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Background: Biochemical complexity of seminal plasma and obesity has an 
important role in male infertility  (MI); so far, it has not been possible to provide 
evidence of clinical significance for all of them. Aims: Our goal here is to evaluate 
the correlation between biochemical markers with semen parameters, which might 
play a role in MI. Study Setting and Design: We enlisted 100 infertile men 
as patients and 50 fertile men as controls to evaluate the sperm parameters and 
biochemical markers in ascertaining MI. Materials and Methods: Semen analyses, 
seminal fructose, citric acid, and reactive oxidation species  (ROS) were measured 
in 100  patients and 50 controls. Statistical Analysis: Descriptive statistics, an 
independent t‑test, Pearson correlation, and machine‑learning approaches were 
used to integrate the various biochemical and seminal parameters measured to 
quantify the inter‑relatedness between these measurements. Results: Pearson 
correlation results showed a significant positive correlation between body mass 
index (BMI) and fructose levels. Citric acid had a positive correlation with sperm 
count, morphology, motility, and volume but displayed a negative correlation with 
BMI and basal metabolic rate  (BMR). However, BMI and BMR had a positive 
correlation with ROS. Sperm count, morphology, and motility were negative 
correlations with ROS. The machine‑learning approach detected that pH was the 
most critical parameter with an inverse effect on citric acid, and BMI and motility 
were the most critical parameter for ROS. Conclusion: We recommend that 
evaluation of biochemical markers of seminal fluid may benefit in understanding 
the etiology of MI based on the functionality of accessory glands and ROS levels.
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One of the significant causes of idiopathic infertility is 
oxidative stress  (OS) which is defined as an imbalance 
between reactive oxidation species  (ROS) and 
antioxidants.[5,6] Around 30%–40% of infertile men have 
increased ROS levels in seminal plasma.[7] Seminal fluid 
contains several components besides spermatozoa; semen 

Introduction

Infertility is the third most serious disease of the 
21st century. About 60–80 million couples suffer from 

infertility.[1] In India, the incidence of overall infertility 
is reported between 3.9% and 16.8%.[2] Approximately 
one‑third of these cases include male infertility  (MI) 
caused mainly due to sperm failure[3] and 30%–50% of 
infertility cases are idiopathic[4] triggered by molecular 
irregularities and obesity.
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contains citric acid, fructose, etc.[8‑10] Consequently, 
these biochemical secretions serve as markers of their 
respective glands.[11]

Fructose is an important energy source for sperm 
motility and is a marker for seminal vesicle 
function.[12,13] The lower level of fructose oxidation 
intensity in gamete mitochondria leads to lactate 
accumulation and dehydrogenase activity inhibition.[14] 
Citric acid is an essential biochemical component of 
seminal plasma associated with semen coagulation and 
motility[15,16] and a diagnostic tool to evaluate secretory 
dysfunction of the prostate.[17] Accordingly, fructose is 
used as a marker for seminal vesicle, and citric acid is 
used as a marker for prostate and both have a critical 
role in MI.

Machine learning  (ML) has been used in different 
fields,[18‑22] including genetics and genomics,[23‑26] limited 
studies used ML methods to predict infertility based on 
experimental data.

In the previous researches, ML was added to MI to 
integrate sperm, blood, and environmental parameters 
to determine their association[27] and to estimate 
OS levels from a database of biochemical analyses of 
OS biomarkers in blood, plasma, and urine.[28,29] Dubey 
et  al., conducted a quantitative analysis of human 
spermatozoa under OS conditions using ML.[5] These 
studies used ML methods to a limited extent 
leaving a gap in the utilization of its full strength in 
determining important parameters in MI. Furthermore, 
to date, most biochemical markers have been assessed 
uni‑dimensionally against individual parameters such 
as sperm count and body mass index  (BMI), but their 
combined effects have not been examined.

To address this limitation, we used ML approaches to 
integrate the various biochemical and seminal parameters 
measured to estimate the levels of ROS, citric acid, and 
fructose in human subjects. This approach would further 
determine the degree of inter‑relatedness; quantify the 
interdependency between these variables; and aid in the 
prioritization of the variable producing the most severe 
effect on infertility.

Material and Methods
Semen collection and examination
A case–control study was conducted among 100 infertile 
men and 50 control groups at the University of Mysore, 
India, between September 2018 and October 2020. 
Based on previous research, we assumed that the 
approximate prevalence of MI is around 5.6%,[2,3] and 
the following simple formula will be used to calculate 
the acceptable sample size in a prevalence study: Where 

n is the sample size, Z is the statistic corresponding 
to the level of confidence, P is expected prevalence, 
and d is precision  (corresponding to impact size).[30] 
According to the formula, our minimum sample size 
with a 95% confidence level should be 82 individuals, 
but we opted to increase the sample size to 100 to get 
more accurate results.

n = Z2P (1 − P)/d2				�     (1)

Semen samples were collected after 3–7  days of 
ejaculatory abstinence. Semen analysis was performed 
according to the WHO criteria. Men having known 
clinical factors including genetic factors which affect 
fertility status were excluded.  The controls consisted 
of 50 fertile men who had at least one child and had 
normal semen analysis. All participants gave written 
informed consent to participate in this study which 
was approved by the Institutional Human Ethics 
Committee  (IHEC‑UOM No. 152/Ph. D/2017‑18), 
University of Mysore.

Estimation of seminal fructose
Estimation of seminal fructose was done by Karvonen 
and Malm  (1955) method. 20 µl of seminal plasma 
was diluted with 220 µl to distilled water and mixed 
by adding 50 µl of ZnSO4 and 50 µl NaOH. This 
mixture was incubated for 15  min at room temperature 
and centrifuged at 2500 RPM for 15  min. 200 µl of 
the cleared supernatant was mixed with indole reagent 
followed by 32% hydrochloric acid. Reading was taken 
at 470 nm after cooling of 10 min.[31]

Estimation of seminal citric acid
One hundred microliter of seminal plasma was added to 
100 μl of 50% trichloroacetic subjected to centrifugation 
at 7000 rpm for 15  min and supernatant was obtained. 
Eight hundred microliter of anhydrous acetic anhydride 
was added and incubated in a water bath at 60°C for 
10  min in the supernatant. One milliliter of dry reagent 
grade pyridine was added and incubated at 60°C for 
40 min and absorbance was measured at 400 nm.[32]

Estimation of reactive oxidation species by 
chemiluminescence method
Liquified semen was centrifuged at 3000 rpm for 7 min, 
and the seminal plasma was separated. The pellet was 
washed with phosphate buffer saline  (PBS) and washed 
in wash media at a concentration of 20 × 106 sperm/ml. 
Four hundred microliter of suspension aliquots was used. 
Ten microliter of luminol prepared as a 5 mm stock of 
dimethylsulfoxide was added to the mixture used as a 
probe. As a negative control, 10 μl of 5 mM of luminol 
with 400 μl of PBS was used. Samples were loaded in 
96‑welled noncoated microplates, and readings were 
taken in the Thermo scientific multimode plate reader.
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Statistical analysis
The data collected were statistically analyzed 
and expressed as a mean value with deviations 
(± standard deviation). An independent t‑test and 
Pearson correlation were used to assess if there is 
a significant mean difference between patients and 
controls (P < 0.05).

Machine‑learning methods
Four different ML methods such as linear 
regression (LR), artificial neural network (ANN), support 
vector machine  (SVM), and random Forrest  (RF) were 
used and compared to predict the density of citric acid 
and ROS.

LR models generate a linear relationship 
between two sets of variables, dependent and 
independent  [Supplementary Material Equation 1].[33,34] 
ANN is a tool to model the neurons in the human 
brain[35] and consists of three layers  [Supplementary 
Material Equations 2 and 3].[35‑37] SVM is a supervised 
learning method used for classification, regression, and 
density estimation problems.[36] RF method can handle 
high‑dimensional data and use a large number of trees in 
the ensemble.[38‑40]

Although visual exploration of graphs helps identify 
the performance of the models, scientific error indices 
will help determine the effectiveness of the models 
numerically. For this purpose, to find out the difference 
between the mean of observed and predicted values, 
the bias index was computed  [Supplementary Material 
Equations 4‑7].

Results

The mean age of patients and controls was 34.6 ± 6.5 and 
32.5  ±  3.2  years, respectively. Infertile men diagnosed 
based on sperm count, motility, and morphology 
were classified into nine subgroups  [Table  1]. All 
MI groups showed a significant mean difference in 
sperm count and motility compared to controls and all 
subgroups except idiopathic demonstrated significant 
differences for mean fructose concentration compared 
to controls. Fructose concentration was highest in 
oligoteratozoospermia  (164  ±  15.2) and lowest in 
asthenozoospermia  (52.2  ±  11.2) compared to other 
MI subgroups. Interestingly, the idiopathic subgroup 
displayed the highest citric acid concentration compared 
to controls.

All infertile subgroups except azoospermia showed 
increased ROS level with statistical significance 
between groups. Teratozoospermia showed increased 
ROS, followed by oligoasthenozoospermia and OAT . 
However, when all infertile subgroups were combined 

and compared to controls using oneway ANOVA, there 
was a significant difference in sperm count, motility, 
citric acid level, fructose level, and ROS compared to 
controls  [Table 2].  Pearson correlation results exhibited 
a significant positive correlation among BMI (r = 0.295), 
basal metabolic rate  (BMR)  (r  =  0.279), and fructose 
levels.

Seminal citric acid concentration had a positive 
correlation with sperm count  (r  =  0.471), 
morphology  (r  =  0.519), motility  (0.294), and 
volume  (0.236), whereas it had a negative correlation 
with BMI  (−0.576) and BMR  (−0.383). While 
BMI  (r  =  0.637) and BMR  (r  =  0.371) showed 
a significant positive correlation with ROS, 
sperm count  (−0.361), morphology  (−0.506), and 
motility  (‑0.398) showed a significant negative 
correlation with ROS [Table 3].

Manual estimation of biochemical parameters is 
time consuming and involves intensive preparation. 
In addition, due to restricted reproducibility and 
high interpersonal variation, the validity of manual 
biochemical assay has been challenged. All presented 
ML methods provided predictions within 5  min, 
including time‑consuming data preparation. This is much 
easier than manual biochemical assessments, requires 
less time, and no repetitions which save reagents making 
it cost‑effective.

Four different ML methods were applied on 70% of 
both citric acid and ROS data to train the models, and 
the trained models were used for the prediction of the 
remaining 30% of data. In Figure  1a, the condensed 
data around the bisector indicated that all models 
showed high accuracy for citric acid as the predicted 
data were close to each other, and ANN outperformed 
the rest. Contrastingly, visual inspection of the ROS 
graph [Figure 1b] showed that the RF model’s predicted 
values outperform the rest since the predictions from 
this model are more condense around the bisector.

In Table  4, all four models displayed similar 

Figure 1: Predicted values vs. observed values of (a) citric acid, and (b) 
reactive oxidation species using linear regression, artificial neural 
network, support vector machine, and random Forrest machine‑learning 
methods

ba



Shemshaki, et al.: Machine-learning to correlate biochemical and semen parameters in male infertility

132132 Journal of Human Reproductive Sciences  ¦  Volume 14  ¦  Issue 2  ¦  April-June 2021

performances. Smaller root means square error  (RMSE) 
values from the ANN model also confirmed that the 
spread of predicted values was smaller than other 
models. Finally, the smallest value of the scatter 

index  (SI) index for the ANN model compared to the 
other models showed that the ANN model predicted 
the citric Acid values better than the other three 
models. These indices confirmed the visual findings 
from Figure  1a where ANN and RF models resulted 
in slightly denser and more spread values around the 
bisector, respectively. Compared to other models, the 
most extensive bias index of the ANN model could be 
meaningful if the other three indices follow the same 
trend.

According to coefficient index  (r) values, the RF model 
predicts the ROS values 5%, 28%, and 5% better than 
SVM, ANN, and LR, respectively. The SI index for 
LR, SVM, and RF has a similar value of 0.28, which 
concerning r and RMSE depict that the RF model 
performs better in predicting ROS values among all 
models [Table 5].  These indices confirm the visual 
findings from Figure 1b.

Out of four investigated ML methods, LR and SVM 
can present a relationship between the dependent and 
independent variables. First, these relationships show the 
critical parameters, and second, show the importance of 
each independent parameter in predicting the dependent 
parameter. The previous results showed that both these 
models have very similar performances in predicting 
citric acid and ROS.

Table 1: Seminal parameters and biochemical marker concentration of individual infertile groups and controls
Patients n Age 

(years)
BMI pH Sperm 

volume
Sperm count 

(mil/ml)
Sperm 

motility (%)
Sperm 

morphology
Fructose 

(≥13 µmole/
ejaculate)

Citric acid 
(≥13 μmole/
ejaculate)

ROS

AS 22 34.8±4.9 25.2±3.9 7.5±0.5 1.8±0.9 39.6±3.5* 20.5±6.3* 30.6±3.5 52.2±11.2* 38.6±6.9* 159±61.7*
AZ 17 34.2±6.3 26.3±3.5 7.6±0.5 1.7±0.7 0.00±0.0* 0.00±0.0* 0.00±0.0 129±5.4 32.7±3.5* 0.00±0.0*
ID 21 36.3±5.2 25.7±4.3 7.5±1.7 2.8±1.5 59.9±23.4* 57.7±15.4 46.1±9.01 126.9±6.9* 53.28±10.2 114±45.7
OL 12 34.3±6.5 26±3.4 7.6±0.5 2.1±1.3 9.4±3.9* 57.4±16 42.6±4.8 111±8.5* 38.7±6.4* 160±66.5*
OA 14 34±5.6 27.1±3.5 7.6±0.4 2.6±1.1 8.5±2.5* 13.5±10.2* 41±6.6 108±6.5* 41.2±8.1 248±67.3*
AT 2 37.5±0.7 28.4±6.0 8±0.7 3.7±3.1 45±21.2* 25±0.00* 18±1.4 115±7.7 41±11.3 216±94*
OAT 4 31.2±3.3 24±1.4 7.6±0.7 2.4±1.7 5.5±3.3* 13.5±7.6* 12.2±4 129±14.8 44±13.9 245±98*
OT 5 31.8±3.8 26.8±3.1 7.8±0.3 1.6±1.4 9.4±1.9* 65±7.07* 17.2±3.9 164±15.2* 22.8±8.1* 212±67*
T 3 35.3±11 25.8±1.2 7.5±0.8 2.4±1.9 50±20* 46.6±11.5* 15±3.6 137±17* 45±6.02 265±50*
Control 50 32.5±3.2 25±2.1 7.5±0.1 2.3±0.2 68.7±6.3* 54.2±1.9 30.1±2.1 126.4±4.6 49.4±1.2 71.4±4.0
*P<0.05 defines the level of significance. All values are presented as mean±SD. SD=Standard deviation, AS=Asthenozoospermia, 
AZ=Azoospermia, ID=Idiopathic, OA=Oligoasthenozoospermia, AT=Astenoteratozoospermia, OL=Oligozoospermia, 
T=Teratozoospermia, ROS=Reactive oxidation species, BMI=Body mass index

Table 4: Error indices for predicted values of citric acid
Model Bias r RMSE SI
LR 0.50 0.89 6.81 0.16
ANN 2.29 0.90 6.59 0.15
SVM 0.27 0.89 7.22 0.17
RF 0.25 0.87 8.16 0.19
RMSE=Root means square error, SI=Scatter index, 
LR=Linear regression, ANN=Artificial neural network, 
SVM=Support vector machine, RF=Random forrest

Table 2: Descriptive value of Fertility status and seminal biochemistry in fertile and infertile individuals
Patients (n) Sperm count 

(mil/ml)
Sperm 

motility (%)
Fructose (≥13 μmole/

ejaculate)
Citric acid (≥13 μmole/

ejaculate)
ROS

Infertile 26.7±27.03 31.1±25.5 105±0.31.07 40.7±10.9 145±97.4
Control 68.7±6.3 54.2±1.9 126.4±4.6 49.4±1.2 71.4±4.05
Significant level 0.05 <0.05* <0.05* <0.05* <0.05* <0.05*
Sig level (P): *P<0.05 defines the level of significance. All values are presented as mean±SD. SD=Standard deviation, ROS=Reactive 
oxidation species

Table 3: Pearson correlation coefficient among the study 
variables

ROS Citric acid Fructose
Age −0.043 0.064 0.069
BMI 0.637* −0.576* 0.295*
Count −0.361* 0.471* −0.139
Morphology −0.506* 0.519 −0.168
Motility −0.398* 0.294* 0.136
Volume −0.082 0.236** 0.117
BMR 0.371* −0.383* 0.279*
*P<0.05 defines the level of significance, **P<0.01 defines the 
level of significance. ROS=Reactive oxidation species, BMI=Body 
mass index, BMR=Basal metabolic rate
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The LR model presented the eq. 2 to predict citric acid 
concentration based on the independent

parameters as:

LRCitric Acid 9.460 pH 0.153 Count
0.148 Motility 0.198 Morphology 0.275

Fat Percentage 1.651 BMI 0.008
BMR 0.162 Fructose 112.214

= − × + × −
× + × +

× − × +
× + × + � (2)

In addition, the SVM model presented the eq. 3 for the 
weight of each independent parameter in

predicting acid citric as:

  

  

 

 



SVMCitric Acid 0.021 Age 0.035 Volume

0.260 pH 0.177 Count 0.175 Motility

0.160 Morphology 0.161 Fat Percentage

0.348 BMI 0.001 BMR 0.242

Fructose 0.452

= × − × −

× + × − × +

× + × −

× + × + ×

+ � (3)
  Denotes the normalized parameter.

Comparison of the two models presented for the citric 
acid shows that the LR model detected a smaller number 
of parameters as important ones; however, the SVM 
considered all the parameters and allocated weights to 
each of them based on their importance.

The LR model detected the pH as the most critical 
parameter  (coefficient of  −9.46) with an inverse effect, 
followed by BMI  (coefficient of  −1.651) with inverse 
effect, fat percentage  (coefficient of 0.275) with direct 
effect, and morphology  (coefficient of 0.198) with 
direct effect. The LR model indicated parameters such 
as count, fructose, and motility which were at the 
almost same level of importance  (coefficients equal to 
0.153, 0.162, and −0.148) with direct, direct, and inverse 
effects on citric acid, respectively. The BMR with direct 
effect was detected as the least essential parameter.

On the other side, the SVM model allocated a 
small weight  (compared to other parameters) of 
0.021 and  –0.035 to age and volume, respectively. 

Other than these two parameters, the SVM 
model detected the BMI as the most critical 
parameter  (weight of  −0.348) with an inverse effect, 
followed by pH  (weight of  −0.260) with an inverse 
effect, and fructose  (weight of 0.242) with a direct 
effect. This model detected the motility, count, and 
fat percentage with almost equal importance  (weights 
of  −0.175, 0.177, and 0.161) with inverse, direct, and 
direct effects, respectively. The SVM also detected 
the BMR as the least essential parameter with direct 
effect.

Similar to the prediction of the citric acid, the LR model 
presented the Equation 4 to predict ROS based on the 
independent parameters as:

LRROS 1.457 Motility 1.773 Morphology
6.469 BMI 0.067 BMR 1.109 Fructose
2.421 Citric Acid 230.236

= − × − × +
× − × + × −
× + � (4)

In addition, the SVM model presented the eq. 5 for the 
weight of each independent parameter in

predicting ROS as:

  

  

 

 

 

SVMROS 0.0036 Age 0.0061 Volume

0.165 pH 0.061 Count 0.392 Motility

0.295 Morphology 0.023 Fat Percentage

0.259 BMI 0.138 BMR 0.376

Fructose 0.362 Citric Acid 0.581

= − × − × +

× − × − × −

× − ×

+ × − × + ×

− × + � (5)

Comparing the standard parameters between the two 
models shows that both the models have similar detection 
of each parameter’s effect, either having a direct or inverse 
effect. The LR model detected the BMI  (coefficient 
of 6.469) as the most critical parameter in predicting 
ROS followed by citric acid  (coefficient of  −2.421), 
morphology (coefficient of −1.773), motility (coefficient of‑1.457), 
fructose  (coefficient of 1.109), and BMR  (coefficient 
of −0.067). On the other hand, the SVM model detected 
motility (weight of −0.392) as the most critical parameter 
with an inverse effect in predicting ROS. After that, 
fructose and citric acid  (weights of 0.376 and  −0.362) 
have almost similar effect weight with opposite 
signs  (direct and inverse, respectively). Morphology, 
BMI, pH, and BMR have similar effects  (weights 
of  −0.295, 0.259, 0.165, and  −0.138) on predicting 
ROS with inverse, direct, direct, and inverse effects, 
respectively. Similar to LR models, the SVM model 
detected the count, volume, and age as the least essential 
effects with little inverse effects.

Table 5: Error indices for predicted values of reactive 
oxidation species

Model Bias r RMSE SI
LR 5.10 0.83 47.60 0.28
ANN 4.93 0.68 73.56 0.44
SVM 5.31 0.83 48.12 0.28
RF 9.28 0.87 46.52 0.28
RMSE=Root means square error, SI=Scatter index, LR=Linear 
regression, ANN=Artificial neural network, SVM=Support vector 
machine, RF=Random forrest
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Discussion

The present study aimed to ascertain the correlation 
between seminal biochemical markers and sperm 
parameters in infertile patients and controls. Our 
result showed that asthenozoospermia and associated 
conditions showed decreased seminal fructose levels 
compared to controls. The motility of spermatozoa 
is closely connected with fructose breakdown.[41,42] 
Another possible reason could be explained by partial 
or complete obstruction of the seminal ducts of the 
accessory glands that secrete fructose.[43] In this study, 
oligoteratozoospermia condition showed an increase 
in seminal fructose than normal. This could be either 
because of abridged sperm count, abnormal sperm 
morphology, and low utilization by spermatozoa with 
morphological defects and decreased sperm activity 
leading to the accumulation of fructose in the semen 
which gets detected in our fructose test.[44,45]

The primary role of citric acid is maintaining semen 
pH.[42,46] It is a reliable biomarker of prostatic function 
and it plays a crucial role in balancing the osmotic 
equilibrium of semen that influences the membrane 
function and sperm morphology.[47‑49] In this study, 
decreased citric acid levels were observed in azoospermia, 
oligoteratozoospermia, and asthenozoospermia groups. 
The reduced citric acid in semen could be due to 
inflammation, acute or chronic prostatitis, any partial 
or complete obstruction of the ejaculatory ducts, and 
prostate cancer. [45]

ROS plays a dual role in male reproduction, supporting 
and activating the physiological roles of sperm at basic 
levels while causing significant detrimental effects on 
male fertility at elevated concentrations.[50] In previous 
studies, semen parameters are reportedly affected by 
the oxidation of cellular components and activation 
of the apoptotic pathway.[51,52] This was caused by 
excessive ROS generation/failure of the antioxidant 
system. ROS can induce apoptosis in germ cells, leading 
to decreased sperm counts. In this study, increased 
ROS was observed in oligoasthenoteratozoospermia, 
oligoasthenozoospermia, oligoteratozoospermia, and 
teratozoospermia groups and also showed increased ROS 
in asthenoteratozoospermia and oligoasthenozoospermia 
groups with decreased motility, which could be 
attributed to sperm carrying dysfunctional mitochondria 
contributing to decreased motility, in turn, increased 
ROS production.

ML models have an exceptional inherent accuracy in 
predicting in vivo outcomes than existing in vitro assays, 
making it a powerful tool for linking the dependent 
variable  (ROS) to multiple independent variables. All 

four ML models resulted in the accurate prediction of 
citric acid where all models’ accuracy was close to each 
other, although the ANN model slightly outperformed 
others. On the other hand, RF, in the prediction of 
ROS, thoroughly performed better than the other three 
models.

The LR model detected pH as the most critical parameter, 
followed by BMI, fat percentage, and morphology. On 
the other side, SVM model detected BMI as the most 
critical parameter, followed by pH and fructose.

Relationships presented for ROS using LR and SVM 
models showed that The LR model detected the BMI as 
the most critical parameter in predicting ROS followed 
by citric acid, morphology, motility, fructose, and BMR. 
On the other hand, the SVM model detected motility 
as the most critical parameter with an inverse effect in 
predicting ROS. After that, fructose and citric acid have 
an almost similar level of effect.

We, therefore, tried to figure out which parameters affect 
more ROS and citric acid in simultaneous conditions 
and as a result, BMI and pH are the most powerful 
parameters for ROS and citric acid, respectively.

The present study is the first research that used ML 
approaches to integrate the various biochemical and 
seminal parameters measured to estimate the levels of 
OS. In this study, one of the limitations was the lack 
of knowledge about the patient’s lifestyle  (cigarette 
smoke, pollutants, and heavy metals) and assessment 
of hormone imbalance. Moreover, our results must 
be verified in other larger populations with the use of 
different techniques as a further objective.

Conclusion

Our data reveal a complex relationship between 
fructose, citric acid, and ROS with sperm parameters 
and can be used for the recognition of biological 
attributes of semen. More attention should be paid 
to the function of seminal vesicles, and therefore, 
evaluation of certain biochemical markers of seminal 
fluid may benefit in understanding the functionality 
of accessory glands, which subsidizes significantly 
to the seminal volume. We demonstrated that BMI 
has a significant effect on ROS compared to other 
parameters, and ROS significantly affects sperm 
quality leading to a decline in IUI and IVF success. 
Thereby, increased attention to obesity treatment may 
help in improving the success rates of MI treatment 
strategies. Through the ML method, we found a hidden 
link between BMI and various biochemical and semen 
parameters.
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Supplementary Material
Appendix
Equation 1 shows the general form of LR models:
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Where, y is the dependent variable, xi represents the ith independent variable, β0 is the constant value(y‑intercept), βi is 
the coefficient for ith independent variable, and ϵ is the model error.

Equations 2 and 3 presents the relation between input and output parameters as:
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Where P is the output of each node, ai is the input value, wi is the weight, and B is the bias. By suitable training the 
ANN model and by adjusting the weights, the overall error between the outputs and actual observations should be 
reduced.

Bias y x= − � (4)

Where  x  and  y represent the mean observed and predicted values, respectively. To explore the correlation of the 
observed and predicted values, correlation coefficient index, r  was used as:
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Where xi and yi represent the observed and predicted values at ith data respectively, and N is the number of 
observations. To measure the spread of predicted values, the root mean square error, RMSE was used as:
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In addition, to measure the percentage of RMSE difference with respect to mean observation, scatter index, SI was 
computed as:
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