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Background. Household contacts of patients with tuberculosis (TB) are at great risk of TB infection. (e aim of this study was to
develop a predictive model of TB transmission among household contacts.Method. (is was a secondary analysis of data from a
prospective cohort study, in which a total of 700 TB patients and 3417 household contacts were enrolled between 2010 and 2013 at
two study sites in Peru. (e incidence of secondary TB cases among household contacts of index cases was recorded. (e LASSO
regression method was used to reduce the data dimension and to filter variables. Multivariate logistic regression analysis was
applied to develop the predictive model, and internal validation was performed. A nomogram was constructed to display the
model, and the AUC was calculated. (e calibration curve and decision curve analysis (DCA) were also evaluated. Results. (e
incidence of TB disease among the contacts of index cases was 4.4% (149/3417). Ten variables (gender, age, TB history, diabetes,
HIV, index patient’s drug resistance, socioeconomic status, spoligotypes, and the index-contact share sleeping room status)
filtered through the LASSO regression technique were finally included in the predictive model. (e model showed good dis-
criminatory ability, with an AUC value of 0.761 (95% CI, 0.723–0.800) for the derivation and 0.759 (95% CI, 0.717–0.796) for the
internal validation. (e predictive model showed good calibration, and the DCA demonstrated that the model was clinically
useful. Conclusion. A predictive model was developed that incorporates characteristics of both the index patients and the contacts,
which may be of great value for the individualized prediction of TB transmission among household contacts.

1. Introduction

Tuberculosis (TB) continues to be a heavy global burden. It is
estimated that 10 million persons worldwide were newly
infected in 2017, including 5.8 million men, 3.2 million
women, and 1 million children (≤15 years) [1]. TB is the
leading cause of death caused by a single pathogen infection,
and its mortality rate in 2017 reached 16% [1]. Early di-
agnosis of TB is very important [2]. However, the occurrence
of TB infection is generally difficult to predict, and delays in
diagnosis are common.

As an infectious pathogen,Mycobacterium tuberculosis is
characterized by its ability to be transmitted and to cause
disease in another host. Individuals in contact with active TB
patients are susceptible to TB, and household contacts are
considered to be at higher risk due to their constant exposure
to infected patients [3]. Several studies have revealed that a

number of clinical, environmental, and socioeconomic
variables (such as human immunodeficiency virus (HIV)
positive, diabetic, and poverty status) may affect the in-
cidence of TB in contacts [3]. In addition, previous studies
involving both animal models and human patients have
demonstrated that the pathogenicity of drug-resistant and
drug-susceptible Mycobacterium tuberculosis differs [3–5].
Previously, although several predictive models of TB in-
fection based on nosocomial small samples have been
established and showed certain application value in pre-
dicting the duration of TB patient isolation [6–8], to the best
of our knowledge, there is currently no model available for
prediction of TB transmission in communities or
households.

In the present study, based on a completed 3-year
prospective cohort study [3], the clinical, environmental,
and socioeconomic characteristics of both index TB patients
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and their household contacts were retrospectively in-
vestigated to develop a predictive model of TB transmission.

2. Methods

2.1. Study Population and Ethics. (is study was based on a
previous prospective cohort study conducted in Peru [3],
which is classified by the WHO as a high TB burden country
[1]. A total of 700 TB patients (213 multidrug-resistant
tuberculosis (MDRTB) cases and 487 drug-susceptible cases)
and 3417 household contacts were enrolled between Sep-
tember 2010 and September 2013 for the study. In the
previously published study [3], Grandjean et al. have clearly
stated that the ethical approval of this study was obtained
from the Institutional Review Board of Universidad Peruana
Cayetano Heredia (IRB00001014), and informed written
consent was obtained from all participants.

2.2. Variable Collection. For this study, the following vari-
ables were collected from both TB patients and their
household contacts: gender, age, previous TB history (yes or
no), HIV infection status (yes or no), coexisting diabetes (yes
or no), socioeconomic status (divided into three levels based
on the scoring system used in the Peruvian National Census)
[3], employment status (unemployed, working, student, or
unknown), and secondary education status. In addition, the
following variables were collected from TB patients: drug
resistance status (MDRTB indicated resistant to at least
rifampicin and isoniazid, and drug-susceptible indicated
susceptible to both rifampicin and isoniazid), alcohol and
tobacco use, spoligotypes (stratified based on the SpolDB4
database), sputum smear grade, mean cough duration,
hospitalization history, and side effects of treatment.
Household contacts were defined as persons living in the
same roomwith TB patients for more than one day a week. A
household contact TB infection was defined as the devel-
opment of TB disease occurring after the diagnosis of TB in
the index patient [3]. TB was diagnosed based on positive
sputum smears or cultures, chest X-rays, or a clinical di-
agnosis that resulted in initiation of antituberculosis treat-
ment [3]. In the case of household contacts, information as
to whether the person slept in the same room with the TB
patient and the time of occurrence of TB disease was also
collected.

2.3. Statistical Analysis. (e multiple imputation method
was used for dealing with missing values. (e baseline
characteristics of the study population were summarized as
the number and the percentage. In this study, we followed
the methods of Wang 2019 [9]. (e least absolute shrinkage
and selection operator (LASSO) regression method was used
for data dimension and variable selection. Multivariate lo-
gistic regression analysis with backward stepwise selection
using the likelihood ratio test with Akaike’s information
criterion [10] was applied to develop a predictive model of
TB infection in household contacts. A nomogram was
constructed to present the model. (e discriminatory ca-
pacity of the model was determined by calculating the area

under the curve (AUC). Internal validation by means of the
bootstrap method (resampling� 500) was performed [11]. A
calibration curve was plotted to evaluate the model together
with the Hosmer–Lemeshow test, and decision curve
analysis (DCA) was performed to assess the clinical use-
fulness of the model [12]. Statistical analysis was conducted
with R software (version 3.5.1). A P value of <0.05 was
considered statistically significant.

3. Results

In this study cohort, 4.4% (149/3417) (95% confidence in-
terval (CI), 3.7–5.1%) of household contacts developed TB
disease. (e median (25%–75% interquartile) time for the
first TB infection of household contacts was 153 (52–264)
days. Demographic data of TB patients and household
contacts are shown in Tables 1 and 2, respectively.

Of 22 variables collected from the study cohort, 11
variables were selected based on nonzero coefficients cal-
culated by the LASSO regression analysis (Figure 1). (ese
variables were contact’s gender, age, previous history of TB,
diabetes, HIV infection status, index TB patient’s drug re-
sistance status, diabetes, socioeconomic status, educational
status, spoligotypes, and whether the index case and the
contact slept in the same room.

Multivariate logistic regression analysis was conducted
including the aforementioned 11 variables selected by the
LASSO regression analysis. Backward stepwise selection was
applied to develop a predictive model by using the likelihood
ratio test with Akaike’s information criterion. Ten variables
(all the variables described above, with the exception of
educational status) were eventually incorporated into the
model.

As shown in Figure 2, the AUC for the predictive model
was 0.761 (95% CI, 0.723–0.800), while the AUC
for the internal validation using the bootstrap method
(resampling� 500) was 0.759 (95% CI, 0.717–0.796). A
nomogram was also constructed based on the predictive
model (Figure 3), providing a quantitative tool to predict the
probability of TB transmission in household contacts.

A good calibration is shown in Figure 4. (e
Hosmer–Lemeshow test yielded nonsignificant statistical
value (P � 0.754), with an Emax of 0.078 and Eavg of 0.004,
suggesting that there was no departure from a perfect fit
between prediction and observation.

(e DCA for the model is presented in Figure 5. (e
decision curve showed that when the threshold probability
of TB transmission in household contacts was <30% based
on the predictive model, application of this model to predict
household contact TB infection would add more benefit
than either the treat-all or treat-none strategies.

4. Discussion

In the current study, a predictive model of transmission risk
among household contacts exposed to index TB cases was
developed. (is model incorporates 10 predictors: contact’s
gender, age, previous TB history, diabetes, HIV infection
status, index patient diabetes, index TB patient’s drug
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resistance status, socioeconomic status, spoligotypes, and
the index-contact share sleeping room status. (e model
showed good discriminatory ability, with an AUC of 0761.
Internal validation based on the bootstrap method
(resampling� 500) yielded an AUC of 0.759. Moreover, the
model showed good calibration and clinical usefulness.

TB transmission has always been a global health concern.
Recently, the Global Tuberculosis Report 2018 released by
the WHO indicated that the fight against TB is still ongoing
[1]. (e incidence of TB remains high, with 10 million new
cases in 2017 [1]. Contact with active TB patients is the main
mode of TB transmission, and due to their frequent ex-
posure, household contacts may be at higher risk of TB
infection than nonhousehold contacts [3].

In previous studies, several variables affecting TB
transmission have been described. In both retrospective

and prospective studies, it has been demonstrated that the
incidence of TB in household contacts is higher in the case
of drug-susceptible TB cases than in MDRTB index cases
[3, 13]. Coexisting HIV infection or diabetes in household
contacts has been confirmed to be a risk factor for TB
infection [1]. In addition, a lower socioeconomic status is
associated with a higher TB incidence [1, 3]. (e Myco-
bacterium tuberculosis spoligotype signature can also
influence the level of transmission in household contacts
and in the community [3, 14]. As expected, an in-
dependent risk factor for TB transmission is the fact that
contacts and TB patients share the same sleeping room
[3]. However, the current high incidence of TB trans-
mission is mainly attributed to unrecognized active TB
cases; therefore, accurate identification of active index TB
cases and prediction of the risk of TB infection are es-
sential to prevent transmission [8]. To our knowledge, few
studies have described TB transmission risk prediction
models. On the other hand, delays in TB diagnosis
commonly occur in clinical practice. Atypical clinical
presentations and clinician inexperience are partly re-
sponsible for delayed TB diagnosis [15, 16]. In this respect,
predictive models can play an important role, helping
clinicians or healthcare providers predict the probability
of TB infection and guiding their clinical decision making
to achieve a timely diagnosis.

Based on the retrospective analysis of a small sample, in
1997, Mytotte et al. [16] described a predictive model for
evaluating the risk of TB infection among patients in iso-
lation in a New York hospital. (e model included four
predictors: a positive acid-fast sputum smear, localized chest
radiographic findings, residence in a correctional facility,

Table 2: Demographic data of household contacts.

Characteristic Household
contacts (n� 3417)

Age stratum (years), n (%)
0–10 500 (14.6)
10–20 625 (18.3)
20–30 602 (17.6)
30–40 673 (19.7)
40–50 385 (11.3)
50–60 329 (9.6)
60–70 174 (5.1)
>70 118 (3.5)
Unknown 11 (0.2)

Male, n (%) 1698 (49.7)
Previous TB history, n (%) 583 (17.1)
HIV positive, n (%) 20 (0.6)
Coexisting diabetes, n (%) 41 (1.2)
Completed secondary education, n (%) 1540 (45.1)
Employment status, n (%)

Unemployed 825 (24.1)
Working 1348 (39.4)
Student 883 (25.9)
Unknown 361 (10.6)

Index-contact case sleeping in the same
room, n (%) 640 (18.7)

Second cases of TB, n (%) 149 (4.4)
TB, tuberculosis; HIV, human immunodeficiency virus.

Table 1: Demographic data of index TB patients.

Characteristic Index
patients (n� 700)

Mean age, (years) 33
Male, n (%) 273 (39.0)
Alcohol use (≥one unit/day), n (%) 79 (11.3)
Tobacco use (any cigarettes/week), n (%) 108 (15.4)
Previous TB history, n (%) 130 (18.6)
HIV positive, n (%) 38 (5.4)
Coexisting diabetes, n (%) 40 (5.7)
Socioeconomic status∗, n (%)

1 288 (41.1)
2 210 (30.0)
3 202 (28.9)

Completed secondary education, n (%) 417 (59.6)
Employment status, n (%)
Unemployed 378 (54.0)
Working 235 (33.6)
Student 84 (12.0)
Unknown 3 (0.4)

Spoligotype family (SpolDB4 database), n (%)
Haarlem 143 (20.4)
Beijing 72 (10.3)
Latin American Mediterranean 92 (13.2)
T 143 (20.4)
Other Euro-American∗∗ 61 (8.7)
Orphan/no family 75 (10.7)
Unknown (no data) 114 (16.3)

Mean cough duration (weeks) 6.3
History of hospitalization, n (%) 89 (12.7)
Any side effects of treatment, n (%) 351 (50.1)
Sputum smear grade, n (%)
0 67 (9.6)
1 197 (28.1)
2 180 (25.7)
3 234 (33.4)
Unknown 22 (3.2)

MDRTB patient, n (%) 213 (30.4)
∗Divided into three levels based on the scoring system used in the Peruvian
National Census; ∗∗“Other Euro-American” includes strains from the S
family, the X family, and strains that were present in the SpolDB4 database
but had not been assigned a family yet [3]. TB, tuberculosis; HIV, human
immunodeficiency virus; MDRTB, multidrug-resistant tuberculosis.
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and history of weight loss. (ese authors concluded that
application of themodel was partly responsible for a decrease
in the mean duration of patient isolation. Noteworthy, ap-
proximately 40% of cases in their derivation cohort resided
in correctional facilities, and almost 60% were HIV positive.
A decade later, another study by Rakoczy et al. [6] with a
smaller sample size (a total of 81 in the derivation and
validation cohorts) derived and validated a clinical pre-
diction score for patients with suspected TB, also using four
predictors: chronic symptoms, upper lobe disease on chest

radiograph, foreign-born status, and immunocompromised
state other than HIV infection. (ese authors pointed out
that the model could improve compliance with airborne
precautions. In addition, EI-Solh et al. [14] developed an
artificial neural network for predicting active pulmonary TB
using clinical and radiographic variables and based on a
nonconcurrent prospective study with 563 isolation episodes
in the derivation and 119 in the validation. (ey reported
that the artificial neural network could identify patients with
active pulmonary TB more accurately than physicians’
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Figure 2: (e receiver operating characteristic of the model and in the internal validation cohort. (a) AUC of the predictive model
(representative the discriminatory ability of the model) and (b) AUC of the internal validation (bootstrap resampling� 500). (e dotted
vertical lines represent 95% confidence interval. AUC, area under the curve.
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Figure 1: Selection of predictors using the LASSO regression analysis with 10-fold cross-validation. (a) Tuning parameter (lambda)
selection of deviance in the LASSO regression based on the minimum criteria (left dotted line) and the 1-SE criteria (right dotted line). (b) A
coefficient profile plot was produced against the log (lambda) sequence. In the present study, predictor’s selection was according to the 1-SE
criteria (right dotted line), where 11 nonzero coefficients were selected. SE, standard error.
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clinical assessments. Of note, the above three models were
based on nosocomial populations and were not developed to
predict TB transmission between index cases and contacts.
(erefore, these models are not suitable to predict TB
transmission in communities or households.

(emodel in the present study was developed based on a
3-year prospective study, which included 700 index TB
patients and 3417 household contacts [3]. Clinical, de-
mographic, and socioeconomic variables were investigated
in both index patients and contacts. Candidate predictors
included in the model were filtered by LASSO regression
analysis, which is considered superior to selecting predictors
by univariate analysis [17]. All these 10 predictors are easily
available clinically. A predictive model would be considered
to have applied potential only when the discriminatory
capacity and calibration, as well as DCA of the model, are
good in performance [9, 18]. (e predictive model showed
good discriminatory ability (AUC: 0.761) and calibration.
Moreover, the DCA evaluation showed its clinical useful-
ness. Specifically, it demonstrated that utilization of the
predictive model would be more beneficial than either the
treat-all or treat-none strategies. In addition, we also

constructed a nomogram to facilitate the application of the
model.

Some limitations of this predictive model are worth
noting. First, prediction of TB transmission needs to take
into account regional differences in TB epidemiology. (is
model was based on a 3-year prospective study conducted in
southern Lima and Callao, Peru [3]. (erefore, determining
whether this predictive model is applicable to other regions
requires further verification. Second, there was a time span
between latent infection and TB diagnosis. (us, in a small
number of household contacts diagnosed with TB within a
very short time frame, it cannot be determined whether the
contact was infected following exposure or if there was a
preexisting latent infection. (ird, some potentially relevant
clinical variables, such as other complications (except for
diabetes and HIV infection), the regimens and duration of
treatment of the index patient, and radiological extension of
disease were not included in the analysis because they were
not available in the original data [19].

Despite these limitations, this study is the first to develop
a predictive model for transmission among household
contacts of TB patients.
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5. Conclusions

A TB transmission risk prediction model for household
contacts was developed, which incorporates characteristics
of both TB patients and contacts. (is model showed good
discriminatory ability and may be of great value to facilitate
the prediction and management of TB transmission in
households.
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