratio) for 72 hours. The table shows the IC50 values
of DT, gemcitabine, or their combination (GEMþDT). IC50 values are shown for a representative experiment out of three independent experiments. The CI value (< 1)
indicates a synergy between DT and gemcitabine. D, G-68 cells were treated with the indicated concentrations of DT or gemcitabine alone or in combination for
72 hours followed by incubation in drug-free medium for another twoweeks. Crystal violet staining was performed to visualize the colonies. Data are representative
images from two independent experiments. E,G-68 cells were seeded in a 48-well plate and allowed 48 hours for spheroid formation before DT and/or gemcitabine
treatment. Micrographs (magnification at 50�) of spheroids in the corresponding wells after they were treated with the indicated concentrations of DT or
gemcitabine alone or in combination for 10 days are shown. F,Microphotographs (magnification 50�) of spheroids from the marked areas in E. G,Quantification of
the number of spheroids from E as a percentage of Veh. a, b and c, P < 0.05 versus Veh, DT, and GEM, respectively. Data presented in E–G are representative of three
independent experiments. Statistical significance in A, B, and G was determined by two-way ANOVA with Tukey post hoc test.
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BCL-XL degradation by DT2216 increases MCL-1 dependence
and sensitivity to gemcitabine in pancreatic cancer cells

Having established the synergistic activity of gemcitabine and
DT2216 against pancreatic cancer cells in vitro, we next sought to
uncover the molecular mechanisms behind their synergy. We chose
the G-68 cell line for these mechanistic studies because it is a primary
pancreatic cancer cell line from a patient with a T3N1 tumor harboring
both the KRASG12D and TP53R248W mutations. It resembles inva-
sive pancreatic cancer in patients more than the commonly used
human pancreatic cancer cell lines (30). DT2216 potently degraded
BCL-XL in a concentration-dependent manner without any significant
effect on BCL-2 andMCL-1 (Fig. 3A). On the other hand, gemcitabine
treatment significantly downregulated MCL-1 protein expression and
partially downregulated BCL-XL in a concentration-dependent man-
ner, while BCL-2 levels were not affected. In addition, gemcitabine also
increased the expression of NOXA that selectively binds MCL-1 to
induce apoptosis (Fig. 3B; ref. 36). Next, we analyzed the effect of the
gemcitabine-DT2216 combination on BCL-2 family members and
apoptosis markers. We found that the combination reduced the levels
of MCL-1 and BCL-XL in the cells. Furthermore, apoptosis markers
such as cleaved-caspase 3 and cleaved-PARP levels were significantly
increased with the combination treatment compared with treatment
with the individual agents (Fig. 3C). This enhanced effectiveness of the
combination treatment further supports the codependency of these
cells on BCL-XL andMCL-1. Next, we determined whether differential
binding of BIM to BCL-XL and MCL-1 was the reason for the limited
single-agent activity in pancreatic cancer cells. To directly compare the

binding of BIM to BCL-XL and MCL-1, we performed immunopre-
cipitation of BCL-XL and MCL-1. We observed that at the baseline,
BIM is more associated with BCL-XL, whereas degradation of BCL-XL

by DT2216 led to its increased association with MCL-1 (Fig. 3D, E).
This confirms that BCL-XL degradation by DT2216 increases MCL-1
dependence and could be a reason for the limited activity of a single
agent. Together, downregulation of MCL-1 by gemcitabine under
DT2216 treatment confirmed themechanism behind the combination
effect. The codependency of pancreatic cancer cells on BCL-XL and
MCL-1 was further validated using cell viability assays utilizing an
MCL-1-specific inhibitor (S63845) and DT2216 (Fig. 3F and Supple-
mentary Fig. S1C). Collectively, our data suggest that gemcitabine-
inducedMCL-1 downregulation with BCL-XL degradation byDT2216
may be primarily responsible for this synthetic lethality in pancreatic
cancer cells. Furthermore, RT-PCR analysis showed that the altered
protein expression of BCL-2 family members in the combination
treatment is not associated with changes in mRNA levels (Fig. 3G
and Supplementary Table S4).

Combination of gemcitabine and DT2216 can more effectively
suppress the growth of G-68 xenografts and PDX tumors than
either agent alone in mice

Given the excellent synergetic activity in pancreatic cancer cells
in vitro, we sought to evaluate the effect of gemcitabine and DT2216
in vivo. Xenograft tumor models were established using the G-68 cell
line. Tumor-bearing NOD-scid IL2Rgnull (NSG) mice were random-
ized into four groups (n¼ 7 mice per group) once the tumors reached

Figure 3.

Synergy betweenDT2216 andgemcitabine attributes to a combined depletion of BCL-XL andMCL-1.A, Immunoblot analysis of BCL-XL, BCL-2, andMCL-1 inG-68 cells
after they were treated with the indicated concentrations of DT2216 (DT) for 16 hours. B, Immunoblot analysis of BCL-XL, BCL-2, MCL-1, and NOXA in G-68 cells after
they were treated with the indicated concentrations of gemcitabine (GEM) for 48 hours. C, Immunoblot analysis of BCL-XL, BCL-2, MCL-1, NOXA, and apoptosis
markers – cleaved (C) and full-length caspase-3 and PARP in G-68 cells after they were treated with the indicated concentrations of gemcitabine and/or DT for
48 hours. Immunoblots presented in A-C are representative of three independent experiments. D, G-68 cells were treated with gemcitabine (1 mmol/L) and/or DT
(0.1 mmol/L) for 48 hours. Cell lysates were subjected to co-immunoprecipitation (Co-IP) using BCL-XL or MCL-1 antibodies followed by immunoblotting to detect
BCL-XL, MCL-1, and BIM.E, The levels of BCL-XL, MCL-1, and BIM in the inputs forD.b-actinwas used as an equal loading control for all immunoblot analyses presented
in A–E. F, Viability of G-68 cells after they were treated with increasing concentrations of DT or S63845 (S) individually or in combination (DTþS) for 72 hours. IC50

values are shown in the table. The CI value indicates a synergy betweenDT and S.G,G-68 cells were treatedwith 0.1 mmol/L of DT or 1mmol/L of gemcitabine alone or
in combination (gemcitabineþ DT) for 48 hours. The fold changes in the expressions of BCL2L1 (encodes BCL-XL), BCL2,MCL1, and PMAIP1 (encodes NOXA) mRNA
are shown. GAPDH was used as an internal control. Data are from a single experiment performed in triplicate (mean � SD).
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100 to 200 mm3. The animals were treated intraperitoneally (i.p.) with
vehicle, gemcitabine (20 mg/kg, every 7 days), DT2216 (15 mg/kg,
every 4 days), or the combination of gemcitabine and DT2216
(Fig. 4A). In this model, gemcitabine was slightly more effective than
DT2216 in inhibiting tumor growth and increasing the survival of the
tumor-bearing mice, whereas the combination treatment was more
effective than either agent alone without any significant decrease in
body weight (Fig. 4B–E). Previous reports have shown that a com-
bination of BCL-XL and MCL-1 inhibitors induced acute hepatotox-
icity in mice (34). Thus, we studied the histopathology of the liver,
heart, and kidney in mice receiving the individual treatments or the
combination therapy and found no evidence of any organ toxicity,
which is in agreement with the observation that there was no body
weight change during the treatments (Supplementary Fig. S4A).

Recently, it has been shown that PDX tumor models can better
recapitulate tumor biology, stromal content, genetic mutations, and
heterogeneity of human diseases than conventional tumor xenograft
models employing cancer cell lines (37). They are also more predictive
of clinical outcomes of experimental therapeutic agents than the
latter (37). We have established a number of pancreatic cancer PDX
models and selected G192-p4, G176-p4, and LM12-p3 human pan-
creatic cancer PDX models to further evaluate the therapeutic efficacy
of gemcitabine and DT2216 alone or in combination (Fig. 5A; Sup-
plementary Table S5; refs. 32, 38, 39). In the G192-p4 PDXmodel, the
combination treatment significantly inhibited tumor growth com-
pared with monotherapy of gemcitabine or DT2216 (Fig. 5B). In
addition, histopathology from the G192-p4 PDX model showed a
significant decrease in tumor burden in mice treated with the com-
bination, and no evidence of organ toxicity was observed in the liver,
kidney, or heart (Fig. 5C and Supplementary Fig. S4B). The combi-
nation of gemcitabine and DT2216 was also more effective in inhibit-
ing tumor growth in the G176-p4 model than either agent alone
(Fig. 5D). In LM12-p3 PDX, the combination treatment caused more
reduction in tumor volume than either treatment alone, but the
difference was not statistically significant (Fig. 5E). Interestingly,

DT2216 was equally effective in degrading BCL-XL in tumors har-
vested from all these PDXs (Supplementary Fig. S5A), which suggests
that the differential efficacy of the combination against these PDXs
may not be attributed to differential BCL-XL degradation. In fact, the
efficacy of the combination appears to be correlated with MCL-1
expression in these PDXs, that is, PDXs with high MCL-1 expression
(G192-p4) responded best to the treatment (Supplementary Fig. S5B).
In addition, the heterogeneity of the PDXs may also contribute to the
differences of their responses to the combination therapy. In fact,
LM12-p3 PDX tumor tissues were derived from an aggressive liver
metastasis, and thus appearedmore resistant to any of these treatments
than the other two PDXs (Fig. 5). Together, these data illustrate that
the combination of gemcitabine and DT2216 is potentially a more
effective treatment for some pancreatic cancers than gemcitabine
alone. Future studies will be needed to identify biomarkers that can
be used to stratify pancreatic cancer patients for this combination
therapy.

Discussion
Pancreatic cancer is a difficult-to-treat cancer with gemcitabine as a

current first-line standard of care. Unfortunately, gemcitabine is
ineffective to treat this deadly disease because of development of drug
resistance (4–7). The current studies emanate from the fact that BCL-
XL is the most highly expressed gene in pancreatic cancer as analyzed
through the CCLE transcriptomics database.We found that compared
to BCL-2, the expression of BCL-XL is high in all the pancreatic cancer
cells examined in our study. The importance of BCL-XL in the
progression of PanIN to PDAC has also been demonstrated by others
in pancreas-specific KrasG12D (P-KrasG12D) mice (12). A recent study
showed that ABT263 increased the antitumor effect of prexasertib, a
Chk1 inhibitor, by inducing apoptosis in pancreatic cancer cells via
inhibition of BCL-XL but not BCL-2 (40). Furthermore, Zhang Z and
colleagues showed that GATA1 induced gemcitabine resistance in
pancreatic cancer cells through the upregulation of BCL-XL

Figure 4.

DT2216 increased the antitumor efficacy of gemcitabine in a patient-derived G-68 pancreatic cancer cell xenograft model. A, Representation of the experimental
design of the G-68 xenograft study. Tumor-bearing mice were administered Veh, DT2216 (DT), gemcitabine (GEM), or a combination of DT and gemcitabine at the
indicated dosing regimen. B, Change in body weight during the course of treatment. C, Graph showing the tumor volume changes in each group after the start of
treatment until the control animals were euthanized. Data are presented as mean� SEM (n ¼ 7mice in each group at the start of treatment). Statistical significance
was determined by unpaired two-sided Student t test test. �� , P < 0.01; ���� , P < 0.0001. D, Kaplan–Meier survival analysis with medium survival time of mice in each
group. Statistical significance was determined by Mantel–Cox test. �, P < 0.05; �� , P < 0.01; ��� , P < 0.001. E, Representative H&E staining images of tumors in each
treatment group at 200x magnification, scale bar ¼ 50 mm.
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expression (41). Using the RxG CRISPR screening, we identified
BCL-XL as the most common gene providing resistance to not only
gemcitabine, but also to other chemotherapeutics such as 5FU and
NIR. These findings confirm that BCL-XL is involved in the develop-
ment of therapeutic resistance in pancreatic cancer and is a potential
key druggable pancreatic cancer target.

Since on-target thrombocytopenia is a major hurdle in the
clinical development of BCL-XL inhibitors, we recently adopted a
novel PROTAC technology to overcome this toxicity by converting
ABT263 (BCL-XL/2 dual inhibitor) into a BCL-XL selective PRO-
TAC, named DT2216 (20–22). DT2216 is currently in phase I
clinical studies for patients with relapsed/refractory malignancies
(NCT04886622). In the current study, through a series of in vitro
assays and in vivo studies including the use of our newly established
patient-derived primary pancreatic cancer cells lines and PDX
models, we confirmed that DT2216 can sensitize pancreatic cancer
cells to gemcitabine. These results suggest that the gemcitabine–
DT2216 combination is a promising new therapy against pancreatic
cancer, which will be useful to guide the clinical development of
DT2216.

The mechanism by which gemcitabine and DT2216 can synergis-
tically kill pancreatic cancer cells is because they can simultaneously
target MCL-1 and BCL-XL. Pancreatic cancer cells express high levels
of not only BCL-XL but also MCL-1 and are thus insensitive to
individual inhibition of BCL-XL orMCL-1. Therefore, like many other
solid tumor cells, pancreatic cancer cells respond poorly to BCL-2
family inhibitors when used as a single agent treatment (23–26).
Cotargeting BCL-XL andMCL-1with their respective inhibitors shows
synergistic killing of most of the pancreatic cancer cell lines. Similarly,
a combination of ABT263 and S63845 has shown increased antitumor
activity in melanoma and lung cancers (34, 42). Unfortunately, the
toxicities (including cardiotoxicity and hepatotoxicity) associated with
dual inhibition of BCL-XL andMCL-1 are amajor challenge for clinical

development of this combination (33–35). Therefore, an agent that
could selectively targetMCL-1 in tumor cells combinedwith a platelet-
sparing BCL-XL targeting agent such as DT2216 has the potential to
overcome the toxicities and provide a more effective treatment of
pancreatic cancer. Our results show that the degradation of BCL-XL by
DT2216 increased the dependency of pancreatic cancer cells on
MCL-1 due to interaction with BIM. This likely explains the limited
single-agent activity of DT2216 in pancreatic cancer. Interestingly,
gemcitabine inhibited the expression of MCL-1 in pancreatic cancer
cells. Therefore, MCL-1 downregulation by gemcitabine and BCL-XL

degradation byDT2216may contribute to the synergistic effect of their
combination against pancreatic cancer cells in vitro and in vivo.
However, unlike the combination treatment with of BCL-XL and
MCL-1 inhibitors, which caused acute liver toxicity in mice (34), the
combination of gemcitabine and DT2216 did not change the body
weight of tumor-bearing mice, nor did it cause any observable tissue
damage in the liver, kidney, and heart from these mice. This finding
suggests that gemcitabine may selectively downregulate MCL-1
expression in pancreatic cancer cells, which could avoid the induction
of systemic toxicities when combined with DT2216.

One of the advantages of using PDX tumor models to test new
therapeutic agents and strategies is that PDX tumor models can
recapitulate the heterogeneity of human diseases better than conven-
tional tumor xenograft models employing long-term established can-
cer cell lines, and thus the findings in PDX tumor models are more
predictive of clinical outcomes of experimental therapeutic agents than
the latter (37). Indeed, we found that even though the pancreatic cancer
xenograft model generated with the patient-derived primary G-68
pancreatic cancer cells showed moderate sensitivity to DT2216,
DT2216 alone did not induce any significant response in any of the
three PDXmodels tested in our study.Moreover, the responses of these
PDXmodels to gemcitabine alone and the combination of gemcitabine
andDT2216 were also highly variable. For example, gemcitabine alone

Figure 5.

DT2216 increased the antitumor efficacy of gemcitabine in pancreatic cancer PDXmodels. A, Representation of the experimental design of the PDX studies. Tumor-
bearing mice were administered Veh, DT2216 (DT), gemcitabine (GEM), or a combination of DT and gemcitabine at the indicated dosing regimen. B, Graph showing
the tumor volume changes in G192-p4 PDXs in each group after the start of treatment. C, Representative H&E staining images of G192-p4 PDX tumors in each
treatment group at 200�magnification, scale bar¼ 50 mm.D and E,Graphs showing the tumor volume changes in G176-p4 (D) and LM12-p3 (E) PDXs in each group
after the start of treatment. The data presented in (B), (D) and E are mean� SEM (n ¼ 7 mice in each group at the start of treatment). Statistical significance was
determined by unpaired two-sided Student t test. � , P < 0.05; �� , P < 0.01; ns, not significant.
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almost completely inhibited the tumor growth in mice bearing G192-
p4 PDX, and the combination of gemcitabine and DT2216 induced
significant tumor regression. In contrast, although the combination of
gemcitabine andDT2216 caused a greater inhibition of LM12-p3 PDX
growth compared to single agents, the difference was not statistically
significant. The mechanisms underlying these different responses to
the treatments have yet to be determined but are unlikely attributable
to their differential expression of the BCL-2 anti-apoptotic family
proteins as shown in other malignancies (43). It will be of a great
interest to determine whether BH3 profiling can be used to predict the
responses of different pancreatic cancer PDXs and patients with
pancreatic cancer to the treatment with gemcitabine andDT2216 (44).
This information could be useful in stratifying the patients that could
benefit from this combination.

In conclusion, we identified BCL-XL as a key anti-apoptotic protein
in pancreatic cancer that limits the therapeutic efficacy of gemcitabine.
Furthermore, we demonstrated that DT2216 significantly improved
the effectiveness of gemcitabine against pancreatic cancer cells in vitro
and in PDXmodels without causing observable normal tissue toxicity.
These findings suggest that the combination of DT2216 and gemci-
tabine has the potential to be developed as a safe and effective
combination therapy for pancreatic cancer.
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