
sensors

Article

Examining the Performance of Fog-Aided, Cloud-Centered IoT
in a Real-World Environment

Mohammed A. Aleisa 1,2,* , Abdullah Abuhussein 3 , Faisal S. Alsubaei 4 and Frederick T. Sheldon 1

����������
�������

Citation: Aleisa, M.A.; Abuhussein,

A.; Alsubaei, F.S.; Sheldon, F.T.

Examining the Performance of

Fog-Aided, Cloud-Centered IoT in a

Real-World Environment. Sensors

2021, 21, 6950. https://doi.org/

10.3390/s21216950

Academic Editor: Paolo Bellavista

Received: 10 September 2021

Accepted: 10 October 2021

Published: 20 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, The University of Idaho, Moscow, ID 83844, USA; sheldon@uidaho.edu
2 Department of Computer Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia
3 Information Systems Department, St. Cloud State University, St. Cloud, MN 56301, USA;

aabuhussein@stcloudstate.edu
4 Department of Cybersecurity, University of Jeddah, Jeddah 23890, Saudi Arabia; fsalsubaei@uj.edu.sa
* Correspondence: alei3598@vandals.uidaho.edu or m.aleisa@mu.edu.sa

Abstract: The fog layer provides substantial benefits in cloud-based IoT applications because it can
serve as an aggregation layer and it moves the computation resources nearer to the IoT devices;
however, it is important to ensure adequate performance is achieved in such applications, as the
devices usually communicate frequently and authenticate with the cloud. This can cause performance
and availability issues, which can be dangerous in critical applications such as in the healthcare
sector. In this paper, we analyze the efficacy of the fog layer in different architectures in a real-world
environment by examining performance metrics for the cloud and fog layers using different numbers
of IoT devices. We also implement the fog layer using two methods to determine whether different
fog implementation frameworks can affect the performance. The results show that including a
fog layer with semi-heavyweight computation capability results in higher capital costs, although
the in the long run resources, time, and money are saved. This study can serve as a reference for
fundamental fog computing concepts. It can also be used to walk practitioners through different
implementation frameworks of fog-aided IoT and to show tradeoffs in order to inform when to use
each implementation framework based on one’s objectives.

Keywords: Internet of Things; performance analysis; fog computing; cloud computing; performance
metrics; benchmarking; distributed systems

1. Introduction

Cloud computing is an emerging technology that offers high computational power
and permanent storage for the Internet of Things (IoT). In cloud-based IoT environments,
as the number of IoT devices increases, the amount of data generated from the IoT also
increases. This causes high latency due to the long distances between the IoT devices
and the cloud. The exchange of data between IoT devices and the cloud increases the
utilization of bandwidth and requires increasing resources as the number of IoT devices
increases. In addition, operations such as IoT device authentication and authorization, as
well as encryption, add computation overheads to the cloud. This means the computation
capability must be brought closer to the IoT devices and the resource-demanding tasks
must be reserved for the cloud. As such, fog computing emerged to satisfy the demands
for frequent computation, communication, and storage by the IoT layer [1,2].

According to the commercial sector, fog computing is a layer of computing that extends
the cloud, bringing it closer to the things that generate and process IoT data. Any device
with computing, storage, and network connectivity can be a fog node, while fog layer
nodes can be deployed anywhere with a network connection (e.g., on top of a traffic light,
alongside a railway track [3]). Fog computing involves the following characteristics [1]:

• Low latency: The amount of time it takes for data to send from source to destination is
known as network latency. In cloud-based IoT environments, latency is typically high

Sensors 2021, 21, 6950. https://doi.org/10.3390/s21216950 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7015-4131
https://orcid.org/0000-0002-1350-6719
https://orcid.org/0000-0001-7332-3773
https://orcid.org/0000-0003-1241-2750
https://doi.org/10.3390/s21216950
https://doi.org/10.3390/s21216950
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21216950
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21216950?type=check_update&version=2

Sensors 2021, 21, 6950 2 of 32

due to the distance between the IoT devices and the cloud. This increases the cloud
response time, especially as the number of IoT devices increases, making the cloud
unable to support the real-time demands of IoT devices. Fog computing decreases the
latency by moving data to the edge of the network and nearer to end users to meet the
high processing demands;

• Higher scalability: The ability of a system to manage an increasing quantity of work
by adding resources to the system is known as scalability. In cloud-based IoT en-
vironments, as the number of IoT devices increases, it becomes challenging for the
cloud to accommodate the heavy computation and bandwidth demands of the devices.
When the number of IoT devices grows, fog computing can solve this problem by
distributing several fog nodes, which can reduce the heavy computation demands on
the cloud and provide hierarchal scalability;

• Location awareness: The ability of a device to determine its location, either passively
or actively, is referred to as location awareness. This feature is important because it
allows applications to provide services better suited to the user and device location,
thereby lowering latency;

• Mobility: Computing mobility is the ability to perform computing operations while a
connected device is able to move, communicating from any location through a wireless
channel. This includes the mobility of IoT nodes as well as fog nodes in cloud-based
IoT environments;

• Decentralized architecture: A decentralized network is a network of interconnected
devices in which no single entity is the sole authority. Workloads in distributed
architectures are distributed among several machines instead of relying on a single
central server. This is an important feature of fog computing because applications and
services on the fog can process and store data from any end devices, whether it is a
fog node or a sensor (i.e., IoT node);

• Heterogeneity: Heterogeneity in networking refers to connecting devices made by
different manufacturers running different operating systems using multiple network
architectures and protocols. Fog computing heterogeneity is a topological feature that
is of particular importance in cloud-based IoT environments, as it enables devices
to exchange information, meaning the exchanged information can be used without
restrictions;

• Bandwidth optimization: Optimization of the network bandwidth refers to the overall
inbound and outbound bandwidth improvements in a network. This allows fog
nodes to handle the traffic from billions of devices to prevent congestion and latency
problems. This is due to the fact that the massive amounts of data collected by IoT
devices may be processed locally rather than being sent to the cloud.

Despite the benefits offered by fog-aided IoT, researchers and practitioners are faced
with challenges in the implementation and performance of fog-aided IoT systems.

First, there is a lack of real-life implementation of the many theoretical studies, as
highlighted in our earlier work in [1]. Although simulation-based experiments provide easy
access to practical results regarding the performance of computing systems, observations
and research outcomes may not be generalizable to all scenarios due to the variety of IoT
platform providers and device manufacturers; their different implementation frameworks,
service specifications, and configurations; and differences in the network architectures and
protocols. As such, in order to develop a profound and general insight into the tradeoffs
involved in a particular system, it is important to use real IoT platforms built on top of
real-world networks (i.e., the Internet) when obtaining analytical results regarding the
performance of fog-aided IoT implementation. In addition, it would be interesting to
explore the performance differences of fog implementation frameworks interacting with
different commercial IoT platforms, such as Amazon IoT and Azure IoT.

Second, due to the diversity of fog-aided IoT environments and the lack of consensus
among practitioners and hobbyists on a standard fog computing implementation frame-
work [1], there is a lack of resources showing how to implement efficient fog-aided IoT

Sensors 2021, 21, 6950 3 of 32

systems. Most of the implementation frameworks available are either domain-specific,
complex, or too abstract to be useful in all scenarios.

Third, although fog computing offers promising solutions to many of the performance
and security problems of IoT [4], it also involves various security and privacy risks. For
instance, while fog computing is crucial for spreading risks across distributed fog nodes, it
also has the untoward effect of increasing the attack surface. This is made worse because
fog computing devices interact with devices only; that is, the fog nodes receive IoT data
from sensors and send the data to the cloud, and vice versa. This means that no humans
are involved in the communication. Although this can be considered an advantage because
these interacting devices do not have screens or an on-device user interface, which reduces
the attack surface, it can lead to failures or targeted attacks that cannot be easily detected
and deterred. Other security and privacy issues in fog-aided IoT also deserve our attention.
In this work, we aim to better understand fog-aided IoT environments in order to pave the
way for further research to address interesting confidentiality, integrity, and availability
violations. This paper makes the following contributions:

• We present two cloud-based IoT environment architectures. The first architecture
has a fog layer applied between the IoT devices and the cloud, whereas the second
architecture publishes the data directly to the cloud without a fog layer;

• We use two benchmarks to measure the performance of the cloud-based IoT archi-
tectures. The first benchmark involves Mosquitto message broker metrics, which are
used to measure the performance of the IoT–fog–cloud at the fog computing level.
The second benchmark involves AWS message broker metrics, which are used to
measure the performance of the two architectures (IoT–cloud and IoT–fog–cloud) to
show the impact of the additional middle layer (i.e., the fog layer) on cloud-centered
IoT environments;

• We discuss the security and privacy implications of the two architectures presented
in this paper, showing what triggers these implications and suggesting methods to
address them;

• This study serves as a tutorial reference for fundamental fog computing concepts and
aims to walk practitioners through different implementation frameworks for fog-aided
IoT and to reveal tradeoffs that inform when to use each implementation based on
one’s objectives.

The remainder of this paper is structured as follows. In Section 2, we discuss the
background in detail. In Section 3, we present the related work and discuss existing
industrial and Message Queuing Telemetry Transport (MQTT) benchmarks. In Section 4,
we describe the experiment setups of the two architectures in detail. In Section 5, we
provide a description of the AWS IoT metrics and Mosquitto message broker metrics that
are used to measure our two architectures. In Section 6, we explain the analysis methods
used to perform the experiments on both architectures. In Section 7, we describe the results
of the experiments performed on both architectures. In Section 8, we provide an evaluation
of the experimental results based on the analysis methods. In Section 9, we present the
threats to validity. In Section 10, we provide a discussion and outline the limitations of our
work. Finally, we conclude the paper by provided future research directions in Section 11.

2. Background

Today, IoT sensors are used everywhere and have become crucial in many domains
of life. As shown in Figure 1, different kinds of sensors can be found in our homes, cars,
workplaces, and other areas, which are sold independently (e.g., smoke sensors, light
sensors, temperature sensors, motion sensors, proximity sensors, touch sensors, ultrasonic
sensors, humidity sensors, IR sensors, pressure sensors, gyroscope sensors) or as integral
parts of sophisticated devices, such as smartphones, which may contain dozens of sensors.
These sensors are developed by major manufacturers and are deployed in many sectors,
including healthcare, education, communication, transportation, and manufacturing.

Sensors 2021, 21, 6950 4 of 32

Sensors 2021, 21, x FOR PEER REVIEW 4 of 33

2. Background
Today, IoT sensors are used everywhere and have become crucial in many domains

of life. As shown in Figure 1, different kinds of sensors can be found in our homes, cars,
workplaces, and other areas, which are sold independently (e.g., smoke sensors, light
sensors, temperature sensors, motion sensors, proximity sensors, touch sensors, ultrasonic
sensors, humidity sensors, IR sensors, pressure sensors, gyroscope sensors) or as integral
parts of sophisticated devices, such as smartphones, which may contain dozens of sensors.
These sensors are developed by major manufacturers and are deployed in many sectors,
including healthcare, education, communication, transportation, and manufacturing.

Figure 1. Overview of cloud-aided IoT environments.

Manufacturers have developed IoT platforms to help organizations build fully
functional IoT environments. According to AT&T [5], an IoT platform is an end-to-end
software framework that pulls together information from sensors, devices, networks, and
software, which work together to unlock valuable, actionable data. IoT platforms enable
management and automation of connected devices within the IoT universe. There are
several proprietary IoT platforms available, including AWS IoT Core [6], Microsoft Azure
IoT [7], IBM IoT [8], and Google IoT Core [9], as well as open source IoT platforms such
as IoTivity [10], Zetta [11], Arduino IDE [12], DeviceHive [13], and openremote [14]. These
IoT platforms usually reside and run on a virtual machine in the cloud that efficiently
pulls, processes, and stores the data received from the massive number of IoT sensors.

Classical IoT environments are configured so that IoT sensors are directly connected
to the IoT platform and the cloud. In modern architectures, a fog layer is introduced
between the IoT sensors and the IoT platform (the cloud) for extra-efficient computation,
communication, and storage. Case studies showing the tradeoffs between the two
implementation frameworks will be discussed extensively in this paper.

Devices in all layers of IoT environments (see Figure 1) communicate using different
protocols. These protocols are listed below [15]:
• MQTT is a lightweight many-to-many communication protocol for IoT that is

designed to be a publish–subscribe messaging transport protocol. MQTT is ideal for

Figure 1. Overview of cloud-aided IoT environments.

Manufacturers have developed IoT platforms to help organizations build fully func-
tional IoT environments. According to AT&T [5], an IoT platform is an end-to-end software
framework that pulls together information from sensors, devices, networks, and software,
which work together to unlock valuable, actionable data. IoT platforms enable manage-
ment and automation of connected devices within the IoT universe. There are several
proprietary IoT platforms available, including AWS IoT Core [6], Microsoft Azure IoT [7],
IBM IoT [8], and Google IoT Core [9], as well as open source IoT platforms such as IoTiv-
ity [10], Zetta [11], Arduino IDE [12], DeviceHive [13], and openremote [14]. These IoT
platforms usually reside and run on a virtual machine in the cloud that efficiently pulls,
processes, and stores the data received from the massive number of IoT sensors.

Classical IoT environments are configured so that IoT sensors are directly connected to
the IoT platform and the cloud. In modern architectures, a fog layer is introduced between
the IoT sensors and the IoT platform (the cloud) for extra-efficient computation, communi-
cation, and storage. Case studies showing the tradeoffs between the two implementation
frameworks will be discussed extensively in this paper.

Devices in all layers of IoT environments (see Figure 1) communicate using different
protocols. These protocols are listed below [15]:

• MQTT is a lightweight many-to-many communication protocol for IoT that is designed
to be a publish–subscribe messaging transport protocol. MQTT is ideal for connecting
remote devices with minimal memory consumption and network bandwidth. MQTT is
used in a wide variety of domains, such as in industry, health care, and transportation.
Port 1883 is the default MQTT port, whereas port 8883 is the default MQTT port
over TLS (i.e., secure-mqtt), both of which are registered with the Internet Assigned
Numbers Authority (IANA) for Secure MQTT;

• Constrained Application Protocol (CoAp) is a one-to-one User Datagram Protocol
(UDP) protocol for transferring state information between the client and server. De-
spite its ability to preserve resources, CoAP is best-suited to a state transfer model.
Since CoAp uses UDP, it does not guarantee the delivery of datagrams. In addition,
CoAp is unencrypted. The default CoAP port registered at IANA is 5683;

Sensors 2021, 21, 6950 5 of 32

• Extensible Messaging and Presence Protocol (XMPP) is a secure and near-real-time
communication protocol for message-oriented middleware based on XML that enables
the exchange of structured but extensible data between any two or more devices
over a network. XMPP is mainly used by instant messaging applications such as
WhatsApp [16] and Telegram [17]. XMPP offers persistent decentralized connection
between devices. As such, no central XMPP servers are needed to communicate; how-
ever, to establish a connection between two devices, one of the devices is considered
an xmpp-client and communicates over port 5222, while the other is considered an
xmpp-server and uses port 5269. XMPP can also use port 5280 for two-way communi-
cation. This is called xmpp-bosh, meaning Bidirectional Streams Over Synchronous
HTTP (BOSH). XMPP has been used in the literature to network IoT devices, such as
in [18,19]. Despite its features and potential, XMPP has some limitations. First, XMPP
does not have a Quality of Service (QoS) mechanism. In addition, XMPP streams data
in XML format, which introduces overhead due to the text-based communication.
These reasons, among others, make MQTT a more popular protocol for IoT, since it
has a mechanism for QoS and uses lightweight binary-based communication;

• MQTT For Sensor Networks (MQTT-SN) [20] is considered a modified version of
MQTT that is adapted to the attributes of a wireless connection, such as a lossy
wireless network. It is designed specifically for wireless sensor networks with scale
in mind. MQTT-SN was developed to support non-TCP networks such as UDP. This
is another advantage because it makes the communication lighter by eliminating the
TCP handshakes;

• The Advanced Message Queuing Protocol [21] (AMQP) is an open standard applica-
tion layer protocol for middleware. AMQP is designed with more advanced features
that introduce more overhead than when using MQTT. These features include message
orientation, queuing, routing, reliability, and security. The registered port number for
AMQP at IANA is 5672, while for AMQPS (i.e., TLS/SSL encrypted AMQP) it is 5671.
For more information on which protocols function best for IoT networks based on the
messaging requirements, see [21].

This study focuses on commercial IoT sensors (i.e., DHT11 temperature and humidity
sensors) connected using a proprietary IoT platform (i.e., AWS IoT Core). We chose
proprietary IoT platforms over the free open source ones because they are popular among
industry users due to their faster time to market and lower initial cost.

Amazon Web Services (AWS) provides reliable, scalable, and inexpensive on-demand
cloud computing services to individuals, companies, and governments around the world [22].
Customers can benefit from the cloud datacenters distributed in the different locations in
many ways, including the low cost (pay as you go) and the massive cloud infrastructure, in
order to perform experiments and deploy new applications. AWS offers many services. In
this study, we used (1) AWS IoT, (2) Amazon S3, and (3) AWS CloudWatch. AWS IoT allows
secure communication and messaging exchange over MQTT for Internet-connected devices
such as sensors and micro-controllers in real time [23]. Amazon CloudWatch [24] monitors
devices and applications connected to AWS in real time using several metrics [23] to track
the connected devices and measure the performance, security, and scalability, among other
criteria.

The MQTT protocol is a widely used protocol that is supported by the most platforms
and commercial sensors; therefore, we used MQTT as the communication protocol. In
addition, we used a Raspberry Pi board to simulate fog nodes for the scenarios in which
fog nodes are introduced. To enable the Raspberry Pi boards used in this experiment to
communicate over MQTT, we used an MQTT broker software, Eclipse Mosquitto [25]. An
MQTT broker is a server that receives all the messages from the IoT devices and publishes
them to other devices. MQTT broker also has other benefits, including (1) supporting
scalability with many IoT devices, (2) managing credentials and certificates that are used
for authentication, (3) decreasing network strain on the cellular network without decreasing
security, and (4) excluding the connection of insecure and vulnerable devices. Many MQTT

Sensors 2021, 21, 6950 6 of 32

brokers are available, including Eclipse Mosquitto [26], RabbitMQ [26], and ActiveMQ [27].
In this paper, we used Eclipse Mosquitto because it is the most popular and has a lot of
resources for implementation. In addition, it is lightweight and suitable for use on all
devices, from low-power, single-board computers to full servers. An MQTT broker feature
called SYS-Topics [28] is widely used to monitor the Mosquitto MQTT broker by providing
metrics about Mosquitto, as well as to track the devices connected to the broker.

In this paper, we present numerical results based on an experiment that uses a real-
world IoT platform, sensors, and network (not a simulation) to show the performance
tradeoffs of various IoT implementation frameworks and discuss the results. Notably, this
experiment in a real environment is vulnerable to real-life cyber or physical attacks, as well
as performance failures.

3. Related Works

The rapid adoption of cloud-based IoT environments in large scale and with intensive
use has induced, among other factors, a growing need to simulate real-life environments
to measure the security and performance of the IoT–fog–cloud environments to provide
suitable support for the construction of efficient access control models [1]. Benchmarks are
one of the ways to measure the security and performance of cloud-based IoT environments.
There are several widely used general industry benchmarks that are adopted in many
commercial solutions. The Standard Performance Evaluation Corporation (SPEC) provides
benchmarks for a wide range of IT components, such as cloud, CPU, storage, power, and
virtualization components [29]. The Transaction Processing Performance Council (TPC)
also offers a suite of widely used IT industry benchmarks [30]. TPCx-IoT is one of the
TPC benchmarks that measures the operating, data storage, and management systems
to provide the industry with performance metrics and other available metrics for IoT
systems [31,32]. Moreover, HP developed IoTABench, an IoT analytics benchmark for
big data scenarios that is used to evaluate the performance and scalability of big data
platforms [33]. The benchmark was demonstrated using a smart metering IoT use case and
evaluated on the HP Vertica 7 analytics platform, which can handle data for an “electric
utility with 40 million smart meters”.

For MQTT, different benchmarks to measure the performance and security of cloud-
based IoT environments have been proposed in the literature [34,35]. Two IoT platforms,
Things Board and Site Where, have been evaluated using different metrics [36]. In addition,
an evaluation of the message transmission processes (i.e., Subscribe and Publish) of the
MQTT protocol via wireless and wired clients was presented in [37]. The end-to-end delay
and message loss when transmitting messages were analyzed with different quality of
service levels and different payload sizes. The results of their experiment showed that
end-to-end delay is related to the message loss with different sizes of payloads.

Moreover, Aazam et al., in a recent survey, evaluated the performance of fog comput-
ing using performance metrics such as processing delay, processing costs, and processing
power, and derived the performance gains obtained in comparison to a cloud computing-
only approach [38]. In the healthcare sector, Alsubaei et al. evaluated security in the Internet
of Medical Things (IoMT) [39]. In addition, Kafhali et al. evaluated the response times for
accessing medical data stored in a fog-based IoMT implementation framework [40]. They
also proposed a queuing model to predict the minimum number of computing resources
(both fog and cloud nodes) required to meet the service level agreement (SLA) for response
time. Another study in the healthcare field was presented by Vilela et al., who compared the
performance of fog-based computing to the conventional cloud computing model in a real-
time healthcare monitoring system [41]. Edge Bench is another benchmark for serverless
edge computing platforms that is used to measure the performance of two edge computing
platforms, Greengrass and Azure [42]. In addition, DeFog, a fog computing benchmark,
was proposed to provide a standard methodology and facilitate the understanding of the
target platform by collecting a catalogue of relevant metrics for a set of benchmarks [43];
however, most experiments in these studies were carried out using simulators that rely on

Sensors 2021, 21, 6950 7 of 32

generic metrics or that focus on one domain, which do not represent real IoT–fog–cloud
systems across different domains.

In this study, we extend the previous studies by implementing real-life experiments
and analyzing performance metrics from a popular cloud provider (AWS) and IoT protocol
(MQTT). We implement two real-life cloud-based IoT environments to measure their
performance. In addition, we use different numbers of IoT devices to increase the numbers
of subscribers and publishers in order to understand how these factors impact the results.

4. Experiment Setup

This section presents the hardware and software components used to set up our exper-
iment. In this paper, we present several IoT–cloud implementation frameworks, namely
(1) IoT–cloud, (2) IoT–fog–cloud using a bridge, and (3) IoT–fog–cloud using Python.
The hardware and software configurations used in these implementation frameworks are
discussed in the following subsections.

4.1. Hardware

As shown in Figure 2, the experiment discussed in this section involved two architec-
tures. The first architecture is IoT–fog–cloud, while the second is IoT–cloud. In this section,
we first describe the devices that were used in the two cloud-based IoT environments, then
explain the two architectures in detail. In this experiment, we used DHT11 devices [44]
and a Raspberry 3 Pi model B [45]. The DHT11 device is a low-cost sensor that is used to
measure the temperature and humidity of the surrounding air. The purpose of the DHT11
sensor in this experiment was to generate real data for the experiment. The Raspberry Pi is
a low-cost, single-board computer with built in WiFi and processing capability that is used
across several domains, such as in weather monitoring, smart homes, and smart health
care. In this experiment, the purpose of the Raspberry Pi was to provide light computation
capability to the DHT11 sensor data. In addition, it provided light storage for the DHT11
configurations. Moreover, the Raspberry Pi can be easily moved to different locations. A
complete list of the hardware used in this experiment is available in Table 1.

Table 1. Summary of the equipment used in the two architectures.

Equipment Name Equipment Type Quantity Purpose

DHT11 Temperature-Humidity
Sensor 3 Generate Real Life Data

Raspberry Pi Version 3 Model B 4 Enable WiFi and Provide Huge Processing
Power and Storage

Micro SD Card 32GB ImageMate Plus 130
MB/s Read 4 Initial Storage for The Operating System and

Files

Monitor HP 4 Provide a Visual Display

Keyboard and Mouse HP 4 Useful for Working on a Raspberry Pi

Power Supply/Adapter CanaKit 4 Supply the Power for the Raspberry Pi

HDMI Cable onn 4 Connect the Raspberry Pi to a Monitor

Sensors 2021, 21, 6950 8 of 32
Sensors 2021, 21, x FOR PEER REVIEW 8 of 33

Figure 2. First architecture (IoT–fog–cloud) vs. second architecture (IoT–cloud).

Table 1. Summary of the equipment used in the two architectures.

Equipment Name Equipment Type Quantity Purpose
DHT11 Temperature-Humidity Sensor 3 Generate Real Life Data

Raspberry Pi Version 3 Model B 4 Enable WiFi and Provide Huge Processing Power
and Storage

Micro SD Card 32GB ImageMate Plus 130 MB/s
Read

4 Initial Storage for The Operating System and Files

Monitor HP 4 Provide a Visual Display
Keyboard and

Mouse
HP 4 Useful for Working on a Raspberry Pi

Power
Supply/Adapter CanaKit 4 Supply the Power for the Raspberry Pi

HDMI Cable onn 4 Connect the Raspberry Pi to a Monitor

4.1.1. First Architecture
In the first architecture, each DHT11 sensor is connected to only one Raspberry Pi.

The Raspberry Pi is used here to enable WiFi connectivity, since the DHT11 sensors are
not equipped with network interfaces. Each sensor is connected to Raspberry Pi board
(i.e., connectivity enabler), which is considered an IoT device in the IoT layer. Each IoT
device is connected via WiFi to another Raspberry Pi board that acts as a fog node in the
fog layer. Communication between the IoT devices, the fog node, and the cloud uses the

Figure 2. First architecture (IoT–fog–cloud) vs. second architecture (IoT–cloud).

4.1.1. First Architecture

In the first architecture, each DHT11 sensor is connected to only one Raspberry Pi.
The Raspberry Pi is used here to enable WiFi connectivity, since the DHT11 sensors are
not equipped with network interfaces. Each sensor is connected to Raspberry Pi board
(i.e., connectivity enabler), which is considered an IoT device in the IoT layer. Each IoT
device is connected via WiFi to another Raspberry Pi board that acts as a fog node in the
fog layer. Communication between the IoT devices, the fog node, and the cloud uses the
MQTT protocol. For this, an MQTT broker called Eclipse Mosquitto [25] is installed in the
Raspberry Pi, acting as a fog device. The Mosquitto MQTT broker exchanges all messages
using the subscribe–publish model presented in [1]. The Mosquitto MQTT broker is also
used to filter all messages based on topics. A topic refers to an UTF-8 string that the broker
(i.e., Mosquitto) uses to filter messages for each connected IoT device. Each data type
(i.e., humidity, temperature) in our experiment is considered a separate topic. The data
generated by the sensors and collected by the three IoT devices are transmitted over the
Internet to the Raspberry Pi acting as the fog node. This Raspberry Pi, which contains the
MQTT broker Mosquitto on it, is then connected over the Internet to the AWS cloud. The
communication between the three layers occurs through the Internet. Figure 3 shows the
hardware used to implement the first architecture.

Sensors 2021, 21, 6950 9 of 32

Sensors 2021, 21, x FOR PEER REVIEW 9 of 33

MQTT protocol. For this, an MQTT broker called Eclipse Mosquitto [25] is installed in the
Raspberry Pi, acting as a fog device. The Mosquitto MQTT broker exchanges all messages
using the subscribe–publish model presented in [1]. The Mosquitto MQTT broker is also
used to filter all messages based on topics. A topic refers to an UTF-8 string that the broker
(i.e., Mosquitto) uses to filter messages for each connected IoT device. Each data type (i.e.,
humidity, temperature) in our experiment is considered a separate topic. The data
generated by the sensors and collected by the three IoT devices are transmitted over the
Internet to the Raspberry Pi acting as the fog node. This Raspberry Pi, which contains the
MQTT broker Mosquitto on it, is then connected over the Internet to the AWS cloud. The
communication between the three layers occurs through the Internet. Figure 3 shows the
hardware used to implement the first architecture.

Figure 3. Hardware used in the first architecture (IoT–fog–cloud).

4.1.2. Second Architecture
In the second architecture, all three IoT devices, consisting of sensors and Raspberry

Pi boards (i.e., connectivity enablers), are directly connected to the AWS cloud; therefore,
the real data received by device one, device two, or device three are forwarded wirelessly
to the AWS cloud layer. The hardware used in the second architecture is identical to that
used in Figure 3, except that no fog node is used in this architecture.

4.2. Software
We installed Arduino IDE [46] software on top of the three Raspberry Pi boards used

to connect the IoT devices. Arduino IDE is a cross-platform application that is written in
functions from C and C++ and is used to write and upload programs to Arduino-
compatible boards such as Raspberry Pi. We used Arduino IDE to read the data collected
by the sensors (i.e., temperature and humidity) and then publish it over the Internet to the
fog node. We used C++ scripts in Arduino IDE to perform certain operations on the IoT
devices, namely tagging, authentication, publishing, and subscription.

4.2.1. First Architecture
In the first architecture, Algorithm 1 gathers data from the IoT devices and forwards

it to the fog. This involves authenticating the IoT devices to communicate with the MQTT
broker on the fog device and publish data to it. The following two sections present two
ways for fog nodes to communicate with the cloud.

Figure 3. Hardware used in the first architecture (IoT–fog–cloud).

4.1.2. Second Architecture

In the second architecture, all three IoT devices, consisting of sensors and Raspberry
Pi boards (i.e., connectivity enablers), are directly connected to the AWS cloud; therefore,
the real data received by device one, device two, or device three are forwarded wirelessly
to the AWS cloud layer. The hardware used in the second architecture is identical to that
used in Figure 3, except that no fog node is used in this architecture.

4.2. Software

We installed Arduino IDE [46] software on top of the three Raspberry Pi boards used
to connect the IoT devices. Arduino IDE is a cross-platform application that is written
in functions from C and C++ and is used to write and upload programs to Arduino-
compatible boards such as Raspberry Pi. We used Arduino IDE to read the data collected
by the sensors (i.e., temperature and humidity) and then publish it over the Internet to the
fog node. We used C++ scripts in Arduino IDE to perform certain operations on the IoT
devices, namely tagging, authentication, publishing, and subscription.

4.2.1. First Architecture

In the first architecture, Algorithm 1 gathers data from the IoT devices and forwards it
to the fog. This involves authenticating the IoT devices to communicate with the MQTT
broker on the fog device and publish data to it. The following two sections present two
ways for fog nodes to communicate with the cloud.

• Bridging

In our fog-aided IoT implementation, the MQTT broker (i.e., Mosquitto) is installed
on top of a Raspberry Pi board that serves as a fog node. In such cases, the MQTT broker
needs to be very close to where the sensors are deployed. The Mosquitto MQTT broker has
a built-in capability that allows the received data to be sent directly to the cloud (AWS IoT
Core) by specifying the address of the AWS IoT core service used. This operation is called
bridging (please see [47] for more information). Algorithm 2 illustrates the connection of
IoT devices to the AWS IoT core using a bridge connection.

Sensors 2021, 21, 6950 10 of 32

Algorithm 1. Gather data generated from the IoT device and forward it to the fog node. First
architecture/*. This algorithm authenticates the IoT device to the fog device, generates
temperature and humidity data via DHT11 sensors, and publishes them to the Mosquitto MQTT
broker on the fog device

1: Define the Type of DHT Sensor, which is DHT11
2: Define the Input/Output Pins of the Raspberry Pi to which the DHT11 is Connected
3: Define an Object of the Sensor with Two Arguments: DHT Pin and DHT Type
4: Define the Name of the Network
5: Define the Password of the Network
6: Define the Variable of MQTT Broker
7: Define only Two Variables of Humidity Topic and Temperature Topic for each IoT Device
(DHT11 + Raspberry Pi) in Each Experiment
8: Create Two Instances of Clients, One used to Connect to the Internet and the other used to
Connect to the MQTT Broker
9: Run MQTT Connection, Setup, Loop
10: Function: MQTT Connection
11: Connect to Internet
12: If (the Connection is Established) then
13: Print “Connected”
14: Connect to MQTT Broker on Fog Device
15: Else (the Connection isn’t Established) then
16: Try Reconnecting to Internet
17: Function: Setup
18: Start a Serial Communication at 9600 Board Rates
19: Initialize the DHT11 Sensor
20: While (MQTT Connection is True):
21: Read Humidity
22: Read Temperature
23: Print Humidity
24: Print Temperature
25: Publish Humidity Topic with Its Read Value to MQTT Broker on Fog Device
26: Publish Temperature Topic with Its Read Value to MQTT Broker on Fog Device
27: End while

Algorithm 2. Bridge every message received from the IoT devices based on the topics of the
messages to the AWS broker on the cloud/*. This algorithm authenticates the IoT device to the
MQTT broker on the fog device, bridges to the data received from the sensors via the MQTT
broker, filters them based on topics, authenticates to the AWS via certificates, and then publishes
the filtered data to the AWS IoT core service

1: Define the Variable of the Endpoint of Amazon Web Service with Port Number 8883
2: Determine which Topics of the Messages to Bridge to AWS
3: Define the Version of the Protocol to be used between the MQTT Broker and the AWS Broker
4: Create One Instance of the Client to be used Over the MQTT Protocol
5: Define the Name of the Bridge Connection
6: Start Connection
7: Configure the Bridge using SSL/TLS Support
8: Define Bridge_Cafile to Hold the Path of Amazon Root CA Certificate
9: Define Bridge_Certfile to Hold the Path of Amazon Certificate
10: Define Bridge_Keyfile to Hold the Path of Private Key

• Python Script

Using the same Mosquitto MQTT broker, we developed a Python script on the fog
device to replace the built-in Mosquitto bridging capability to simultaneously authenticate
the MQTT broker and AWS, receive the data from the sensors, and filter and publish the
data received to the AWS IoT core service. This Python script provides more flexibility
for future improvements in security and performance. The following algorithm depicts
the operations implemented in our Python script. Algorithm 3 is used to authenticate IoT

Sensors 2021, 21, 6950 11 of 32

devices to fog devices, gather the temperature and humidity data from the DHT11 sensors,
and publish the data to the Mosquitto MQTT broker on the fog device. The algorithm also
authenticates the fog node to interact with AWS IoT Core (i.e., the cloud). Afterward, the
algorithm filters the collected data and publishes it to the cloud.

Algorithm 3. Receive data from the IoT devices and forward it to the cloud/*. This algorithm
authenticates the IoT device to the MQTT broker on the fog device, subscribes to the data received
from the sensors via the MQTT broker, filters the data based on topics, authenticates to the AWS
via certificates, and then publishes the filtered data to the AWS IoT core service

1: Define Two Variables (Humidity Topic and Temperature Topic) for each IoT Device in Each
Experiment
2: Define the Variables of MQTT Broker and MQTT Port
3: Create Two Instances of Clients, one used for the MQTT Broker and the other used for the AWS
Broker
4: Connect the First Client to the MQTT Broker using the IP Address of the Fog Device and
MQTT Port
5: Create a Loop_Start () Method to Start a New Thread for the First Client
6: Set the Transport Layer Security (TLS) for the Second Client using the Three Paths of AWS
Certificates and the Current Version of MQTT Protocol
7: Connect the Second client to AWS Broker using AWS Endpoint and AWS Port
8: Create a Loop_Start () Method to Start a New Thread for the Second Client
9: While True do
10: Define a Connection Function
11: Subscribe for All Topics in each IoT Device
12: Print “Connected” when the Connection is Established
13: Print “Error” when the Connection is Disconnected
14: Define a Message Function
15: Get Topic of The Message
16: Get Payload of the Message
17: Print Topic of the Message
18: Print Payload of the Message
19: Publish Topic and Payload of the Message to AWS Cloud
20: Make the First Client Execute the Two Functions: (1) Connection, and (2) Message
21: Make the Second Client Execute the Message Function to Publish the Recovered Data
to AWS Cloud
22: End while

4.2.2. Second Architecture

In the second architecture, Arduino IDE is installed on top of the three Raspberry Pi
boards used to connect the IoT devices. Arduino IDE is used to read the data collected by
the sensors (i.e., temperature and humidity) and then publish it over the Internet directly
to the cloud. This operation requires authentication to the cloud before the data can be
published. The process used to authenticate the IoT device (i.e., DHT11 + Raspberry Pi) to
access the cloud (AWS IoT Core) using the AWS certificate and then to publish the data
generated by the sensors to the cloud is illustrated in Algorithm 4.

To monitor the Mosquitto MQTT broker, Algorithm 5 illustrates how $SYS-Topics is
used to provide metrics.

Sensors 2021, 21, 6950 12 of 32

Algorithm 4. Gather data generated from the IoT device and forward it to the cloud—Second
architecture/*. This algorithm authenticates the IoT device to the AWS cloud via certificates,
generates temperature and humidity data via the DHT11 sensors, and publishes them to the AWS
cloud

1: Define the Type of DHT Sensor, which is DHT11
2: Define the Input/Output Pins of the Raspberry Pi to which the DHT11 is Connected
3: Define an Object of the Sensor with Two Arguments, DHT Pin and DHT Type
4: Define the Name of the Network
5: Define the Password of the Network
6: Define the Variable of Endpoint of Amazon Web Service
7: Define only Two Variables (Humidity Topic and Temperature Topic) for each IoT Device
(DHT11 + Raspberry Pi) in Each Experiment
8: Create a client to Connect to AWS using AWS Endpoint and Port Number 8883
9: Run Connection, Setup, Loop
10: Function: Connection
11: Connect to Internet
12: If (the Connection is Established) then
13: Print “Connected”
14: Else (the Connection isn’t Established) then
15: Try Reconnecting to Internet
16: Function: Setup
17: Start a Serial Communication at 9600 Board Rates
18: Initialize the DHT11 Sensor
19: Run a Connection Function
20: Convert the AWS Certificates to der Format
21: Open Certificate
22: If (Certificate is Existing)
23: Load Certificate
24: Else
25: Print “Certificate is not Existing”
26: Open Amazon Root CA Certificate
27: If (Amazon Root CA Certificate is Existing)
28: Load Amazon Root CA Certificate
29: Else
30: Print “Amazon Root CA Certificate is not Existing”
31: Open Private Key
32: If (Private Key is Existing)
33: Load Private Key
34: Else
35: Print “Private Key is Not Existing”
36: While (Connection is True):
37: Read Humidity
38: Read Temperature
39: Print Humidity
40: Print Temperature
41: Publish Humidity Topic with its Read Value to MQTT Broker on Fog Device
42: Publish Temperature Topic with its Read Value to MQTT Broker on Fog Device
43: End while

Sensors 2021, 21, 6950 13 of 32

Algorithm 5. Monitoring script on fog device/*. This algorithm connects to the MQTT broker,
subscribes to SYS-Topics via the MQTT broker to monitor and provide benchmark metrics of the
Mosquitto broker, and publishes the results based on these metrics

1: Create One Instance of Clients to Connect to Mosquitto Broker
2: Connect the Client to MQTT Broker using the IP Address of Fog Device and MQTT Port
3: Define a Connection Function
4: Print “Connected” when the Connection is Established
5: Print “Error” when the Connection is Disconnected
6: Subscribe To $SYS/# Topics to Monitor the Mosquito MQTT Broker (Print the Metrics
Results Of Mosquitto Broker On Fog Device
7: Make the Client Execute the Connection Function
8: Create a Loop Forever () Method for the Client to Remain Monitoring the Mosquitto

5. Descriptions of Metrics

Many metrics can be used to measure the performance in IoT systems. The following
subsections describe the metrics that we utilized to measure the performance in the cloud
and fog layers.

5.1. Cloud Layer: AWS IoT Metrics

Many metrics can be used to measure the performance of cloud-based IoT systems
from the cloud layer. Since we used the AWS IoT as the cloud service provider for our exper-
iments, we used Amazon CloudWatch to measure the performance. Amazon CloudWatch
has been used in the literature to monitor performance [48–50]. Amazon CloudWatch
processes and analyzes data in real time and provides the following metrics to measure
our two cloud-based IoT environments:

• Connect Success: This metric is used to collect the number of successful connections
from our IoT nodes or fog nodes to the AWS message broker.

• Ping Success: This metric is used to collect the number of ping messages received by
the AWS message broker. These ping messages are received from the fog node(s) in
the first architecture and from the IoT node(s) in the second architecture.

• PublishIn Success: This metric is used to collect the number of publish requests
successfully processed by the AWS message broker. As with the ping messages, these
messages are received from the fog node(s) in the first architecture and from the IoT
node(s) in the second architecture.

• PublishOut Success: This metric is used to collect the number of publish requests
successfully made by the AWS message broker to the fog nodes in the first architecture
and to the IoT nodes in the second architecture.

• Subscribe Success: This metric is used to collect the number of successful subscribe
requests processed by the AWS message broker. These requests are made by the
fog node in the first architecture and made directly by the IoT devices in the second
architecture.

• PublishIn Clienterror: This metric is used to collect the number of publish requests
rejected because they did not meet the AWS IoT requirements.

• Unsubscribe Success: This metric is used to collect the number of unsubscribe requests
that were successfully processed by the AWS message broker. These unsubscribe
requests are made by the fog node in the first architecture and made directly by the
IoT devices in the second architecture.

• Throttle Exceeded: This metric is used to collect the number of requests that have
been throttled because the client (i.e., the IoT node or fog node) has sent too many
messages and exceeded the allowed message rate.

• PublishOut Throttle: This metric is used to collect the number of publish requests that
have been throttled because the client (i.e., IoT node or fog node) has exceeded the
allowed message rate.

Sensors 2021, 21, 6950 14 of 32

5.2. Fog Layer: Eclipse Mosquitto Broker Metrics

Many metrics can be used to measure the performance of the fog layer. MQTT has been
used in the literature as a lightweight protocol to communicate between messages [34,35,51].
Since we used the MQTT protocol for the message broker on the fog node, we utilized
Eclipse Mosquitto [25] in our experiments. Eclipse Mosquitto [25] provides some metrics
as $SYS topics, which are described below:

• $SYS/broker/uptime: This metric is used to measure the amount of time in seconds
the broker has been online.

• $SYS/broker/load/messages/received: This metric is used to measure the moving
average of the number of all types of MQTT messages received by the broker over
different time intervals.

• $SYS/broker/load/messages/sent: This metric is used to measure the moving aver-
age of the number of all types of MQTT messages sent by the broker over different
time intervals.

• $SYS/broker/load/publish/received: This metric is used to measure the moving
average of the number of publish messages received by the broker over different time
intervals.

• $SYS/broker/load/publish/sent: This metric is used to measure the moving average
of the number of publish messages sent by the broker over different time intervals.

• $SYS/broker/load/bytes/received: This metric is used to measure the moving aver-
age of the number of bytes received by the broker over different time intervals.

• $SYS/broker/load/bytes/sent: This metric is used to measure the moving average of
the number of bytes sent by the broker over different time intervals.

• $SYS/broker/load/sockets: This metric is used to measure the moving average of the
number of socket connections opened to the broker over different time intervals.

• $SYS/broker/load/connections: This metric is used to measure the moving average of
the number of CONNECT packets received by the broker over different time intervals.

• $SYS/broker/messages/stored: This metric is used to measure the number of mes-
sages currently held in the message store. This includes retained messages and
messages queued for durable clients.

• $SYS/broker/store/messages/bytes: This metric is used to measure the number of
bytes currently held by message payloads in the message store. This includes retained
messages and messages queued for durable clients.

• $SYS/broker/subscriptions/count: This metric is used to measure the total number
of subscriptions active on the broker.

• $SYS/broker/heap/current: This metric is used to measure the current size of the
heap memory in use by Mosquitto.

• $SYS/broker/messages/received: This metric is used to measure the total number of
messages of any type received since the broker started.

• $SYS/broker/messages/sent: This metric is used to measure the total number of
messages of any type sent since the broker started.

• $SYS/broker/publish/messages/received: This metric is used to measure the total
number of PUBLISH messages received since the broker started.

• $SYS/broker/publish/messages/sent: This metric is used to measure the total number
of PUBLISH messages sent since the broker started.

• $SYS/broker/bytes/received: This metric is used to measure the total number of
bytes received since the broker started.

• $SYS/broker/bytes/sent: This metric is used to measure the total number of bytes
sent since the broker started.

• $SYS/broker/publish/bytes/received: This metric is used to measure the total num-
ber of PUBLISH bytes received since the broker started.

• $SYS/broker/publish/bytes/sent: This metric is used to measure the total number of
PUBLISH bytes sent since the broker started.

Sensors 2021, 21, 6950 15 of 32

6. Analysis Methods

We used two benchmark metrics to analyze the performance of the two IoT archi-
tectures implemented in this paper. In the two cloud-based IoT architectures, we set the
number of subscribers and publishers to two for each device. This is because the IoT
devices (i.e., the DHT11 sensors) generate two types of data, namely (1) temperature and
(2) humidity data; therefore, as the number of sensor devices increase, the number of
subscribers and publishers should also increase. This provides more accurate, consistent,
and real results about the environment performance and scalability. In this section, we
present the methods that we used to perform the experiments on both architectures.

6.1. Architecture 1 vs. Architecture 2

The performance of the two cloud-based IoT architectures was analyzed using the
AWS benchmark and the obtained results were compared. The experiment was performed
using a different number of IoT devices each time (1, 2, or 3 IoT devices) to compare and
analyze the results in order to show the impacts of the fog layer in the first architecture
on IoT environments. Figure 2 shows the experimental setup and metrics applied to
measure the performance of the two cloud-based IoT environments. AWS, as with any
IoT platform provider, requires that any device be authenticated before communicating
with it. AWS uses certificates to authenticate devices. As shown in Figure 2, the location
where the certificate is stored is different in the two architectures due to the structure of
the environments. Since the first architecture has a fog layer between AWS and the IoT
devices, the certificate is stored in the fog device (i.e., the Raspberry Pi board serving as the
fog layer). In the second architecture, however, since the IoT devices are directly connected
to AWS, the certificates are stored in each IoT device.

6.2. Architecture 1 Implementation: Python Script vs. Bridging

The first architecture of the IoT–fog–cloud layer was implemented using two different
experiments, as shown in Figure 4. The first experiment was based on a Python script
shown in Algorithm 3 that manually receives, filters, and forwards the messages to the
cloud. The second experiment (Algorithm 2) bridges all of the messages received from
the IoT devices based on their topics to AWS. The purpose of using the bridge in the first
architecture is to connect two brokers, the MQTT message broker “mosquitto” and the
AWS message broker, to exchange messages based on the different topics and to validate
the results of the first architecture. AWS benchmarks were used to analyze the performance
of the first architecture in two different implementation frameworks. Although bridging
allows faster implementation, the Python script provides more flexibility to add features
to optimize performance. The objective of this analysis is to show the impacts of both
implementation frameworks.

Sensors 2021, 21, 6950 16 of 32Sensors 2021, 21, x FOR PEER REVIEW 17 of 33

Figure 4. IoT–fog–cloud architecture using two methods: Python script and MQTT bridging.

6.3. Architecture 1 Measurement: Mosquitto Metrics vs. AWS Metrics
The performance of the first architecture (i.e., IoT–fog–cloud) was measured from

both the fog side and the cloud side. The fog-side metrics (i.e., Mosquitto broker metrics)
were measured over different durations (30 s, 1 min, 5 min, 15 min, 30 min, 45 min, and 1
h), while the cloud-side metrics (i.e., AWS metrics) were measured over 30 s, 1 min, 5 min,
15 min, and 1 h (due to the AWS platform constraints, it was difficult to unify the
experiment durations). Figure 5 presents the different metrics used to measure the
performance of the IoT environment that uses a fog layer from two sides. Figure 5a
presents the metrics applied to measure the performance of the IoT environment at the
fog layer, whereas Figure 5b presents the metrics applied to measure the performance of
the IoT environment at the cloud layer. This was done to ensure that the performance of
the IoT environment remains consistent in the fog and cloud layers using different setups.

Figure 4. IoT–fog–cloud architecture using two methods: Python script and MQTT bridging.

6.3. Architecture 1 Measurement: Mosquitto Metrics vs. AWS Metrics

The performance of the first architecture (i.e., IoT–fog–cloud) was measured from
both the fog side and the cloud side. The fog-side metrics (i.e., Mosquitto broker metrics)
were measured over different durations (30 s, 1 min, 5 min, 15 min, 30 min, 45 min, and
1 h), while the cloud-side metrics (i.e., AWS metrics) were measured over 30 s, 1 min,
5 min, 15 min, and 1 h (due to the AWS platform constraints, it was difficult to unify
the experiment durations). Figure 5 presents the different metrics used to measure the
performance of the IoT environment that uses a fog layer from two sides. Figure 5a presents
the metrics applied to measure the performance of the IoT environment at the fog layer,
whereas Figure 5b presents the metrics applied to measure the performance of the IoT
environment at the cloud layer. This was done to ensure that the performance of the IoT
environment remains consistent in the fog and cloud layers using different setups.

Sensors 2021, 21, 6950 17 of 32
Sensors 2021, 21, x FOR PEER REVIEW 18 of 33

Figure 5. (a) Metrics applied in the fog layer vs. (b) metrics applied in the cloud layer.

7. Results and Description of Experiments
In this section, the results of the two architectures of cloud-based IoT environments

will be analyzed using the two benchmarks metrics (Mosquitto and AWS) based on the
selected architecture using one, two, or three IoT devices with increasing numbers of
subscribing and publishing requests. In the following sections, the benchmark metrics of
each architecture are described in detail, along with observations.

7.1. Descriptions of the Three Experiments on the First Architecture with One, Two, or Three
IoT Devices Using AWS Benchmark Metrics (Cloud Layer)

The Amazon CloudWatch monitor has a variety of metrics that can be used to
analyze the cloud layer, which were used in the experiments on the first architecture, as
shown in Tables 2 and 3. The AWS metrics are (1) Connect Success, (2) Ping Success, (3)
PublishIn Success, (4) PublishOut Success, (5) Subscribe Success, (6) Unsubscribe Success,
(7) PublishIn Clienterror, (8) Throttle Exceeded, and (9) PublishOut Throttle. These
metrics are explained in detail in Section 5.1. The metrics were collected for one hour,
starting from 30 s, as shown in Tables 2 and 3. Before analyzing the results obtained using
the AWS metrics, a number of assumptions should be taken into consideration. First, the
number of successful connections from either IoT devices or fog devices using the Connect
Success metric must be equal to the number of subscribe requests received from either fog
devices or IoT devices using the Subscribe Success metric because the loss of connections
will lead to the loss of subscribe requests in each device and the subscriptions will be
renewed automatically once the connection is reestablished. Second, the number of
unsubscribe requests received from either IoT devices or fog devices using the
Unsubscribe Success metric must reflect the numbers of subscription and publishing
requests generated in each IoT device. In our experiments, there were three IoT devices,
each of which generated two types of data, namely temperature and humidity. Asusch,
the number of IoT devices was three and the number of all subscription and publishing
requests was six. Third, the number of publishing requests received from either fog
devices or IoT devices using the Publishin Success metric should be close to or the same

Figure 5. (a) Metrics applied in the fog layer vs. (b) metrics applied in the cloud layer.

7. Results and Description of Experiments

In this section, the results of the two architectures of cloud-based IoT environments
will be analyzed using the two benchmarks metrics (Mosquitto and AWS) based on the
selected architecture using one, two, or three IoT devices with increasing numbers of
subscribing and publishing requests. In the following sections, the benchmark metrics of
each architecture are described in detail, along with observations.

7.1. Descriptions of the Three Experiments on the First Architecture with One, Two, or Three IoT
Devices Using AWS Benchmark Metrics (Cloud Layer)

The Amazon CloudWatch monitor has a variety of metrics that can be used to analyze
the cloud layer, which were used in the experiments on the first architecture, as shown in
Tables 2 and 3. The AWS metrics are (1) Connect Success, (2) Ping Success, (3) PublishIn
Success, (4) PublishOut Success, (5) Subscribe Success, (6) Unsubscribe Success, (7) Pub-
lishIn Clienterror, (8) Throttle Exceeded, and (9) PublishOut Throttle. These metrics are
explained in detail in Section 5.1. The metrics were collected for one hour, starting from
30 s, as shown in Tables 2 and 3. Before analyzing the results obtained using the AWS
metrics, a number of assumptions should be taken into consideration. First, the number of
successful connections from either IoT devices or fog devices using the Connect Success
metric must be equal to the number of subscribe requests received from either fog devices
or IoT devices using the Subscribe Success metric because the loss of connections will
lead to the loss of subscribe requests in each device and the subscriptions will be renewed
automatically once the connection is reestablished. Second, the number of unsubscribe
requests received from either IoT devices or fog devices using the Unsubscribe Success
metric must reflect the numbers of subscription and publishing requests generated in each
IoT device. In our experiments, there were three IoT devices, each of which generated
two types of data, namely temperature and humidity. Asusch, the number of IoT devices
was three and the number of all subscription and publishing requests was six. Third, the
number of publishing requests received from either fog devices or IoT devices using the

Sensors 2021, 21, 6950 18 of 32

Publishin Success metric should be close to or the same as the number of publish requests
made by AWS to either fog devices or IoT devices using the Publishout Success metric.

The experiments using the first architecture, which included a fog layer, were con-
ducted with one, two, or three IoT devices for different time periods (30 s, 1 min, 5 min,
15 min, and 1 h), as shown in Table 2. The first experiment involved one IoT device at-
tached to one fog device, with the results showing that the Connect Success and Subscribe
Success numbers reflected the numbers of subscribing and publishing requests for one IoT
device, with two subscribe and publish requests. This was because the connection was not
disconnected and the subscribe request was not lost from either the IoT or the fog device.
Moreover, there was only one IoT device connected to only one fog device, which was
then authenticated to the AWS cloud, and no other devices interrupted them. In addition,
the PublishIn Success and PublishOut Success numbers were expected and stable because
the data came from the IoT device and were filtered based on the fog device, then sent
to the AWS cloud. It takes time for the data to be transferred between the three layers of
IoT, fog, and cloud. In the second experiment, on the other hand, two IoT devices were
attached to the fog device, as shown in Table 2. The results indicated that the Connect
Success and Subscribe Success numbers were equal to the numbers of subscribing and
publishing requests for both IoT devices, since two IoT devices were linked to one fog
device with four subscribing and publishing requests; therefore, the PublishIn Success and
PublishOut Success numbers were significantly increased with two IoT devices compared
to the previous experiment using only one IoT device attached to one fog device. This
was because two IoT devices were connected to only one fog device serving as the middle
layer between the IoT devices and the AWS cloud, which was used to authenticate to the
AWS cloud; thus, the fog device increased the number of messages published to the AWS
cloud and reduced the number of IoT devices that needed to be authenticated to the AWS
cloud. The third experiment used three IoT devices connected to one fog device, as shown
in Table 2. The Connect Success and Subscribe Success numbers still reflected the actual
numbers of subscribing and publishing requests for all three IoT devices, even though there
was only one fog device; thus, the PublishIn Success and PublishOut Success numbers
were significantly increased due to the high volumes of published messages from the three
IoT devices. As such, the fog device made a significant impact in filtering and transferring
the actual volumes of data from the three IoT devices to the AWS cloud and decreasing the
number of authentications required for the AWS cloud.

Sensors 2021, 21, 6950 19 of 32

Table 2. AWS IoT message broker metrics for the North Virginia datacenter (cloud layer) using a bridge—first and second architectures.

AWS IoT Message Broker Metrics on N. Virginia Datacenter (Cloud Layer) Using Bridge—First
Architecture AWS IoT Message Broker Metrics on N. Virginia Datacenter (Cloud Layer)—Second Architecture

Number of IoT Devices 1 Number of IoT Devices 1
Number of subscribing and
Publishing 2 Number of Subscribing and

Publishing 2

AWS IoT Metrics in Minutes (m) 0.5 1 5 15 60 AWS IoT Metrics in Minutes (m) 0.5 1 5 15 60
Connect Success 2 2 2 2 2 Connect Success 2 2 2 2 2
Ping Success 2 2 8 29 120 Ping Success 5 5 25 75 297
PublishIn Success 44 44 206 586 2360 PublishIn Success 60 60 300 900 3580
PublishOut Success 44 44 206 586 2360 PublishOut Success 60 60 300 900 3580
Subscribe Success 2 2 2 2 2 Subscribe Success 2 2 2 2 2
Unsubscribe Success 2 2 2 2 2 Unsubscribe Success 2 2 2 2 2
AWS IoT Message Broker Metrics on N. Virginia Datacenter (Cloud Layer) using Bridge—First Architecture AWS IoT Message Broker Metrics on N. Virginia Datacenter (Cloud Layer)—Second Architecture
Number of IoT Devices 2 Number of IoT Devices 2
Number of Subscribing and
Publishing 4 Number of Subscribing and

Publishing 4

AWS IoT Metrics in Minutes 0.5 1 5 15 60 AWS IoT Metrics in Minutes 0.5 1 5 15 60
Connect Success 4 4 4 4 4 Connect Success 6 6 35 111 432
Ping Success 2 2 8 29 120 Ping Success 1 1 8 20 85
PublishIn Success 70 70 350 1110 4590 PublishIn Success 62 62 322 965 3850
PublishOut Success 70 70 350 1110 4590 PublishOut Success 51 51 322 965 3850
Subscribe Success 4 4 4 4 4 Subscribe Success 6 6 35 111 432
Unsubscribe Success 4 4 4 4 4 Unsubscribe Success 4 4 4 4 4
AWS IoT Message Broker Metrics on N. Virginia Datacenter (Cloud Layer) using Bridge—First Architecture AWS IoT Message Broker Metrics on N. Virginia Datacenter (Cloud Layer)—Second Architecture
Number of IoT Devices 3 Number of IoT Devices 3
Number of Subscribing and
Publishing 6 Number of Subscribing and

Publishing 6

AWS IoT Metrics in Minutes 0.5 1 5 15 60 AWS IoT Metrics in Minutes 0.5 1 5 15 60
Connect Success 6 6 6 6 6 Connect Success 12 12 76 228 893
Ping Success 2 2 9 29 119 Ping Success 2 1 5 14 60
PublishIn Success 115 115 548 1660 6510 PublishIn Success 68 68 359 1050 4240
PublishOut Success 115 115 548 1660 6510 PublishOut Success 58 68 359 1050 4240
Subscribe Success 6 6 6 6 6 Subscribe Success 12 12 76 228 893
Unsubscribe Success 6 6 6 6 6 Unsubscribe Success 6 6 6 6 6

Sensors 2021, 21, 6950 20 of 32

Table 3. AWS IoT message broker metrics on North Virginia datacenter (cloud layer) using a bridge vs. Python—first architecture.

AWS IoT Message Broker Metrics on N. Virginia Datacenter (Cloud Layer) Using Python Script—First
Architecture

AWS IoT Message Broker Metrics on N. Virginia Datacenter (Cloud Layer) Using Bridge—First
Architecture

Number of IoT Devices 1 Number of IoT Devices 1
Number of Subscribing and
Publishing 2 Number of Subscribing and

Publishing 2

AWS IoT Metrics in Minutes 0.5 1 5 15 60 AWS IoT Metrics in Minutes 0.5 1 5 15 60
Connect Success 2 2 2 2 2 Connect Success 2 2 2 2 2
Ping Success 2 2 10 30 119 Ping Success 2 2 8 29 120
IoT PublishIn Success 46 46 206 590 2360 IoT PublishIn Success 44 44 206 586 2360
IoT PublishOut Success 46 46 206 590 2360 IoT PublishOut Success 44 44 206 586 2360
Subscribe Success 2 2 2 2 2 Subscribe Success 2 2 2 2 2
IoT Unsubscribe Success 2 2 2 2 2 IoT Unsubscribe Success 2 2 2 2 2

AWS IoT Message Broker Metrics on N. Virginia Datacenter (Cloud Layer) using Python Script—First
Architecture AWS IoT Message Broker Metrics on N. Virginia Datacenter (Cloud Layer) using Bridge—First Architecture

Number of IoT Devices 2 Number of IoT Devices 2
Number of Subscribing and
Publishing 4 Number of Subscribing and

Publishing 4

AWS IoT Metrics in Minutes 0.5 1 5 15 60 AWS IoT Metrics in Minutes 0.5 1 5 15 60
Connect Success 4 4 4 4 4 Connect Success 4 4 4 4 4
Ping Success 2 2 9 29 118 Ping Success 2 2 8 29 120
IoT PublishIn Success 76 76 359 1170 4680 IoT PublishIn Success 70 70 350 1110 4590
IoT PublishOut Success 76 76 359 1170 4680 IoT PublishOut Success 70 70 350 1110 4590
Subscribe Success 4 4 4 4 4 Subscribe Success 4 4 4 4 4
IoT Unsubscribe Success 4 4 4 4 4 IoT Unsubscribe Success 4 4 4 4 4

AWS IoT Message Broker Metrics on N. Virginia Datacenter (Cloud Layer) using Python Script—First
Architecture AWS IoT Message Broker Metrics on N. Virginia Datacenter (Cloud Layer) using Bridge—First Architecture

Number of IoT Devices 3 Number of IoT Devices 3
Number of Subscribing and
Publishing 6 Number of Subscribing and

Publishing 6

AWS IoT Metrics in Minutes 0.5 1 5 15 60 AWS IoT Metrics in Minutes 0.5 1 5 15 60
Connect Success 6 6 6 6 6 Connect Success 6 6 6 6 6
Ping Success 1 2 10 30 118 Ping Success 2 2 9 29 119
IoT PublishIn Success 117 117 534 1680 6650 IoT PublishIn Success 115 115 548 1660 6510
IoT PublishOut Success 117 117 534 1680 6650 IoT PublishOut Success 115 115 548 1660 6510
Subscribe Success 6 6 6 6 6 Subscribe Success 6 6 6 6 6
IoT Unsubscribe Success 6 6 6 6 6 IoT Unsubscribe Success 6 6 6 6 6

Sensors 2021, 21, 6950 21 of 32

7.2. Descriptions of the Three Experiments on the Second Architecture with One, Two, or Three IoT
Devices Using AWS Benchmark Metrics (Cloud Layer)

In Table 2, it can be seen that for one IoT device, the Connect Success and Subscribe
Success numbers are low because there is only one IoT device with two subscribe and
publish requests authenticated to the AWS and with no other IoT devices attached with it;
thus, the connection and subscription are established at the same time. In addition, the Pub-
lishIn Success and PublishOut Success numbers are consistent and high due to the single
authenticated IoT device. With two IoT devices with four subscribe and publish requests,
however, the Connect Success and Subscribe Success numbers increase because there are
two IoT devices attempting to authenticate to the AWS cloud at one time, which increases
the number of connections and subscriptions. The PublishIn Success and PublishOut
Success numbers are not substantially change compared to the previous experiment even
though the numbers of subscribe and publish requests increase when the second IoT device
is added because the second IoT device tries to authenticate to the AWS cloud while the
first IoT device tries to publish messages to the AWS cloud. As a result, publish messages
are lost in each period. The third experiment, using three IoT devices with six subscribe
and publish requests, shows that the number of connections and subscriptions increases
while the PublishIn Success and PublishOut Success numbers are low. This is because the
three IoT devices try to authenticate to the AWS cloud at once, causing a huge number of
connection and subscription requests.

7.3. Descriptions of the Three Experiments on the First Architecture with One, Two, or Three IoT
Devices Using Mosquitto Benchmark Metrics (Fog Layer)

The MQTT Mosquitto broker using SYS-Topics has several metrics that were used
in the experiments on the first architecture from the fog layer, as shown in Tables 4–6.
The Mosquitto broker metrics are (1) load/messages/received, (2) load/messages/sent,
(3) load/publish/received, (4) load/publish/sent, (5) load/bytes/received, (6) load/bytes/
sent, (7) load/sockets, (8) load/connections, (9) messages/stored, (10) store/messages/
bytes, (11) subscriptions/count, (12) heap/current, (13) messages/received, (14) mes-
sages/sent, (15) publish/messages/received, (16) publish/messages/sent, (17) bytes/
received, (18) bytes/sent, (19) publish/bytes/received, and (20) publish/bytes/sent. These
metrics are described in detail in Section 5.2 and were obtained over one hour, starting
from 30 s, as shown in Tables 4–6. Before analyzing the Mosquitto broker metrics on the
fog device, a number of hypotheses should be discussed. First, the number of subscribe
requests received from each IoT device using the subscription/count metric must reflect
the number of subscribe and publish requests established in each IoT device. Second,
the number of publish messages received from each IoT device in the first architecture
using the publish/messages/received metric should be equal to the number of publish
messages received from the fog device using the Publishin Success metric. Third, the
number of publish messages sent by the Mosquitto broker on the fog device using the
publish/messages/sent metric should increase as the number of IoT devices increases due
to the broker capabilities and the high computational power of the fog device to process
and publish many messages. The experiments on the first architecture, which had a fog
device between the IoT device(s) and the AWS cloud, were performed using one, two, or
three IoT devices for different periods of 30 s, 1 min, 5 min, 15 min, 30 min, 45 min, and 1 h.
The first experiment involved one IoT device attached to the fog device connected to the
AWS cloud, as shown in Table 4. The results showed that the number of subscribe requests
using the subscriptions/count metric on the fog device reflected the number of subscribe
and publish requests of the single IoT device with two subscribe and publish requests.
This was because the fog device subscribes to the topics of each message received from IoT
devices, filters them based on the topics of the messages, then publishes them to the AWS
cloud. As such, each message is identified by its topic in each layer. In addition, the number
of publish messages made by the fog device (publish/messages/sent) is high, even though
there is only one IoT device, with two subscribe and publish requests. This is because the
fog device has high capability to filter and publish many messages, since it is located close

Sensors 2021, 21, 6950 22 of 32

to the IoT device that is generating the real data. Moreover, the size of the heap memory
used by Mosquitto on the fog device is stable over different durations from 30 s to 1 h. The
second experiment was conducted using two IoT devices with four subscribe and publish
requests attached to the fog device, which connects to the AWS cloud, as shown in Table 5.
The results showed that the number of subscribe requests increased since the number of
IoT devices increased to two. In addition, the number of publish messages made by the fog
device (publish/messages/sent) significantly increased because two IoT devices with four
subscribe and publish requested were attached. The third experiment was conducted using
three IoT devices with six subscribe and publish requests attached to a fog device and
then to the AWS cloud, as shown in Table 6. The results demonstrated that the number of
subscribe requests was six when the number of IoT devices increased to three. In addition,
the number of publish messages made by the fog device (publish/messages/sent) was
significantly higher when the number of IoT devices increased to three.

Table 4. Mosquitto message broker metrics on the fog layer using a bridge—first architecture.

Number of IoT Devices One IoT Device

Number of Subscribing and Publishing Two Subscribing and Two Publishing

Mosquitto Message Broker Metrics as $SYS
Topics 30 (S) 1 (Min) 5 (Min) 15 (Min) 30 (Min) 45 (Min) 1 (H)

$SYS/Broker/Load/Messages/Received 1(m) 25.31 36.26 27.43 46.25 47.81 25.96 44.70
$SYS/Broker/Load/Messages/Sent 1(m) 137.87 177.35 179.52 215.36 199.56 188.81 213.35
$SYS/Broker/Load/Publish/Received 1(m) 22.68 33.07 23.95 43.88 45.38 23.43 42.69
$SYS/Broker/Load/Publish/Sent 1(m) 135.23 174.15 176.03 213.00 197.14 186.28 211.34
$SYS/Broker/Load/Bytes/Received 1(m) 802.93 1135.98 849.26 1478.98 1524.90 791.00 1439.38
$SYS/Broker/Load/Bytes/Sent 1(m) 5315.03 6898.23 7230.76 8637.79 8029.54 7694.46 8610.21
$SYS/Broker/Load/Sockets 1(m) 1.05 0.61 0.92 0.09 0.12 0.94 0.12
$SYS/Broker/Load/Connections 1(m) 1.05 0.61 0.92 0.09 0.12 0.94 0.12
$SYS/Broker/Subscriptions/Count 2 2 2 2 2 2 2
$SYS/Broker/Heap/Current 30,224 30,232 30,360 30,148 30,084 29,744 30,132
$SYS/Broker/Messages/Received 37 65 225 663 1285 1885 2515
$SYS/Broker/Messages/Sent 202 329 1144 3250 6356 9416 12,552
$SYS/Broker/Publish/Messages/Received 32 58 209 625 1213 1787 2375
$SYS/Broker/Publish/Messages/Sent 197 322 1128 3212 6284 9310 12,412
$SYS/Broker/Bytes/Received 1154 2029 7149 21,219 41,165 60374 80,633
$SYS/Broker/Bytes/Sent 7730 12,711 45,329 129,895 255,029 378,636 505,171
$SYS/Broker/Publish/Bytes/Received 160 290 1045 3125 6065 8935 11,875
$SYS/Broker/Publish/Bytes/Sent 806 1400 5505 16,551 33,192 49,748 66,818

Table 5. Mosquitto message broker metrics on the fog layer using a bridge—first architecture.

Number of IoT Devices Two IoT Devices

Number of Subscribing and Publishing Four Subscribing and Four Publishing

Mosquitto Message Broker Metrics as $SYS
Topics 30 (S) 1 (Min) 5 (Min) 15 (Min) 30 (Min) 45 (Min) 1 (H)

$SYS/Broker/Load/Messages/Received 1(m) 59.48 79.02 109.81 119.86 109.03 123.12 114.70
$SYS/Broker/Load/Messages/Sent 1(m) 175.38 226.02 296.83 312.57 296.21 307.21 298.85
$SYS/Broker/Load/Publish/Received 1(m) 38.21 53.18 73.62 79.78 74.34 82.05 78.49
$SYS/Broker/Load/Publish/Sent 1(m) 154.11 200.18 260.63 272.49 261.52 266.13 262.63
$SYS/Broker/Load/Bytes/Received 1(m) 2124.60 2767.93 3916.20 4291.54 3854.92 4393.78 4074.59
$SYS/Broker/Load/Bytes/Sent 1(m) 5981.40 7807.80 10,344.23 10,803.61 10,424.09 10,568.27 10,457.24
$SYS/Broker/Load/Sockets 1(m) 19.69 23.40 33.62 37.64 32.03 38.43 34.27
$SYS/Broker/Load/Connections 1(m) 19.69 23.40 33.64 37.65 32.12 38.43 34.27
$SYS/Broker/Subscriptions/Count 4 4 4 4 4 4 4
$SYS/Broker/Heap/Current 30,268 30,268 30,252 30,268 30,252 30,260 30,204
$SYS/Broker/Messages/Received 84 143 593 1747 3433 5194 6954
$SYS/Broker/Messages/Sent 253 416 1632 4686 9154 13,704 18,242
$SYS/Broker/Publish/Messages/Received 53 94 398 1157 2283 3451 4618
$SYS/Broker/Publish/Messages/Sent 222 367 1437 4096 8004 11961 15906
$SYS/Broker/Bytes/Received 2976 5015 21,111 62,781 123,353 186,822 250,274
$SYS/Broker/Bytes/Sent 8609 14,285 56,570 162,328 318,376 476,257 633,619
$SYS/Broker/Publish/Bytes/Received 265 470 1990 5785 11,415 17,255 23,090
$SYS/Broker/Publish/Bytes/Sent 942 1650 7159 21,442 42,979 65,025 87076

Sensors 2021, 21, 6950 23 of 32

Table 6. Mosquitto message broker metrics on the fog layer using a bridge—first architecture.

Number of Iot Devices Three IoT Devices
Number of Subscribing and Publishing Six Subscribing and Six Publishing

Mosquitto Message Broker Metrics as $SYS
Topics 30 (S) 1 (Min) 5 (Min) 15 (Min) 30 (Min) 45 (Min) 1 (H)

$SYS/Broker/Load/Messages/Received 1(m) 90.09 129.50 172.49 163.15 163.81 172.50 179.13
$SYS/Broker/Load/Messages/Sent 1(m) 207.44 279.24 359.50 357.54 353.60 352.41 369.72
$SYS/Broker/Load/Publish/Received 1(m) 55.43 81.41 109.62 99.23 98.21 107.07 115.52
$SYS/Broker/Load/Publish/Sent 1(m) 172.78 231.14 296.63 293.61 287.99 286.97 306.10
$SYS/Broker/Load/Bytes/Received 1(m) 3329.39 4744.07 6384.79 6124.10 6170.40 6480.58 6627.83
$SYS/Broker/Load/Bytes/Sent 1(m) 6672.01 8948.99 11,686.44 11,697.09 11,528.00 11,394.30 12,088.13
$SYS/Broker/Load/Sockets 1(m) 33.08 45.51 60.27 61.48 63.11 63.81 61.52
$SYS/Broker/Load/Connections 1(m) 33.08 45.51 60.29 61.49 63.11 63.82 61.63
$SYS/Broker/Subscriptions/Count 6 6 6 6 6 6 6
$SYS/Broker/Heap/Current 30,376 30,320 30,268 30,312 30,376 30,240 30,252
$SYS/Broker/Messages/Received 129 228 951 2689 5310 7915 10,503
$SYS/Broker/Messages/Sent 299 505 1992 5639 11,077 16,495 21,823
$SYS/Broker/Publish/Messages/Received 79 142 603 1699 3333 4973 6612
$SYS/Broker/Publish/Messages/Sent 249 419 1644 4649 9100 13,553 17,932
$SYS/Broker/Bytes/Received 4736 8349 35210 100,003 197,975 295,130 391,395
$SYS/Broker/Bytes/Sent 9603 16202 64301 183,194 359,880 536,549 710,168
$SYS/Broker/Publish/Bytes/Received 395 710 3015 8495 16,665 24,865 33,060
$SYS/Broker/Publish/Bytes/Sent 1082 1920 8315 24,546 49,094 73,862 98,359

8. Evaluation of Results
8.1. First Architecture vs. Second Architecture

The first experiment on each of the two architectures was performed by connecting
one IoT device to the cloud. We used two subscribe and two publish commands to send
the data. The results showed that the numbers of subscribe and publish commands were
the same for both architectures and matched the defined numbers of subscribe and publish
commands for one IoT device; however, the number of published messages (PublishIn
Success and PublishOut Success, shown in Figures 6a and 7a) in the first architecture was
slightly lower than the number of published messages in the second architecture. This was
because there was an additional hop (i.e., fog layer) in the middle of the first architecture
that processed the messages before transmitting them to the AWS cloud. As a result, the
messages took longer to be delivered to the AWS cloud. In contrast, the second architecture
did not have a fog layer and the messages were forwarded directly to the AWS cloud, so
the number of published messages was slightly higher. Moreover, the IoT devices must
be authenticated to the AWS before publishing the messages. The Connect Success and
Subscribe Success metrics shown in Figures 8a and 9a show that when using one IoT device,
authentication did not impact these two metrics in either architecture.

Sensors 2021, 21, x FOR PEER REVIEW 24 of 33

$SYS/Broker/Publish/Bytes/Received 395 710 3015 8495 16,665 24,865 33,060
$SYS/Broker/Publish/Bytes/Sent 1082 1920 8315 24,546 49,094 73,862 98,359

8. Evaluation of Results
8.1. First Architecture vs. Second Architecture

The first experiment on each of the two architectures was performed by connecting
one IoT device to the cloud. We used two subscribe and two publish commands to send
the data. The results showed that the numbers of subscribe and publish commands were
the same for both architectures and matched the defined numbers of subscribe and
publish commands for one IoT device; however, the number of published messages
(PublishIn Success and PublishOut Success, shown in Figures 6a and 7a) in the first
architecture was slightly lower than the number of published messages in the second
architecture. This was because there was an additional hop (i.e., fog layer) in the middle
of the first architecture that processed the messages before transmitting them to the AWS
cloud. As a result, the messages took longer to be delivered to the AWS cloud. In contrast,
the second architecture did not have a fog layer and the messages were forwarded directly
to the AWS cloud, so the number of published messages was slightly higher. Moreover,
the IoT devices must be authenticated to the AWS before publishing the messages. The
Connect Success and Subscribe Success metrics shown in Figures 8a and 9a show that
when using one IoT device, authentication did not impact these two metrics in either
architecture.

Figure 6. AWS IoT message broker PublishIn Success metrics with 1, 2, and 3 IoT devices on the North Virginia datacenter
(cloud layer).

Figure 7. AWS IoT message broker PublishOut Success metrics with 1, 2, and 3 IoT devices on the North Virginia
datacenter (cloud layer).

Figure 6. AWS IoT message broker PublishIn Success metrics with 1, 2, and 3 IoT devices on the North Virginia datacenter
(cloud layer).

Sensors 2021, 21, 6950 24 of 32

Sensors 2021, 21, x FOR PEER REVIEW 24 of 33

$SYS/Broker/Publish/Bytes/Received 395 710 3015 8495 16,665 24,865 33,060
$SYS/Broker/Publish/Bytes/Sent 1082 1920 8315 24,546 49,094 73,862 98,359

8. Evaluation of Results
8.1. First Architecture vs. Second Architecture

The first experiment on each of the two architectures was performed by connecting
one IoT device to the cloud. We used two subscribe and two publish commands to send
the data. The results showed that the numbers of subscribe and publish commands were
the same for both architectures and matched the defined numbers of subscribe and
publish commands for one IoT device; however, the number of published messages
(PublishIn Success and PublishOut Success, shown in Figures 6a and 7a) in the first
architecture was slightly lower than the number of published messages in the second
architecture. This was because there was an additional hop (i.e., fog layer) in the middle
of the first architecture that processed the messages before transmitting them to the AWS
cloud. As a result, the messages took longer to be delivered to the AWS cloud. In contrast,
the second architecture did not have a fog layer and the messages were forwarded directly
to the AWS cloud, so the number of published messages was slightly higher. Moreover,
the IoT devices must be authenticated to the AWS before publishing the messages. The
Connect Success and Subscribe Success metrics shown in Figures 8a and 9a show that
when using one IoT device, authentication did not impact these two metrics in either
architecture.

Figure 6. AWS IoT message broker PublishIn Success metrics with 1, 2, and 3 IoT devices on the North Virginia datacenter
(cloud layer).

Figure 7. AWS IoT message broker PublishOut Success metrics with 1, 2, and 3 IoT devices on the North Virginia
datacenter (cloud layer).
Figure 7. AWS IoT message broker PublishOut Success metrics with 1, 2, and 3 IoT devices on the North Virginia datacenter
(cloud layer).

Sensors 2021, 21, x FOR PEER REVIEW 25 of 33

Figure 8. AWS IoT message broker Connect Success metrics with 1, 2, and 3 IoT devices on the North Virginia datacenter
(cloud layer).

Figure 9. AWS IoT message broker Subscribe Success metrics with 1, 2, and 3 IoT devices on the North Virginia datacenter
(cloud layer).

The second experiment was conducted using two IoT devices and four subscribe and
publish commands. The results show that the number of subscribe and publish
commands matches the defined number of subscribe and publish commands for two IoT
devices only in the first architecture, as shown in Figures 8b and 9b (Connect Success and
Subscribe Success); the number of subscribe and publish commands was significantly
increased in the second architecture. This is because in the second architecture, the two
IoT devices need to be authenticated separately to the AWS cloud, whereas in the first
architecture, only one device (the fog node) needs to be authenticated because the IoT
devices are authenticated to the fog node in a different, simpler process. Additionally, this
high number of connect and subscribe requests in the second architecture causes a loss in
the number of messages published to the AWS cloud. This is because while one of the IoT
devices is subscribed and publishing, the other device remains trying to connect, as shown
in Figures 6b and 7b (PublishIn Success and PublishOut Success). Notably, the rate of
published messages in the first architecture is much better than in the second architecture.
This is because in the first architecture, there was no failure to subscribe and the fog node
was always able to publish messages successfully to the AWS cloud, as shown in Figures
8b and 9b (Connect Success and Subscribe Success).

In the third experiment, we used three IoT devices with six subscribe and publish
commands. The results show that the number of subscribe and publish commands
matches the defined number of subscribe and publish commands (PublishIn Success and
PublishOut Success in Figures 6c and 7c) in the first architecture. In the second
architecture, however, the number of subscribe and publish commands is significantly
higher. This is because the fog node in the first architecture authenticates three IoT devices
and the AWS cloud authenticates only the fog node. In contrast, in the second architecture,
the AWS cloud authenticates three IoT devices separately, which increases the number of
subscribe and publish commands. This also negatively affects the number of published
messages in the second architecture due to the time spent by the IoT devices that are not
connected trying to connect, as shown in Figures 6c and 7c (PublishIn Success and
PublishOut Success). In contrast, in the first architecture, there is no loss in the published

Figure 8. AWS IoT message broker Connect Success metrics with 1, 2, and 3 IoT devices on the North Virginia datacenter
(cloud layer).

Sensors 2021, 21, x FOR PEER REVIEW 25 of 33

Figure 8. AWS IoT message broker Connect Success metrics with 1, 2, and 3 IoT devices on the North Virginia datacenter
(cloud layer).

Figure 9. AWS IoT message broker Subscribe Success metrics with 1, 2, and 3 IoT devices on the North Virginia datacenter
(cloud layer).

The second experiment was conducted using two IoT devices and four subscribe and
publish commands. The results show that the number of subscribe and publish
commands matches the defined number of subscribe and publish commands for two IoT
devices only in the first architecture, as shown in Figures 8b and 9b (Connect Success and
Subscribe Success); the number of subscribe and publish commands was significantly
increased in the second architecture. This is because in the second architecture, the two
IoT devices need to be authenticated separately to the AWS cloud, whereas in the first
architecture, only one device (the fog node) needs to be authenticated because the IoT
devices are authenticated to the fog node in a different, simpler process. Additionally, this
high number of connect and subscribe requests in the second architecture causes a loss in
the number of messages published to the AWS cloud. This is because while one of the IoT
devices is subscribed and publishing, the other device remains trying to connect, as shown
in Figures 6b and 7b (PublishIn Success and PublishOut Success). Notably, the rate of
published messages in the first architecture is much better than in the second architecture.
This is because in the first architecture, there was no failure to subscribe and the fog node
was always able to publish messages successfully to the AWS cloud, as shown in Figures
8b and 9b (Connect Success and Subscribe Success).

In the third experiment, we used three IoT devices with six subscribe and publish
commands. The results show that the number of subscribe and publish commands
matches the defined number of subscribe and publish commands (PublishIn Success and
PublishOut Success in Figures 6c and 7c) in the first architecture. In the second
architecture, however, the number of subscribe and publish commands is significantly
higher. This is because the fog node in the first architecture authenticates three IoT devices
and the AWS cloud authenticates only the fog node. In contrast, in the second architecture,
the AWS cloud authenticates three IoT devices separately, which increases the number of
subscribe and publish commands. This also negatively affects the number of published
messages in the second architecture due to the time spent by the IoT devices that are not
connected trying to connect, as shown in Figures 6c and 7c (PublishIn Success and
PublishOut Success). In contrast, in the first architecture, there is no loss in the published

Figure 9. AWS IoT message broker Subscribe Success metrics with 1, 2, and 3 IoT devices on the North Virginia datacenter
(cloud layer).

The second experiment was conducted using two IoT devices and four subscribe and
publish commands. The results show that the number of subscribe and publish commands
matches the defined number of subscribe and publish commands for two IoT devices only
in the first architecture, as shown in Figures 8b and 9b (Connect Success and Subscribe
Success); the number of subscribe and publish commands was significantly increased in the
second architecture. This is because in the second architecture, the two IoT devices need to
be authenticated separately to the AWS cloud, whereas in the first architecture, only one
device (the fog node) needs to be authenticated because the IoT devices are authenticated
to the fog node in a different, simpler process. Additionally, this high number of connect
and subscribe requests in the second architecture causes a loss in the number of messages
published to the AWS cloud. This is because while one of the IoT devices is subscribed
and publishing, the other device remains trying to connect, as shown in Figures 6b and 7b
(PublishIn Success and PublishOut Success). Notably, the rate of published messages in
the first architecture is much better than in the second architecture. This is because in the
first architecture, there was no failure to subscribe and the fog node was always able to

Sensors 2021, 21, 6950 25 of 32

publish messages successfully to the AWS cloud, as shown in Figures 8b and 9b (Connect
Success and Subscribe Success).

In the third experiment, we used three IoT devices with six subscribe and publish
commands. The results show that the number of subscribe and publish commands matches
the defined number of subscribe and publish commands (PublishIn Success and PublishOut
Success in Figures 6c and 7c) in the first architecture. In the second architecture, however,
the number of subscribe and publish commands is significantly higher. This is because
the fog node in the first architecture authenticates three IoT devices and the AWS cloud
authenticates only the fog node. In contrast, in the second architecture, the AWS cloud
authenticates three IoT devices separately, which increases the number of subscribe and
publish commands. This also negatively affects the number of published messages in the
second architecture due to the time spent by the IoT devices that are not connected trying
to connect, as shown in Figures 6c and 7c (PublishIn Success and PublishOut Success). In
contrast, in the first architecture, there is no loss in the published messages, as there is no
sign of failure in the number of subscribe and publish commands, as shown in Figures 8c
and 9c (Connect Success and Subscribe Success).

In this experiment, we found that the performance of the second architecture was
better than that of the first architecture when using one IoT device. However, when using
more than one IoT device, the first architecture outperforms the second architecture in
terms of performance. Moreover, when using more than one IoT device, the resource
utilization in the first architecture was better than in the second architecture because all of
the IoT devices were able to successfully connect to the fog node simultaneously. Overall,
with an increased number of IoT devices, the first architecture outperforms the second
architecture.

8.2. Architecture 1 Implementation: Python Script vs. Bridging

In this experiment, we evaluated the first architecture (i.e., IoT–fog–cloud) using
two different implementation frameworks (Python Script vs. bridging) using AWS met-
rics. Three experiments were performed using one, two, or three IoT devices. Using
two subscribes and two publishes per device, both implementation frameworks showed
insignificant differences in performance using the AWS benchmark, as shown in Figures
10–13. Comparing the performance results of the same architecture using two different
implementation frameworks shows that the results of our experiment are accurate.

Sensors 2021, 21, x FOR PEER REVIEW 26 of 33

messages, as there is no sign of failure in the number of subscribe and publish commands,
as shown in Figures 8c and 9c (Connect Success and Subscribe Success).

In this experiment, we found that the performance of the second architecture was
better than that of the first architecture when using one IoT device. However, when using
more than one IoT device, the first architecture outperforms the second architecture in
terms of performance. Moreover, when using more than one IoT device, the resource
utilization in the first architecture was better than in the second architecture because all
of the IoT devices were able to successfully connect to the fog node simultaneously.
Overall, with an increased number of IoT devices, the first architecture outperforms the
second architecture.

8.2. Architecture 1 Implementation: Python Script vs. Bridging
In this experiment, we evaluated the first architecture (i.e., IoT–fog–cloud) using two

different implementation frameworks (Python Script vs. bridging) using AWS metrics.
Three experiments were performed using one, two, or three IoT devices. Using two
subscribes and two publishes per device, both implementation frameworks showed
insignificant differences in performance using the AWS benchmark, as shown in Figures
10–13. Comparing the performance results of the same architecture using two different
implementation frameworks shows that the results of our experiment are accurate.

Figure 10. AWS IoT message broker PublishIn.Success metric with 1, 2, and 3 IoT devices on North Virginia datacenter
(cloud layer).

Figure 11. AWS IoT message broker PublishOut.Success metric with 1, 2, and 3 IoT devices on North Virginia datacenter
(cloud layer).

Figure 10. AWS IoT message broker PublishIn.Success metric with 1, 2, and 3 IoT devices on North Virginia datacenter
(cloud layer).

Sensors 2021, 21, 6950 26 of 32

Sensors 2021, 21, x FOR PEER REVIEW 26 of 33

messages, as there is no sign of failure in the number of subscribe and publish commands,
as shown in Figures 8c and 9c (Connect Success and Subscribe Success).

In this experiment, we found that the performance of the second architecture was
better than that of the first architecture when using one IoT device. However, when using
more than one IoT device, the first architecture outperforms the second architecture in
terms of performance. Moreover, when using more than one IoT device, the resource
utilization in the first architecture was better than in the second architecture because all
of the IoT devices were able to successfully connect to the fog node simultaneously.
Overall, with an increased number of IoT devices, the first architecture outperforms the
second architecture.

8.2. Architecture 1 Implementation: Python Script vs. Bridging
In this experiment, we evaluated the first architecture (i.e., IoT–fog–cloud) using two

different implementation frameworks (Python Script vs. bridging) using AWS metrics.
Three experiments were performed using one, two, or three IoT devices. Using two
subscribes and two publishes per device, both implementation frameworks showed
insignificant differences in performance using the AWS benchmark, as shown in Figures
10–13. Comparing the performance results of the same architecture using two different
implementation frameworks shows that the results of our experiment are accurate.

Figure 10. AWS IoT message broker PublishIn.Success metric with 1, 2, and 3 IoT devices on North Virginia datacenter
(cloud layer).

Figure 11. AWS IoT message broker PublishOut.Success metric with 1, 2, and 3 IoT devices on North Virginia datacenter
(cloud layer).
Figure 11. AWS IoT message broker PublishOut.Success metric with 1, 2, and 3 IoT devices on North Virginia datacenter
(cloud layer).

Sensors 2021, 21, x FOR PEER REVIEW 27 of 33

Figure 12. AWS IoT message broker Connect.Success metric with 1, 2, and 3 IoT devices on North Virginia datacenter
(cloud layer).

Figure 13. AWS IoT message broker Subscribe.Success metric with 1, 2, and 3 IoT devices on North Virginia datacenter
(cloud layer).

8.3. Architecture 1 Measurement: Mosquitto Metrics vs. AWS Metrics
In this section, we evaluate the first architecture of the cloud-based IoT environment

using AWS and Mosquitto benchmarks. This is done to prove that we monitored the first
architecture from two sides, the cloud layer and the fog layer, as shown in Figure 4.

The first experiment was conducted using one IoT device with two subscribe and
two publish commands. The results showed that the number of subscribe and publish
commands were the same for both the AWS (i.e., Subscribe Success and Connect Success)
and Mosquitto (i.e., $SYS/broker/subscriptions/count) benchmarks and reflected the
defined numbers of subscribe and publish commands for one IoT device, as shown in
Figures 8a, 9a and 14i. This experiment was implemented using the subscribe–publish
mode presented in [1]. In the architecture with three layers (IoT, fog, and cloud), the fog
node subscribes to all of the message topics sent from the IoT device(s). These messages
are then processed and published to the AWS cloud. Again, the cloud layer (i.e., the AWS
cloud) subscribes to all of the message topics sent from the fog device. This is important,
as it ensures that the IoT device(s) are connected and able to send data to the fog and then
to the cloud without loss.

The number of published messages on the fog device using the Mosquitto metric
(publish/messages/received) is equal to the number of published messages on the AWS
cloud using the AWS metric (PublishIn Success), as shown in Figures 14m and 6a. This is
because the messages generated from one IoT device are received by both the fog and the
AWS cloud and no messages are lost during transmission; however, the number of
messages processed by the Mosquitto broker ($SYS/broker/publish/messages/sent) on the
fog device is significantly higher than the number of messages processed by the AWS
broker (PublishOut Success) on the AWS cloud, as shown in Figures 14n and 7a. This is
because the fog device is closer to the IoT devices, which reduces the latency of
transmitting all of the messages to the AWS cloud. In addition, fog devices play an

Figure 12. AWS IoT message broker Connect.Success metric with 1, 2, and 3 IoT devices on North Virginia datacenter (cloud
layer).

Sensors 2021, 21, x FOR PEER REVIEW 27 of 33

Figure 12. AWS IoT message broker Connect.Success metric with 1, 2, and 3 IoT devices on North Virginia datacenter
(cloud layer).

Figure 13. AWS IoT message broker Subscribe.Success metric with 1, 2, and 3 IoT devices on North Virginia datacenter
(cloud layer).

8.3. Architecture 1 Measurement: Mosquitto Metrics vs. AWS Metrics
In this section, we evaluate the first architecture of the cloud-based IoT environment

using AWS and Mosquitto benchmarks. This is done to prove that we monitored the first
architecture from two sides, the cloud layer and the fog layer, as shown in Figure 4.

The first experiment was conducted using one IoT device with two subscribe and
two publish commands. The results showed that the number of subscribe and publish
commands were the same for both the AWS (i.e., Subscribe Success and Connect Success)
and Mosquitto (i.e., $SYS/broker/subscriptions/count) benchmarks and reflected the
defined numbers of subscribe and publish commands for one IoT device, as shown in
Figures 8a, 9a and 14i. This experiment was implemented using the subscribe–publish
mode presented in [1]. In the architecture with three layers (IoT, fog, and cloud), the fog
node subscribes to all of the message topics sent from the IoT device(s). These messages
are then processed and published to the AWS cloud. Again, the cloud layer (i.e., the AWS
cloud) subscribes to all of the message topics sent from the fog device. This is important,
as it ensures that the IoT device(s) are connected and able to send data to the fog and then
to the cloud without loss.

The number of published messages on the fog device using the Mosquitto metric
(publish/messages/received) is equal to the number of published messages on the AWS
cloud using the AWS metric (PublishIn Success), as shown in Figures 14m and 6a. This is
because the messages generated from one IoT device are received by both the fog and the
AWS cloud and no messages are lost during transmission; however, the number of
messages processed by the Mosquitto broker ($SYS/broker/publish/messages/sent) on the
fog device is significantly higher than the number of messages processed by the AWS
broker (PublishOut Success) on the AWS cloud, as shown in Figures 14n and 7a. This is
because the fog device is closer to the IoT devices, which reduces the latency of
transmitting all of the messages to the AWS cloud. In addition, fog devices play an

Figure 13. AWS IoT message broker Subscribe.Success metric with 1, 2, and 3 IoT devices on North Virginia datacenter
(cloud layer).

8.3. Architecture 1 Measurement: Mosquitto Metrics vs. AWS Metrics

In this section, we evaluate the first architecture of the cloud-based IoT environment
using AWS and Mosquitto benchmarks. This is done to prove that we monitored the first
architecture from two sides, the cloud layer and the fog layer, as shown in Figure 4.

The first experiment was conducted using one IoT device with two subscribe and
two publish commands. The results showed that the number of subscribe and publish
commands were the same for both the AWS (i.e., Subscribe Success and Connect Success)
and Mosquitto (i.e., $SYS/broker/subscriptions/count) benchmarks and reflected the
defined numbers of subscribe and publish commands for one IoT device, as shown in
Figures 8a, 9a and 14i. This experiment was implemented using the subscribe–publish

Sensors 2021, 21, 6950 27 of 32

mode presented in [1]. In the architecture with three layers (IoT, fog, and cloud), the fog
node subscribes to all of the message topics sent from the IoT device(s). These messages
are then processed and published to the AWS cloud. Again, the cloud layer (i.e., the AWS
cloud) subscribes to all of the message topics sent from the fog device. This is important, as
it ensures that the IoT device(s) are connected and able to send data to the fog and then to
the cloud without loss.

The number of published messages on the fog device using the Mosquitto metric
(publish/messages/received) is equal to the number of published messages on the AWS
cloud using the AWS metric (PublishIn Success), as shown in Figures 6a and 14m. This
is because the messages generated from one IoT device are received by both the fog and
the AWS cloud and no messages are lost during transmission; however, the number of
messages processed by the Mosquitto broker ($SYS/broker/publish/messages/sent) on
the fog device is significantly higher than the number of messages processed by the AWS
broker (PublishOut Success) on the AWS cloud, as shown in Figures 7a and 14n. This is
because the fog device is closer to the IoT devices, which reduces the latency of transmitting
all of the messages to the AWS cloud. In addition, fog devices play an important role in
decreasing the computation overhead caused by the IoT devices due to its close proximity.
It also reduces AWS resource consumption by bringing computation closer to the IoT
devices; therefore, the memory consumption ($SYS/broker/heap/current) on the fog
node remains stable even when the number of processed messages increases, as shown in
Figure 14j.

The second and third experiments on the first architecture were performed using two
or three IoT devices with four or six subscribe and publish commands, respectively. The
results showed that the number of subscribe and publish commands remained identical
using the Mosquitto metric ($SYS/broker/subscriptions/count) and the AWS metrics
(Subscribe Success and Connect Success) and reflected the defined number of subscribe
and publish commands, as shown in Figure 8b,c, Figure 9b,c and Figure 14i. In addition,
the number of published messages on the fog device remained equal to the number of
published messages on the AWS cloud, as shown in Figure 6b,c and Figure 14m; however,
we noticed that when we increased the number of IoT devices, the number of messages sent
and processed by the Mosquitto broker on the fog device significantly increased without
affecting the performance, as shown in Figure 14n.

Sensors 2021, 21, x FOR PEER REVIEW 28 of 33

important role in decreasing the computation overhead caused by the IoT devices due to
its close proximity. It also reduces AWS resource consumption by bringing computation
closer to the IoT devices; therefore, the memory consumption ($SYS/broker/heap/current)
on the fog node remains stable even when the number of processed messages increases,
as shown in Figure 14j.

The second and third experiments on the first architecture were performed using two
or three IoT devices with four or six subscribe and publish commands, respectively. The
results showed that the number of subscribe and publish commands remained identical
using the Mosquitto metric ($SYS/broker/subscriptions/count) and the AWS metrics
(Subscribe Success and Connect Success) and reflected the defined number of subscribe
and publish commands, as shown in Figures 8b,c, 9b,c and 14i. In addition, the number of
published messages on the fog device remained equal to the number of published
messages on the AWS cloud, as shown in Figures 14m and 6b,c; however, we noticed that
when we increased the number of IoT devices, the number of messages sent and processed
by the Mosquitto broker on the fog device significantly increased without affecting the
performance, as shown in Figure 14n.

Overall, in the first experiment with one IoT device, the number of messages
processed by the fog device (i.e., received from the IoT device and sent to the cloud) was
higher than the number of messages received by the AWS cloud. Similarly, as the number
of IoT devices increased (i.e., using two and three IoT devices), the number of messages
made by the Mosquitto broker on the fog device remained higher than the number of
messages made by the AWS broker on the AWS cloud. This was because the messages
were transmitted through the three layers of the environment (i.e., IoT, fog, and cloud);
thus, it took more time for the messages to be delivered to the AWS cloud due to the
additional intermediate fog layer. Moreover, since the fog device was located close to the
IoT devices, message latency decreased and the processing of the messages on the fog
increased. As such, using fog computing was very beneficial when connecting more than
one IoT device to the cloud. Overall, as the number of IoT devices increases, the process
ability of the fog device in the first architecture outperforms that of the AWS cloud.

(a) (b) (c)

(d) (e) (f)

Figure 14. Cont.

Sensors 2021, 21, 6950 28 of 32Sensors 2021, 21, x FOR PEER REVIEW 29 of 33

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 14. Mosquitto message broker metrics on the fog layer using bridge (Architecture 1).

9. Threats to Validity
The experiments in this paper were implemented using real commercial sensors

interacting with a real-world cloud through a commercial IoT service. The environment
was vulnerable to real attacks and simulates a real-life IoT environment. We used
Raspberry Pi boards to enable the sensors to send collected data through the Internet to
the cloud or the fog node. We also used a Raspberry Pi board as a fog node and as the
intermediate layer between the sensors and the cloud in the first architecture. The first
architecture consisted of three layers (IoT, fog, and cloud), whereas the second
architecture consisted of only two layers (IoT and cloud). Every layer operated on a
separate network and all networks were connected to the Internet to simulate real-life

Figure 14. Mosquitto message broker metrics on the fog layer using bridge (Architecture 1).

Overall, in the first experiment with one IoT device, the number of messages processed
by the fog device (i.e., received from the IoT device and sent to the cloud) was higher than
the number of messages received by the AWS cloud. Similarly, as the number of IoT devices
increased (i.e., using two and three IoT devices), the number of messages made by the
Mosquitto broker on the fog device remained higher than the number of messages made
by the AWS broker on the AWS cloud. This was because the messages were transmitted
through the three layers of the environment (i.e., IoT, fog, and cloud); thus, it took more
time for the messages to be delivered to the AWS cloud due to the additional intermediate
fog layer. Moreover, since the fog device was located close to the IoT devices, message
latency decreased and the processing of the messages on the fog increased. As such, using

Sensors 2021, 21, 6950 29 of 32

fog computing was very beneficial when connecting more than one IoT device to the cloud.
Overall, as the number of IoT devices increases, the process ability of the fog device in the
first architecture outperforms that of the AWS cloud.

9. Threats to Validity

The experiments in this paper were implemented using real commercial sensors
interacting with a real-world cloud through a commercial IoT service. The environment
was vulnerable to real attacks and simulates a real-life IoT environment. We used Raspberry
Pi boards to enable the sensors to send collected data through the Internet to the cloud or
the fog node. We also used a Raspberry Pi board as a fog node and as the intermediate
layer between the sensors and the cloud in the first architecture. The first architecture
consisted of three layers (IoT, fog, and cloud), whereas the second architecture consisted
of only two layers (IoT and cloud). Every layer operated on a separate network and all
networks were connected to the Internet to simulate real-life implementation frameworks.
In both architectures, up to three sensors were used to capture temperature and humidity
data and send it to the cloud.

Each experiment was performed for an hour, during which the data captured by the
sensors were sent to the cloud (i.e., the AWS North Virginia datacenter) and stored there. It
would be of interest to investigate whether the results can be applied to other cloud service
providers or to other datacenters in different geographical areas. In addition, three sensors
were used to conduct the experiments by either connecting the sensors to the cloud directly
or by connecting the sensors through a fog node to the cloud. Further experiments are
needed to determine how many sensors a fog node can handle before the performance is
impacted.

Moreover, our results indicate that the first architecture outperforms the second
architecture in publishing the data captured by the sensors to the cloud. This is attributed to
the fact that in the second architecture, all of the sensors need a certificate for authentication,
whereas in the first architecture, only one certificate for authentication is needed and is
placed on the fog node. Notably, this leaves the communication between the IoT layer
and the fog layer without a proper authentication mechanism. We plan to utilize the
computation and storage capability of the fog node to implement an authentication and
authorization model for the sensors that interact with the fog nodes in the future.

10. Discussion and Limitations

Fog computing has evolved to support cloud-based IoT environments in many ways.
It is known for its ability to lower the communication latency, optimize the communication
bandwidth, and enable higher network scalability and heterogeneity [52]. In addition
to these advantages, fog computing has many valuable characteristics, such as fog node
mobility and location awareness, in addition to the computational ability that IoT devices
lack. In this paper, we demonstrated that fog computing has a substantial impact on cloud-
based IoT environments in reducing latency and improving communication performance.
In addition to these benefits, fog computing has a great deal of advantages that were not
extensively discussed in our results.

First, fog-computing-aided IoT environments are known for their higher scalability,
since every group of IoT devices is connected to a fog node. This hierarchical structure
enables better management, tracking, and monitoring of IoT devices. In addition to this,
compared to environments in which IoT devices are connected directly to the cloud, fog-
aided IoT environments improve resource utilization. This is attributed to the savings in
processing capability, which are wasted when the cloud authenticates a massive number
of IoT devices. At first sight, one might say that the same processing time and resources
will be consumed at the fog node to authenticate IoT devices. While this is true, with a fog
node, consumers of cloud services will not be overcharged for services that are wasted on
the cloud to authenticate a significant number of IoT devices, especially because providers
charge based on consumption.

Sensors 2021, 21, 6950 30 of 32

From a security standpoint, fog computing spreads risks across distributed fog nodes
in fog-aided IoT environments. In addition, authenticating IoT devices at the fog layer
provides more flexibility by adding sophistication to the authentication and authorization
process, for example through encryption-based access control.

Although the convenience of having a fog layer with semi-heavyweight computation
capability has a higher capital cost, in the long run it saves a lot of resources, time, and
money.

11. Conclusions and Future Works

In this paper, we proposed two architectures of cloud-based IoT environments using
a real environment. In one architecture, we used a fog layer between IoT devices and
the cloud, whereas in the second, IoT devices published data directly to the cloud. In
order to validate our results, we also examined two ways of implementing fog-aided
IoT–cloud environments, namely (1) bridging and (2) using a Python script to forward
the data to the cloud. For each architecture, we conducted several experiments and
increased the number of IoT devices as well as the number of subscribe and publish
commands in each experiment. To evaluate the experimental performance, we used two
sets of benchmark metrics, namely (1) AWS message broker metrics and (2) Mosquitto
message broker metrics. The performance was evaluated based on the following analysis
methods. First, we compared the performance of the first and second architectures. Second,
we compared the performance of the two implementation frameworks of the fog-aided
IoT environments (i.e., Python script vs. bridging). Finally, to validate our results, the
performance of the first architecture was analyzed using Mosquitto metrics vs. AWS
metrics. The results showed that the performance in the IoT–cloud with a fog layer was
significantly better than without the fog layer, as the number of IoT devices and the number
of subscribe and publish commands increased. The results also showed that the use of
a Python script or fog-aided IoT–cloud environment resulted in the same performance.
The results of our third analysis showed that as the number of IoT devices increased, the
processability of the fog device in the fog-aided IoT–cloud architectures outperformed that
of the AWS cloud. This study aimed to educate readers on different methods that can be
used to implement IoT cloud environments and to compare the performance for each. It
can also guide researchers by providing different ways to implement fog-aided IoT–cloud
systems.

In the future, we plan to extend this study by using the same implementation frame-
works presented in this paper to analyze the performance using different cloud providers,
protocols, fog devices, and IoT devices. The presented implementation frameworks will
also be used to investigate and address security issues in fog-aided IoT–cloud systems.

Author Contributions: Conceptualization, M.A.A., A.A. and F.S.A.; methodology, M.A.A., A.A. and
F.S.A.; validation, M.A.A., A.A. and F.S.A.; supervision, M.A.A., A.A., F.S.A. and F.T.S. All authors
have read and agreed to the published version of the manuscript.

Funding: Publication of this article was funded in part by the University of Idaho—Open Access
Publishing Fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aleisa, M.A.; Abuhussein, A.; Sheldon, F.T. Access Control in Fog Computing: Challenges and Research Agenda. IEEE Access

2020, 8, 83986–83999. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2992460

Sensors 2021, 21, 6950 31 of 32

2. Aleisa, M.; Hussein, A.A.; Alsubaei, F.; Sheldon, F.T. Performance Analysis of Two Cloud-Based IoT Implementations: Empirical
Study. In Proceedings of the 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020
6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), New York, NY, USA, 1–3 August 2020;
IEEE: New York, NY, USA, 2020; pp. 276–280.

3. F.Computing. Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are. 2015. Available online:
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf (accessed on 9 October 2021).

4. Ni, J.; Zhang, K.; Lin, X.; Shen, X. Securing Fog Computing for Internet of Things Applications: Challenges and Solutions. IEEE
Commun. Surv. Tutor. 2018, 20, 601–628. [CrossRef]

5. What Is an IoT Platform & What Role Does It Play In Your Business? Available online: /content/attbusiness/en/learn/research-
reports/whats-an-iot-platform-and-what-role-does-it-play.html (accessed on 13 February 2021).

6. AWS IoT Core Overview—Amazon Web Services. Available online: https://aws.amazon.com/iot-core/ (accessed on 13 February
2021).

7. Azure IoT—Internet of Things Platform|Microsoft Azure. Available online: https://azure.microsoft.com/en-us/overview/iot/
(accessed on 13 February 2021).

8. Internet of Things|IBM. Available online: https://www.ibm.com/cloud/internet-of-things (accessed on 13 February 2021).
9. Cloud IoT Core. Available online: https://cloud.google.com/iot-core (accessed on 13 February 2021).
10. Home|IoTivity. Available online: https://iotivity.org/ (accessed on 13 February 2021).
11. Zetta—An API-First Internet of Things (IoT) Platform—Free and Open Source Software. Available online: https://www.zettajs.

org/ (accessed on 13 February 2021).
12. What Is Arduino? Available online: https://www.arduino.cc/en/Guide/Introduction (accessed on 13 February 2021).
13. DeviceHive—Open Source IoT Data Platform with the Wide Range of Integration Options. Available online: https://devicehive.

com/ (accessed on 13 February 2021).
14. OpenRemote|The 100% Open Source IoT Platform. Available online: https://openremote.io/ (accessed on 13 February 2021).
15. Alsubaei, F.; Abuhussein, A.; Shiva, S. An Overview of Enabling Technologies for the Internet of Things. In Internet of Things A to

Z; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 77–112. ISBN 978-1-119-45673-5.
16. WhatsApp. Available online: https://www.whatsapp.com/?lang=en (accessed on 13 February 2021).
17. Telegram—A New Era of Messaging. Available online: https://telegram.org/?setln=en (accessed on 14 February 2021).
18. Wang, H.; Xiong, D.; Wang, P.; Liu, Y. A Lightweight XMPP Publish/Subscribe Scheme for Resource-Constrained IoT Devices.

IEEE Access 2017, 5, 16393–16405. [CrossRef]
19. Bendel, S.; Springer, T.; Schuster, D.; Schill, A.; Ackermann, R.; Ameling, M. A Service Infrastructure for the Internet of Things

Based on XMPP. In Proceedings of the 2013 IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), Kassel, Germany, 18–22 March 2013; IEEE: San Diego, CA, USA, 2013; pp. 385–388.

20. Stanford-Clark, A.; Truong, H.L. MQTT For Sensor Networks (MQTT-SN) Protocol Specification. 2013. Available online:
https://www.oasis-open.org/committees/download.php/66091/MQTT-SN_spec_v1.2.pdf (accessed on 9 October 2021).

21. Naik, N. Choice of Effective Messaging Protocols for IoT Systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017
IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017; pp. 1–7.

22. AWS IoT—Amazon Web Services. Available online: https://aws.amazon.com/iot/ (accessed on 20 November 2020).
23. Amazon Web Services, Inc. AWS IoT—Developer Guide. 2020. Available online: https://docs.aws.amazon.com/iot/latest/

developerguide/iot-dg.pdf (accessed on 15 May 2020).
24. Amazon Web Services, Inc. Amazon CloudWatch—User Guide. 2020. Available online: https://docs.aws.amazon.com/

AmazonCloudWatch/latest/monitoring/acw-ug.pdf (accessed on 15 May 2020).
25. Eclipse Mosquitto. Available online: https://mosquitto.org/ (accessed on 20 November 2020).
26. Messaging That Just Works—RabbitMQ. Available online: https://www.rabbitmq.com/ (accessed on 13 February 2021).
27. ActiveMQ. Available online: https://activemq.apache.org/ (accessed on 13 February 2021).
28. Mosquitto Man Page. Available online: https://mosquitto.org/man/mosquitto-8.html (accessed on 21 November 2020).
29. SPEC—Standard Performance Evaluation Corporation. Available online: https://www.spec.org/ (accessed on 9 September

2021).
30. TPC-Homepage. Available online: http://www.tpc.org/ (accessed on 9 September 2021).
31. Transaction Processing Performance Council (TPC). TPC Express Benchmark IoT (TPCx-IoT) Standard Specification Version 2.0.0.

2021. Available online: http://tpc.org/tpc_documents_current_versions/pdf/tpcx-iot_v2.0.0.pdf (accessed on 15 May 2020).
32. Poess, M.; Nambiar, R.; Kulkarni, K.; Narasimhadevara, C.; Rabl, T.; Jacobsen, H.-A. Analysis of TPCx-IoT: The First Industry

Standard Benchmark for IoT Gateway Systems. In Proceedings of the 2018 IEEE 34th International Conference on Data
Engineering (ICDE), Paris, France, 16–19 April 2018; IEEE: Paris, France, 2018; pp. 1519–1530.

33. Arlitt, M.; Marwah, M.; Bellala, G.; Shah, A.; Healey, J.; Vandiver, B. IoTAbench: An Internet of Things Analytics Benchmark.
In Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering—ICPE ’15, Austin, TX, USA, 31
January–4 February 2015; ACM Press: Austin, TX, USA, 2015; pp. 133–144.

34. Vanneback, E. Using the Mosquitto Implementation in an Embedded Environment; Umea University: Umeå, Sweden, 2018; pp. 1–39.

https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
http://doi.org/10.1109/COMST.2017.2762345
/content/attbusiness/en/learn/research-reports/whats-an-iot-platform-and-what-role-does-it-play.html
/content/attbusiness/en/learn/research-reports/whats-an-iot-platform-and-what-role-does-it-play.html
https://aws.amazon.com/iot-core/
https://azure.microsoft.com/en-us/overview/iot/
https://www.ibm.com/cloud/internet-of-things
https://cloud.google.com/iot-core
https://iotivity.org/
https://www.zettajs.org/
https://www.zettajs.org/
https://www.arduino.cc/en/Guide/Introduction
https://devicehive.com/
https://devicehive.com/
https://openremote.io/
https://www.whatsapp.com/?lang=en
https://telegram.org/?setln=en
http://doi.org/10.1109/ACCESS.2017.2742020
https://www.oasis-open.org/committees/download.php/66091/MQTT-SN_spec_v1.2.pdf
https://aws.amazon.com/iot/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.pdf
https://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.pdf
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/acw-ug.pdf
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/acw-ug.pdf
https://mosquitto.org/
https://www.rabbitmq.com/
https://activemq.apache.org/
https://mosquitto.org/man/mosquitto-8.html
https://www.spec.org/
http://www.tpc.org/
http://tpc.org/tpc_documents_current_versions/pdf/tpcx-iot_v2.0.0.pdf

Sensors 2021, 21, 6950 32 of 32

35. Maksuti, S.; Schluga, O.; Settanni, G.; Tauber, M.; Delsing, J. Self-Adaptation Applied to MQTT via a Generic Autonomic
Management Framework. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne,
Australia, 13–15 February 2019; IEEE: Melbourne, Australia, 2019; pp. 1179–1185.

36. Ismail, A.A.; Hamza, H.S.; Kotb, A.M. Performance Evaluation of Open Source IoT Platforms. In Proceedings of the 2018 IEEE
Global Conference on Internet of Things (GCIoT), Alexandria, Egypt, 5–7 December 2018; IEEE: Alexandria, Egypt, 2018; pp. 1–5.

37. Lee, S.; Kim, H.; Hong, D.K.; Ju, H. Correlation Analysis of MQTT Loss and Delay According to QoS Level. In Proceedings of the
International Conference on Information Networking 2013 (ICOIN), Bangkok, Thailand, 28–30 January 2013; IEEE: Bangkok,
Thailand, 2013; pp. 714–717.

38. Aazam, M.; Zeadally, S.; Harras, K.A. Fog Computing Architecture, Evaluation, and Future Research Directions. IEEE Commun.
Mag. 2018, 56, 46–52. [CrossRef]

39. Alsubaei, F.; Abuhussein, A.; Shandilya, V.; Shiva, S. IoMT-SAF: Internet of Medical Things Security Assessment Framework.
Internet Things 2019, 8, 100123. [CrossRef]

40. El Kafhali, S.; Salah, K.; Ben Alla, S. Performance Evaluation of IoT-Fog-Cloud Deployment for Healthcare Services. In Proceedings
of the 2018 4th International Conference on Cloud Computing Technologies and Applications (Cloudtech), Brussels, Belgium,
26–28 November 2018; pp. 1–6.

41. Vilela, P.H.; Rodrigues, J.J.P.C.; Solic, P.; Saleem, K.; Furtado, V. Performance Evaluation of a Fog-Assisted IoT Solution for
e-Health Applications. Future Gener. Comput. Syst. 2019, 97, 379–386. [CrossRef]

42. Das, A.; Patterson, S.; Wittie, M. EdgeBench: Benchmarking Edge Computing Platforms. In Proceedings of the 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion (UCC Companion), Zurich, Switzerland, 17–20 December
2018; IEEE: Zurich, Switzerland, 2018; pp. 175–180.

43. McChesney, J.; Wang, N.; Tanwer, A.; de Lara, E.; Varghese, B. DeFog: Fog Computing Benchmarks. In Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, New York, NY, USA, 7 November 2019; Association for Computing Machinery:
New York, NY, USA, 2019; pp. 47–58.

44. Industries, A. DHT11 Basic Temperature-Humidity Sensor + Extras. Available online: https://www.adafruit.com/product/386
(accessed on 20 November 2020).

45. Foundation, T.R.P. Buy a Raspberry Pi 3 Model B. Available online: https://www.raspberrypi.org/products/raspberry-pi-3-
model-b/?resellerType=home (accessed on 20 November 2020).

46. Software. Available online: https://www.arduino.cc/en/software (accessed on 13 February 2021).
47. How to Bridge Mosquitto MQTT Broker to AWS IoT. Available online: https://aws.amazon.com/blogs/iot/how-to-bridge-

mosquitto-mqtt-broker-to-aws-iot/ (accessed on 13 February 2021).
48. Birje, M.N.; Bulla, C. Commercial and Open Source Cloud Monitoring Tools: A Review. In Advances in Decision Sciences, Image

Processing, Security and Computer Vision; Satapathy, S.C., Raju, K.S., Shyamala, K., Krishna, D.R., Favorskaya, M.N., Eds.; Springer
International Publishing: Cham, Swizerland, 2020; Volume 3, pp. 480–490. ISBN 978-3-030-24321-0.

49. Aslanpour, M.S.; Gill, S.S.; Toosi, A.N. Performance Evaluation Metrics for Cloud, Fog and Edge Computing: A Review, Taxonomy,
Benchmarks and Standards for Future Research. Internet Things 2020, 12, 100273. [CrossRef]

50. Stephen, A.; Benedict, S.; Kumar, R.P.A. Monitoring IaaS Using Various Cloud Monitors. Clust. Comput. 2019, 22, 12459–12471.
[CrossRef]

51. Jutadhamakorn, P.; Pillavas, T.; Visoottiviseth, V.; Takano, R.; Haga, J.; Kobayashi, D. A Scalable and Low-Cost MQTT Broker
Clustering System. Int. Conf. Inf. Technol. 2017, 5, 1–5.

52. Peng, K.; Huang, H.; Wan, S.; Leung, V.C.M. End-Edge-Cloud Collaborative Computation Offloading for Multiple Mobile Users
in Heterogeneous Edge-Server Environment. Wirel. Netw. 2020, 1–12. [CrossRef]

http://doi.org/10.1109/MCOM.2018.1700707
http://doi.org/10.1016/j.iot.2019.100123
http://doi.org/10.1016/j.future.2019.02.055
https://www.adafruit.com/product/386
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/?resellerType=home
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/?resellerType=home
https://www.arduino.cc/en/software
https://aws.amazon.com/blogs/iot/how-to-bridge-mosquitto-mqtt-broker-to-aws-iot/
https://aws.amazon.com/blogs/iot/how-to-bridge-mosquitto-mqtt-broker-to-aws-iot/
http://doi.org/10.1016/j.iot.2020.100273
http://doi.org/10.1007/s10586-017-1657-y
http://doi.org/10.1007/s11276-020-02385-1

	Introduction
	Background
	Related Works
	Experiment Setup
	Hardware
	First Architecture
	Second Architecture

	Software
	First Architecture
	Second Architecture

	Descriptions of Metrics
	Cloud Layer: AWS IoT Metrics
	Fog Layer: Eclipse Mosquitto Broker Metrics

	Analysis Methods
	Architecture 1 vs. Architecture 2
	Architecture 1 Implementation: Python Script vs. Bridging
	Architecture 1 Measurement: Mosquitto Metrics vs. AWS Metrics

	Results and Description of Experiments
	Descriptions of the Three Experiments on the First Architecture with One, Two, or Three IoT Devices Using AWS Benchmark Metrics (Cloud Layer)
	Descriptions of the Three Experiments on the Second Architecture with One, Two, or Three IoT Devices Using AWS Benchmark Metrics (Cloud Layer)
	Descriptions of the Three Experiments on the First Architecture with One, Two, or Three IoT Devices Using Mosquitto Benchmark Metrics (Fog Layer)

	Evaluation of Results
	First Architecture vs. Second Architecture
	Architecture 1 Implementation: Python Script vs. Bridging
	Architecture 1 Measurement: Mosquitto Metrics vs. AWS Metrics

	Threats to Validity
	Discussion and Limitations
	Conclusions and Future Works
	References

