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Objective: This study aimed to develop effective artificial intelligence (AI) diagnostic
models based on CT images of pulmonary nodules only, on descriptional and quantitative
clinical or image features, or on a combination of both to differentiate benign and malignant
ground-glass nodules (GGNs) to assist in the determination of surgical intervention.

Methods: Our study included a total of 867 nodules (benign nodules: 112; malignant
nodules: 755) with postoperative pathological diagnoses from two centers. For the
diagnostic models to discriminate between benign and malignant GGNs, we adopted
three different artificial intelligence (AI) approaches: a) an image-based deep learning
approach to build a deep neural network (DNN); b) a clinical feature-based machine
learning approach based on the clinical and image features of nodules; c) a fusion
diagnostic model integrating the original images and the clinical and image features. The
performance of the models was evaluated on an internal test dataset (the “Changzheng
Dataset”) and an independent test dataset collected from an external institute (the
“Longyan Dataset”). In addition, the performance of automatic diagnostic models was
compared with that of manual evaluations by two radiologists on the ‘Longyan dataset’.

Results: The image-based deep learning model achieved an appealing diagnostic
performance, yielding AUC values of 0.75 (95% confidence interval [CI]: 0.62, 0.89) and
0.76 (95% CI: 0.61, 0.90), respectively, on both the Changzheng and Longyan datasets.
The clinical feature-based machine learning model performed well on the Changzheng
dataset (AUC, 0.80 [95% CI: 0.64, 0.96]), whereas it performed poorly on the Longyan
dataset (AUC, 0.62 [95% CI: 0.42, 0.83]). The fusion diagnostic model achieved the best
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performance on both the Changzheng dataset (AUC, 0.82 [95% CI: 0.71-0.93]) and the
Longyan dataset (AUC, 0.83 [95% CI: 0.70-0.96]), and it achieved a better specificity
(0.69) than the radiologists (0.33-0.44) on the Longyan dataset.

Conclusion: The deep learning models, including both the image-based deep learning
model and the fusion model, have the ability to assist radiologists in differentiating between
benign and malignant nodules for the precise management of patients with GGNs.
Keywords: ground-glass nodule, computed tomography, differential diagnosis, computer-aided diagnosis,
artificial intelligence
INTRODUCTION

Lung cancer remains the leading cause of global cancer deaths,
especially in China (1, 2). Since the low-dose multi-detector
spiral CT was introduced to lung cancer screening, the number
of detected ground-glass nodules (GGNs) has dramatically
increased (3, 4). In contrast to solid nodules, GGNs have a
higher malignancy rate (5–7), even though benign GGNs were
also frequently reported in postoperative pathologies, such as
focal pneumonia, organizing pneumonia, focal fibrosis, lipoid
pneumonia, pulmonary hemorrhage (8, 9). Although early
detection and the subsequent resection of malignant GGNs
may improve the prognosis of patients, it has a hard time
differentiating between benign and malignant nodules for
radiologists. Moreover, the discrimination between benign and
malignant nodules is of critical importance to an appropriate and
consistent treatment strategy for patients suspected of early-stage
lung cancer, which has now become a crucial clinical issue.
Accurate diagnosis plays an essential role in GGNs management
and provides a foundation for choosing appropriate treatment
and predicting prognosis.

However, due to imaging resemblance, it is incredibly
challenging to differentiate malignant GGNs from their benign
counterparts. The morphologic characteristics of malignant
pulmonary nodules are similar to those of benign pulmonary
nodules (10, 11). Diagnosis of GGNs has remained a challenge
with dedicated CT, FDG-PET/CT, or even image-guided
percutaneous biopsy, However, these technological advances
have the potential to define a new era in the evaluation of
GGNs. PET-CT is a functional imaging method demonstrating
differences in the glucose metabolism of tissues. As infection and
inflammatory lesions are also hypermetabolic, the efficacy of
PET-CT to differentiate benign and malignant lesions has been
restricted (12). Despite advances in nonsurgical biopsy
techniques, unnecessary surgical resections of low-risk nodules
or benign nodules remain common. Thus, accurate
discrimination between benign and malignant GGNs could
never be overemphasized in the process of improving
patient management.

There is no single robust method for differentiating benign
GGNs from malignant ones. Deep learning technologies such as
convolutional neural network (CNN) demonstrate outstanding
potential in extracting comprehensive features from extensive
sets of complex data (13–15). In addition, those technologies
2

have been successfully applied to the diagnosis of disease, the
evaluation of prognosis, and the prediction of pathological
response in Non-small Cell Lung Carcinoma (NSCLC) (16–
18). Therefore, it is expected to become a simple, convenient,
reproducible, and noninvasive method to differentiate between
malignant and benign nodules. Many studies reported deep
learning models which had achieved unprecedented success in
differentiating malignant and benign pulmonary nodules.
However, most of them were based mainly on public datasets
without pathological diagnoses for the included nodules as gold
standards (19–21). Besides, most studies were based on solid
nodules, and only a few were on benign or malignant GGNs.

This study aimed to develop diagnostic models based on CT
image patches of GGN, clinical characteristics of patients and
image features, or a combination of both, in the task of
differentiating benign and malignant ground-glass nodules
(GGNs) with pathological diagnoses, and to compare the
diagnostic performance of these models against manual
evaluation by radiologists.
METHODS

Study Population
The institutional review board of the local hospitals approved
this retrospective study (Changzheng Hospital, No.2018SL028),
and the written informed consent from patients was waived due
to its retrospective nature. A search using the keywords “GGN”,
“ground-glass opacity”, “part-solid nodule”, and “ground-glass”
in CT reports was performed to screen out patients with GGNs
admitted to Changzheng hospital in the period from December
2015 to September 2020 and Longyan First hospital in the period
from January 2017 to December 2020. The inclusion criteria
were: (a) nodules with the pathological diagnosis made on
specimens obtained by CT-guided transthoracic needle biopsy,
transbronchial biopsy, video-assisted thoracoscopic surgery, or
surgical resection; (b) GGNs measuring <30 mm in size; and (c)
images with a slice thickness of 1-mm or 0.625-mm. The
exclusion criteria were: (a) incomplete clinical or imaging data;
(b) GGNs described in histopathological reports not identifiable
on CT images; (c) image of insufficient quality (e.g. artifacts in
CT images). The patient inclusion procedure is shown in
Figure 1. We collected only the latest CT images prior to
their surgery.
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A total of 867 nodules (benign: 112; malignant: 755) from the
two independent datasets were included in our study, of which
804 GGNs (the ‘Changzheng Dataset’, benign nodules: 102;
adenocarcinoma in situ (AIS) nodules: 175; minimally invasive
adenocarcinoma (MIA) nodules: 192; invasive adenocarcinoma
(IA) nodules: 335) were collected from Changzheng hospital to
train and validate the models. A dataset consisting of 63 GGNs
(benign nodules: 10; AIS nodules: 5; MIA nodules: 24; IA
nodules: 24) collected from Longyan First Hospital was
established as an external test set (the ‘Longyan Dataset’).

Patient images in the Changzheng dataset were obtained using
five different CT scanners (TOSHIBA Aquilion, two Philips
Ingenuity scanners, General Electric LightSpeed VCT, and Philips
iCT256). CT images in the Longyan dataset were obtained using the
Philips iCT256. All CT images were acquired in the supine position
at full inspiration. Scan coverage was from the adrenal gland to
the thoracic inlet. Scanning parameters were 120 kV, 50-150 mA,
image matrix 512 × 512 pixels, and 0.5-second scanning
duration. Continuous images were reconstructed with a thickness
of 0.625-1mm. All images were exported in DICOM format.

Nodule Labeling
All CT morphology characteristics were reviewed by two
thoracic radiologists (W.X, and l.Q, respectively, with five and
ten years of experience in chest CT) who were blinded to the
pathological results. Based on the presence of a solid component,
nodules were classified into two groups: the pure ground-glass
nodule (pGGN) group and the mixed ground-glass nodule
(mGGN) group. On high-resolution CT images, the pGGN
was defined as an area of hazy increased lung attenuation with
distinct margins of underlying vessels and bronchial walls; the
mGGN was characterized as nodules with both ground-glass and
solid components.

Tumor segmentation was performed using an in-house software
tool Prolego (Image Processing System, Aitrox Technology
Frontiers in Oncology | www.frontiersin.org 3
Corporation Limited, Shanghai, China). For each tumor, regions of
interest (ROI) on the entire three-dimensional range of the axial CT
images covering the tumor, was first drawn by Prolego. Themethods
for evaluating segmentation results had previously been validated
(22). The maximum dimension on axial CT images was measured
and recorded by the two radiologists who independently made
qualitative (attenuation, lobulation, spiculation, air bronchogram,
pleural indentation, vacuole sign and nodule-lung interface) and
quantitative (themaximumdiameters of the lesions in the transverse
plane) assessments inCT images. Three clinical parameters (age, sex,
smoking history [never- smoker, current and former smoker]) were
disclosed to observers. The basic characteristics of the two
independent datasets are summarized in Table 1.

Pathological Diagnosis
The pathological subtypes of all malignant GGNs were categorized
according to the 2015 pulmonary adenocarcinoma classification
(23). All pathological specimens of each case were confirmed by at
least two experienced pathologists and benign cases were
histopathological confirmed with hemorrhage, chronic
inflammation, and focal interstitial fibrosis. The consensus was
reached by mutual discussion or consultation with a third
pathologist whenever there was a disagreement.

Diagnostic Models
Image-Based Deep Learning Diagnostic Model
Data Pre-Processing
The window level of all included CT images was reset to -200
HU, and the window width was reset to 800 HU. All voxels were
subsequently normalized to the range of [0,1]. An image patch
with the size of 32x32x32 pixels was cut around the nodule
position annotated by radiologists as the input of the model.

Before training, we performed data augmentation for benign
cases to rectify the classification bias due to the imbalance in
sample size. The data augmentation included an image shifting
FIGURE 1 | Flowchart of study population. CT, computed tomography; GGN, ground-glass nodule.
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procedure, where the image patches were randomly shifted within
five pixels on the x- and y-axes, and an image rotation procedure,
where the patches were randomly rotated 90°, 180°, or 270°on x-y
plan, x-z plan, and y-z plan. After data augmentation for benign
cases, the ratio of benign and malignant nodules was
approximately 1:1.
Construction of the Neural Network
We used the DenseNet (24), which has been successfully applied in
many medical image classification tasks, as the network backbone
for our image-based deep learning diagnostic model. The input was
an image patch covering the whole nodule in the size of 32x32x32
pixels. The output was a single value in the range of [0,1], indicating
the probability of malignancy of the nodule. As shown in Figure 2A,
our deep learning diagnostic model consisted of two convolutional
blocks (Conv I, II) and a fully-connected block (FC). The model
included an encoder network and a decoder network. The encoder
network, consisting of Conv I and II, was used to extract image
features from the input image patches, followed by the FC block’s
decoder network, which was used to calculate the classification
probabilities according to features extracted by the encoder along
with the sigmoid function. Two models with the same network
architecture were trained with different strategies: the Image-Based
Deep Learning model without Transfer Learning trained de novo,
namely IBDL-nonTL (for Image-Based Deep Learning model – non
Transfer Learning); and the Image-Based Deep Learning model
Frontiers in Oncology | www.frontiersin.org 4
with Transfer Learning loaded with parameters pre-trained with
ImageNet, namely IBDL-TL (for Image-Based Deep Learning
model –Transfer Learning). We used the cross entropy as the loss
function in the model training process. Adam optimizer with an
initial learning rate of 5x10-5 was used to optimize the weights for
IBDL-TL. The same optimizer with an initial learning rate of 1x10-3

was used for IBDL-nonTL.

Clinical Feature-Based Diagnostic Model
A logistic regression model based on clinical features (age, sex,
smoking history) and image features (maximum diameters,
attenuation, lobulation, spiculation, air bronchogram, pleural
indentation, vacuole sign and nodule-lung interface) was
constructed to diagnose the malignancy of pulmonary nodules,
namely CFBLR for Clinical Feature-Based Linear Regression
Model. Patients were divided into the benign and malignant
groups according to the pathological diagnoses. The difference in
the distribution of each feature between the two groups was
statistically analyzed. Only features with statistically significant
differences between the two groups were fed to the diagnostic
model as input.

The logistic regression model was constructed, trained, and
assessed using the Scikit-learn library (25) (Version 1.0) on the
Python platform (Version 3.6.8, Python Software Foundation,
USA). All hyper-parameters of the linear regression model were
set as default.

Image-Clinical Feature Fusion Model
For a more accurate determination of pulmonary nodule
malignancy, we constructed a fusion model upon the image-
based deep learning models, integrating the original CT images,
clinical features of the patients, and manually extracted image
features. As shown in Figure 2B, the clinical features and manually
extracted image features were associated with the high-dimensional
image features extracted from CT images by the encoder network.
The clinical features, the manually extracted image features, and
the encoder extracted image features, were passed to the decoder
together to evaluate based on fusion information. The structure of
the ultimate decoder was the same as that for the image-based
diagnostic model, except for having employed the extra clinical
features and manually extracted image features as the inputs.

Similar to the image-based deep learning models, two fusion
models adopting the same network architecture were trained
with different strategies: the Fusion Prediction Model without
Transfer Learning (FPM-nonTL, for Fusion Prediction Model –
non Transfer Learning) was trained de novo; and the Fusion
Prediction Model with Transfer Learning (FPM-TL, for Fusion
Prediction Model – Transfer Learning) was loaded with
parameters pre-trained with ImageNet.

Model Evaluation and Statistical Analysis
The performance of our classification models was evaluated by
the receiver operating characteristic (ROC) curve and the area
under the ROC curve (AUC). We examined the models’
sensitivity, specificity, accuracy, positive predictive value
(PPV), and negative predictive value (NPV) at the probability
threshold of 0.5.
TABLE 1 | Characteristics of the GGNs in two datasets.

Characteristic Changzheng Dataset
N=743 (804 Nodules)

Longyan Dataset
N=61 (63 Nodules)

Benign 102(12.7) 10(15.9)
Adenocarcinoma stage
AIS 175(21.8) 5(7.9)
MIA 192(23.9) 24(38.1)
IA 335(41.6) 24(38.1)

Age* 55[48,63] 53[42,61]
Sex*
Male 266(35.8) 22(36.1)
Female 477(64.2) 39(63.9)

Location
RUL 303(37.6) 15(23.8)
RML 56(7.0) 8(12.7)
RLL 147(18.3) 14(22.2)
LUL 200(24.9) 20(31.8)
LLL 98(12.2) 6(9.5)

Smoker*
Yes 119(16.0) 10(16.4)
No 624(84.0) 51(83.6)

Maximal Diameter 14.0[10.5,18.0] 10.0[8,16.75]
Diameter Range
(0, 10] 201(25.0) 34(54.0)
(10, 20] 466(58.0) 23(36.5)
(20, 30] 137(17.0) 6(9.5)

pGGN 468(58.2) 35(55.6)
mGGN 336(41.8) 28(44.4)
The characteristics with * are counted on patient level, others are counted on nodule level.
AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive
adenocarcinoma; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe;
LUL, left upper lobe; LLL, left lower lobe; pGGN, pure ground glass nodule; mGGN, mixed
ground glass nodule.
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The ROC curves and the metrics were obtained using the R
language platform (Version 4.0.0, R Foundation for Statistical
Computing, Vienna, Austria). Differences in the diagnostic
performance between the diagnostic models and real-world
radiologists were compared on the Longyan dataset in terms of
sensitivity, specificity, accuracy, PPV and NPV.

Comparison of patient demographics between different
groups was performed using MedCalc (Version 18.2.1,
MedCalc Software Ltd, Belgium). A mono-factor analysis
including statistically significant clinical features was
performed using Python (Version 3.6.8, Python Software
Foundation, USA). A p-value less than 0.05 indicated statistical
significance. To compare the differences in categorical variables
(sex, nodule-lung interface, pleural indentation, specular sign,
smoking history, nodule attenuation, lobulation, vacuole sign,
and air bronchogram) between groups, Chi-square tests were
applied. For continuous variables, we used the Shapiro-Wilk test
to check for normality before a Mann-Whitney U Test was used
for non-normally distributed data or an independent two-sided
t-test for normally distributed data. To compare the performance
of classification models on the same test dataset, DeLong Test
was applied for the ROC curves.
Frontiers in Oncology | www.frontiersin.org 5
RESULTS

A total of 804 patients (mean age, 55 ± 11 years; range, 20–87
years) were included in this study, including 516 (64.17%)
women (mean age, 54 ± 11 years; range,25–87 years) and 288
(35.82%) men (mean age, 55 ± 11 years; range, 20–79 years). A
hundred and twenty-nine (16.04%) patients had a smoking
history. Demographic characteristics and CT morphological
characteristics of the 867 GGNs (benign nodules: 112;
malignant nodules: 755) are summarized in Table 2. The
maximum diameters of malignant GGNs were significantly
more than the benign GGNs (P<0.001), and malignant GGNs
are more likely to have a well-defined border (P<0.001).

IBDL-TL achieved a similar performance on the Changzheng
and Longyan dataset, with AUC values of 0.75 (95% CI: 0.62,
0.89) and 0.76 (95% CI: 0.61, 0.90), respectively. (Figure 3 and
Table 3) Corresponding to the threshold of malignancy
possibility at 0.5, the model achieved sensitivities of 0.61 and
0.68, specificities of 0.73 and 0.62, and accuracies of 0.63 and
0.67, for the two datasets, respectively. The PPVs and NPVs of
the IBDL-TL model are also shown in Table 3. In contrast,
IBDL-nonTL yielded a much lower performance on the two test
A

B

FIGURE 2 | Network structure illustration for the deep learning models IBTL (A) and FPM (B). Convolutional block I (Conv I) consists of 2 convolutional layers.
Convolutional block II (Conv II) consists of 4 Resnet sub-blocks and maxpooling layers after each Resnet sub-block. First two of the Resnet sub-block consists of 4
convolutional layers each, while the last two Resnet sub-blocks consists of 6 convolutional layers each. Skipping connection is adopted in all 4 Resnet-sub blocks.
Fully-connected block (FC) consists of 3 fully-connected layers.
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datasets, respectively, with AUC values of 0.53 (95% CI: 0.35,
0.71) and 0.68 (95% CI: 0.50, 0.86), sensitivities of 0.33 and 0.82,
and specificities of 0.82 and 0.46, respectively, for the two test
datasets. Comparison between AUCs of the IBDL-TL and IBDL-
nonTL on the Changzheng test dataset, indicates that the
performance of IBDL-TL is better than IBDL-nonTL with
statistical significance. (p=0.042)

Compared with the IBDL-TL, CFBLR achieved better
performance on the Changzheng dataset than on the Longyan
dataset (Figure 3 and Table 3), with AUC values of 0.80 (95% CI:
0.64, 0.96) and 0.62 (95% CI: 0.42, 0.83), sensitivities of 0.82 and
0.82, specificities of 0.64 and 0.38, and accuracies of 0.79 and 0.72
for the two test datasets. The corresponding PPV and NPV
values are shown in Table 3. The five most important features of
the CFBLR model and their weights are listed in Table 4.

FPM-TL achieved the best performance out of our models,
with AUC values of 0.82 (95% CI: 0.71, 0.93) and 0.83 (95% CI:
0.70, 0.96), sensitivities of 0.79 and 0.77, specificities of 0.64 and
0.69, and accuracies of 0.77 and 0.75, respectively, for the
Changzheng and Longyan datasets (Figure 3 and Table 3).
While DeLong tests showed no statistical significance between
FPM-TL and IBDL-TL or CFBLR on Changzheng test dataset
(all p>0.05), the performance of FPM-TL was better than CFBLR
on the Longyan test dataset with statistical significance
(p=0.018). Compared with FPM-TL, the performance of FPM-
Frontiers in Oncology | www.frontiersin.org 6
nonTL was inferior (p=0.0001), with AUC values of 0.47 (95%
CI: 0.32, 0.63) and 0.62 (95% CI: 0.43, 0.81), sensitivities of 0.16
and 0.16, and specificities of 0.91 and 0.85 on the Changzheng
and Longyan datasets, respectively.

In our study, two radiologists evaluated benign and malignant
GGNs independently by the Longyan dataset. The results
showed that sensitivities achieved by radiologists ranged from
0.87 to 0.9. The overall accuracy of radiologists ranged from 0.81
to 0.83 (Figure 3 and Table 3).
DISCUSSION

Our results suggested that the IBDL-TL model could effectively
distinguish benign and malignant GGNs on both the Changzheng
dataset and the Longyan dataset. This reflected a great
generalizability of the IBDL-TL model since tests on the two
independent datasets suggested similar AUC values (0.75 and
0.76). Compared with the IBDL-TL model, although the CFBLR
model (trained upon the manually extracted clinical features)
achieved a higher AUC of 0.80 on the Changzheng dataset, its
performance on the Longyan dataset was much lower (AUC =
0.62), suggesting a lack of cross-center generalizability. Therefore,
this could be a severe problem if it was applied to real radiological
practice. In addition, our results revealed that a proper fusion of
image information, clinical features and radiological features
manually extracted from CT images could contribute to a higher
diagnostic efficacy on both the Changzheng and Longyan datasets
(AUC values, 0.82 and 0.83). It is noteworthy that the fusion model
showed an excellent generalizability while its AUC values were the
highest among all models on both test datasets, which indicated
promising potential for it to be applied in clinical practice.

The malignancy of pulmonary nodules may be distinguished
based on patients’ clinical information (sex, smoking history,
etc.) and accurate CT imaging characteristics. It is controversial
whether preoperative CT morphological features of chronic
inflammatory could differentiate between benign and
malignant nodules. In our CFBLR model, a larger diameter of
the nodule indicated greater probability of malignancy. Some
studies (26, 27) have indicated that the malignancy is extremely
low (<1%) for nodules less than 5 mm and 64%-82% for nodules
larger than 20 mm. Besides, smoking is a risk factor for lung
cancer. The smoking rate of patients in the malignant cohort of
the Changzheng dataset was 20.6%, which was much lower than
that of other studies (28, 29). However, we found that female was
closely associated with malignant pulmonary nodules (p = 0.01),
which was in line with previous studies (30–32). The results of
our studies showed that a well-defined border was also
significantly associated with malignant GGNs, inconsistent
with previous in vivo studies (33). Besides, our results on air
branchogram were in conflict with previous studies (34). We
demonstrated the presence of more air bronchogram in benign
GGNs (Table 2). This may be related to our case selection bias
and the uneven number of benign and malignant cases. Besides,
our benign cases were mainly proved by surgery, and the signs
were usually atypical. This also showed the limitations of
distinguishing between the benign and malignant by the CT
TABLE 2 | Statistical analysis of clinical features between the malignant and
benign cases in the Changzheng Dataset.

Feature Benign cases Malignant cases p-value

Age 55[46,61] 55[48,63] 0.45
Sex
Male 49 243 0.01*
Female 53 459

Nodule-lung Interface
Unclear 34 123 <0.001*
Clear 68 579

Pleural Indentation
With 7 90 0.12
Without 95 612

Spicular Sign
With 2 29 0.43
Without 100 673

Smoking History
Yes 8 120 0.017*
No 94 582

Maximal diameter (mm) 12[8,15] 14[11,19] <0.001*
Attenuation
pGGN 51 417 0.09
mGGN 51 285

Spiculation Sign
With 19 157 0.47
Without 83 545

Vacuole Sign
With 2 12
Without 100 690 0.82

Air Bronchogram
With 13 32
Without 89 670 0.002*
pGGN: pure ground glass nodule, mGGN: mixed ground glass nodule.
*p value < 0.05
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FIGURE 3 | (A) The ROC of each model (clinical model, two image feature models with or without transfer learning, and two fusion models with or without transfer
learning) in the test data set of our hospital was presented in (A); (B) The ROC of each model (clinical model, two image feature models with or without transfer
learning, and two fusion models with or without transfer learning) of the independent test data set in the external hospital was presented in (B). The figures also
showed two representative points of the interpretation doctors. AUC, Area under the ROC curve; IBDL-TL, Image-based Deep Learning (transfer learning) model;
CFBLR, clinical feature based regression; FPM-TL, fusion prediction model (transfer learning); IBDL-nonTL, Image-based Deep Learning (non-transfer learning)
model; FPM-nonTL, fusion prediction model (non-transfer learning).
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morphological features. The model will be optimized as the
sample size increases later.

This study illustrated that the deep learning model could
accurately differentiate between benign and malignant GGNs,
and may help reduce misdiagnosis or overtreatment of GGNs.
Hu et al. (35) classified 89 GGNs as benign or malignant using
396 quantitative texture features, achieving an AUC of 72.9% in
the validation dataset. Gong et al. (36) established a classification
method based on the fusion of radiomics features and deep
learning features and achieved an AUC of 0.73 for the test
dataset. Our study demonstrated that the IBDL-TL and FPM-
TL models performed well on both the Changzheng and
Longyan datasets. Furthermore, a comparison of the diagnostic
performance between the IBDL-TL and FPM-TL models and
radiologists showed that although the AI models have slightly
lower sensitivities (ranging from 0.68 to 0.77, compared to
sensitivities ranging from 0.87 to 0.9 of radiologists), both the
Frontiers in Oncology | www.frontiersin.org 7
IBDL-TL and FPM-TL models have higher specificities (ranging
from 0.62 to 0.69) than radiologists (ranging from 0.33 to o.44),
suggesting the potential of the models for reducing false positives
in future clinical applications.

In the technical aspect, the critical issues in the development of
effective diagnostic models for distinguishing between malignant
and benign GGNs include 1) how to deal with the severe imbalance
between positive and the negative samples; 2) how to compensate
for the lack of enough training data; 3) how to effectively fuse the
clinical features and the image information to construct a diagnostic
model. The imbalance of samples between classes made it difficult
for the model to learn negative features. In addition, models trained
with unbalanced training datasets would tend to make a false
positive diagnosis. To solve this problem, we used a data
augmentation strategy, applied by many studies in medical-
image-based classification tasks (14, 37). The negative image
patches were augmented by image shifting and rotating. Thus, the
June 2022 | Volume 12 | Article 892890
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model could learn features from more negative image patches.
Besides, during the training process, we randomly picked 32
samples from positive image patches and 32 samples from
augmented negative samples to balance the positive and negative
samples in each training batch. In this way, the bias of the model
could be prevented. The lack of training samples made the model
overfitting on the training dataset and underperforming on the test
dataset. To deal with this problem, we applied a transfer learning
strategy, where network weights pre-trained with ImageNet were
loaded into the encoder. As proved by many studies (38–40), the
transfer learning strategy can effectively train a well performing
classification model with relatively small sample size.

Furthermore, a meager learning rate of 1x10-5 was used to
prevent overfitting. For an efficient fusion of clinical features and
manually extracted image features with CT images, relatively
abstract clinical features and manually extracted image features
were fused with the information from CT image patches only
after the high-dimensional feature information had been
extracted from the raw image patches. This was because, in
theory, the information extracted by the encoder and the
manually extracted information was of similar abstract levels.

In addition, two radiologists of different seniority reviewed
the test dataset in the meantime (Table 3). The results showed
that the radiologists achieved sensitivities of 0.87 and 0.9 and
accuracies of 0.81 and 0.83, which suggested that our proposed
models outperformed the performance of the two radiologists.
The current findings indicated that the deep learning-based
pulmonary nodule assessment model could increase diagnostic
accuracy and radiologists’ productivity. In this study, we built a
database and another independent test database upon GGNs
with pathological diagnoses to train and test the classification
model. Unlike Computer-aided diagnosis (CAD) schemes with
publicly available datasets lacking histopathologically confirmed
results, our proposed models were trained and tested with
histopathology confirmed nodules. In addition, clinical features
Frontiers in Oncology | www.frontiersin.org 8
and CT features were intelligently integrated into the deep
learning models. The evaluation capability of our method was
further enhanced compared with methods built with a single
deep learning model or clinical features.
LIMITATIONS

Our study had several limitations. First, as a retrospective analysis,
almost all patients in this study had pathology, suggesting all these
cases were suspected to be malignant by clinicians. Thus, the
selection bias was unavoidable. Second, we included only
pathologically diagnosed GGNs after surgery, therefore the
number of benign GGNs in our study was relatively small. Third,
the sample size of the external test set was relatively small; In this
case, performance of those developed models need to be verified on
larger datasets collected from multiple external centers.
CONCLUSIONS

We developed AI diagnostic models to classify GGNs on CT
images. Our findings suggested that the deep learning
approaches achieved an excellent performance in classifying
GGNs nodules, compared to the performance of radiologists.
This study provided scientific evidence that deep learning
methods may improve the classification performance of benign
and malignant nodules. These models may provide a non-
invasive, fast, low-cost, and reproducible method to accurately
differentiate between benign and malignant GGNs, which would
tremendously benefit the management of patients with GGNs.
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Radiologist R1 NA NA NA NA NA NA NA NA NA 0.87 0.44 0.81 0.91 0.33
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*For the DeLong Test between the corresponding model performance and that of FPM-TL on the same test dataset. NA, not applicable.
TABLE 4 | The five most important features of the CFBLR model and their weights.

Feature Weight

Sex -0.993
Nodule-lung Interface -1.277
Smoking History 2
Maximal Diameter 0.12
Air Bronchogram -1.354
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