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1  |  INTRODUC TION

Glioblastoma (GBM) remains the most common and aggressive 
(Grade IV) central nervous system (CNS) tumour1,2 with median 
overall survival of up to 14– 16 months.3- 5 Current GBM treatment 
regimens constitute a combination of radiotherapy with adjuvant 
Temozolomide (TMZ) chemotherapy, which could expand the life 
expectancy by 1.8 years on average.6,7 Since prognoses and therapy 

responses vary dramatically among GBM patients, there remains the 
need to identify early diagnostic GBM biomarkers. One consensus 
was recently reached that IDH (Isocitrate Dehydrogenase 1) could 
be one biomarker based on which GBM can be divided as IDH- wild 
type and IDH- mutant.2 The IDH- wild type tends to affect older peo-
ple (mean age of 62) as the primary tumour and accounts for most 
of GBMs (~90%), while the IDH- mutant presents in the secondary 
GBM, which progresses from lower- grade glioma. However, the 
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Abstract
Glioblastoma multiforme (GBM) is an aggressive form of brain tumours that remains 
incurable despite recent advances in clinical treatments. Previous studies have fo-
cused on sub- categorizing patient samples based on clustering various transcriptomic 
data. While functional genomics data are rapidly accumulating, there exist opportuni-
ties to leverage these data to decipher glioma- associated biomarkers. We sought to 
implement a systematic approach to integrating data from high throughput CRISPR- 
Cas9 screening studies with machine learning algorithms to infer a glioma functional 
network. We demonstrated the network significantly enriched various biological 
pathways and may play roles in glioma tumorigenesis. From densely connected glioma 
functional modules, we further predicted 12 potential Wnt/β- catenin signalling path-
way targeted genes, including AARSD1, HOXB5, ITGA6, LRRC71, MED19, MED24, 
METTL11B, SMARCB1, SMARCE1, TAF6L, TENT5A and ZNF281. Cox regression 
modelling with these targets was significantly associated with glioma overall survival 
prognosis. Additionally, TRIB2 was identified as a glioma neoplastic cell marker in 
single- cell RNA- seq of GBM samples. This work establishes novel strategies for con-
structing functional networks to identify glioma biomarkers for the development of 
diagnosis and treatment in clinical practice.
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association between IDH status and GBM prognosis remains poorly 
understood.

In this study, we proposed a novel strategy to identify biomark-
ers by constructing a landscape of co- functional associations in the 
context of glioma, termed as Glioma Functional Network (GFN). 
Unlike previously published biological networks, such as protein- 
protein interaction networks,8 gene co- expression networks,9 the 
functional networks revealed gene- gene associations that do not 
necessarily physically interact or share similar expression patterns.

Initially, functional networks were constructed using double 
gene knockouts on a genome- wide scale.10 However, this strategy 
is not feasible in the human genome given that the combination 
space would increase tremendously, making experimental and com-
putational approaches rather challenging. With recent advances in 
genome- wide CRISPR- Cas9 functional screening, there are accumu-
lating studies11- 14 focusing on genome- wide single- gene knockouts 
via CRISPR based techniques, and generating gene fitness data cor-
relating the extent of cell proliferation to gene perturbations. While 
such data were generated across large pools of cell lines, computing 
pairwise functional similarities and inference genetic interactions 
can be implemented. Several studies have demonstrated the func-
tional networks inferred from gene fitness screen data could reca-
pitulate protein complexes15 and functional modules.16 Given that, 
there still lacked functional networks focusing on gliomas, we sought 
to fill the gap by implementing a novel systematic strategy to iden-
tify gene co- functional networks using machine learning algorithms.

2  |  MATERIAL S AND METHODS

2.1  |  Predicting glioma functional network from 
CRISPR screening data using machine learning

Gene fitness data (version 21Q3) from CRISPR screening and 
RNA- seq expression data were downloaded from the Depmap 
portal (https://depmap.org/porta l/) and CCLE (Cancer Cell Line 
Encyclopedia, https://porta ls.broad insti tute.org/ccle) project re-
spectively. To construct glioma specific networks, we retrained data 
from a total of 67 glioma cell lines (Figure 1A). Several steps were 
applied to pre- process the data to select informative genes for pre-
dicting the network. Firstly, it was suggested that not all genes are 
expressed in cell lines, due to the inherent nature of genomic altera-
tions in cancer cells.15 Therefore, in each cell line, genes with less 
than 0 TPM (Transcript Per Million) were eliminated. Then, genes 
with fitness scores less than −0.5 in the most dependent cell lines 
were retained, as drastic fitness effects upon genetic depletion 
would facilitate functional relationships in the network construc-
tion. Lastly, genes with high variations in fitness data were retained. 
The filtration criterion is 1 MAD (median absolute deviation) greater 
than the population MAD. Finally, a total of 959 genes were selected 
to prepare the training data (Figure 1A).

To generate feature data as input for the machine learning pipe-
line, a series of similarity metrics, including Pearson correlation 

coefficient, Spearman's rank correlation coefficient, Euclidean dis-
tances, Dice's coefficient, Manhattan distance, Minkowski distance, 
Chebyshev distance, Harmonic mean, Jaccard index and mutual 
information, were computed among 959 genes in pairwise combi-
nations. The R package, philentropy (version 0.5.0)17 was used to 
compute these similarities, and 10 sets of feature data for a total of 
459,361 gene pairs were generated (Table S1).

To generate reference data for machine learning, co- functional 
gene pairs reported from at least two out of three previous stud-
ies15 were used as positives. Then, pairwise gene combinations 
excluding the aforementioned positives and sharing no common 
Gene Ontology (GO) annotations were considered as negatives. The 
Bioconductor package, org. Hs.eg.db (version 3.14.0), was used for 
mapping GO annotations. As a result, a total of 50,481 positives and 
3,055,099 negatives were generated as reference data for machine 
learning.

For the machine learning pipeline, the fivefold cross validation 
was implemented and repeated 10 times for parameter tuning. Four 
machine learning algorithms: random forest (RF),18 Multivariate 
Adaptive Regression Splines (MARS),19 Support Vector Machines20 
with Radial Basis Function Kernel (svmRadial) and Weighted k- 
Nearest Neighbor Classifier (kknn).21 The performances of the al-
gorithms were benchmarked using receiver operating characteristic 
(ROC) analysis. The area under the ROC curves (AUROC) were com-
puted for each algorithm, and the best performances were achieved 
by the MARS algorithm with AUROC of 0.94 (Figure 1B). The opti-
mal threshold was determined using the coords function from the R 
package, pROC (version 1.18.0).22 A total of 47,475 gene pairs with 
MARS scores greater than 0.02 were selected as associated interac-
tions for the glioma functional network (Figure 1C).

2.2  |  Detecting glioma functional modules

To detect modules from the glioma functional network, the 
ClusterONE23 algorithm was used to predict modules from the func-
tional network. Briefly, the ClusterONE algorithm aims to increase 
dense regions from randomly selected genes from the network and 
then identify groups of high cohesiveness as modules.23 For this 
study, the program was downloaded from the CluterONE website 
(https://pacca narol ab.org/static_conte nt/clust erone/ clust er_one- 
1.0.jar), and a total of 88 modules were detected from the glioma 
functional network.

2.3  |  Differential gene expression analysis 
in gliomas

To identify differentially expressed genes in glioma samples, 
the microarray intensity files (*.CEL) of three brain tumour stud-
ies, including the Repository for Molecular Brain Neoplasia Data 
(Rembrandt),24 were downloaded from the NCBI GEO database 
with accession numbers: GSE68848 (Rembrandt), GSE16011 25 and 

https://depmap.org/portal/
https://portals.broadinstitute.org/ccle
https://paccanarolab.org/static_content/clusterone/cluster_one-1.0.jar
https://paccanarolab.org/static_content/clusterone/cluster_one-1.0.jar
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GSE50161.26 The raw data were normalized using the Bioconductor 
package, affy 27 and annotated using the custom CDF files (version: 
25).28 The Bioconductor package, limma,29 was used to fit the linear 
models for differential gene expression analysis by comparing brain 
tumour and normal healthy samples.

2.4  |  Survival analysis of β- catenin target genes

For the GBM survival analysis, gene expression and survival data 
were retrieved from The Cancer Genome Atlas (TCGA) portal 
(https://portal.gdc.cancer.gov/), Rembrandt and other large co-
hort studies30 from NCBI GEO database with accession num-
bers: GSE13041,31 GSE83294,30 GSE16011,25 GSE7696 32 and 
GSE83130.33 Expression profiles of β- catenin target genes were 
extracted and fitted into the Cox proportional hazards regres-
sion model34 to summarize the prognostic score for each sample 
(Figure 6) using the following formula:

where h(t) is the expected hazard at time t, h0(t) is the baseline hazard, 
Xi represents the expression levels of β- catenin target genes predicted 
in this study, and bi is the regression coefficient coefficient for gene i. 
For each cohort (Figure 6), the Cox proportional hazards regression 
modelling was implemented using the coxph function from the R pack-
age, survival. The predict.coxph function was used to compute the risk 
scores. Then, samples were ranked based on the score and divided into 
two groups with high and low risks with a cut- off at the median value 
of the population scores. The significance of the difference of overall 
survival outcomes was evaluated using log- rank tests.

2.5  |  GBM single- cell RNA- seq data analysis

Single- cell RNA- seq of GBM data were retrieved from three inde-
pendent cohorts including single- cell suspensions from untreated 
IDH- wild type glioblastomas,35 IDH- mutant astrocytomas and 
oligodendrogliomas.36 Fresh tissues were subjected to droplet- 
based single- cell RNA- seq pipeline. The raw gene counts data 
were retrieved from NCBI GEO database with accession numbers: 
GSE89567 and GSE138794, the deposited website (https://github.
com/mbour gey/scRNA_GBM). The Bioconductor packages, scater 
and scran, were used for data normalization, dimension reduction 
and clustering. To identify glioma neoplastic cells, the SingleR pack-
age was used to annotate the cells by correlating gene expression 
profiles with a previous published study.37 Briefly, a total of 3589 
cells were sorted from four GBM patients and subjected to RNA- 
seq. Using differential gene expression analysis, seven types of 
cells were identified including astrocytes, immune cells, neoplastic 
cells, neurons, oligodendrocytes, OPC (oligodendrocyte precursor 
cells) and vascular cells. The normalized gene counts, cell type as-
signments and reduced dimension data were downloaded from the 
website (http://www.gbmseq.org/).

2.6  |  Validation of GFN using published protein- 
protein interaction networks and protein complexes

To validate GFN, protein- protein interaction (PPI) networks were re-
trieved from previous studies, including InBio_Map,38 STRING (ver-
sion: 11.5)39 and BioGRID (version: 4.4.202).40 For the STRING data, 
PPIs were filtered with confidence scores greater than 500. The 
GO semantic similarities among interacting protein pairs were com-
puted using the Bioconductor, GOSemSim, package.41 The manually 

h (t) = h0 (t) × exp

(

p
∑

i=1

bi × Xi

)

F I G U R E  1  Generation of the glioma 
functional network. (A) Diagram of the 
computational framework for generating 
glioma functional networks. (B) ROC 
analysis to benchmarking machine 
learning algorithms for predicting co- 
functional gene associations. The AUC 
(area under curve) values were each 
algorithm was computed as shown in the 
brackets. (C) Landscape of the glioma 
functional network. The size of the node 
reflects the degree of each node. The 
grey lines denote predicted functional 
associations. The identified hub genes 
were highlighted in red

https://portal.gdc.cancer.gov/
https://github.com/mbourgey/scRNA_GBM
https://github.com/mbourgey/scRNA_GBM
http://www.gbmseq.org/
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curated complexes were retrieved from the comprehensive resource 
of mammalian protein complexes (CORUM, version 3.0).42

3  |  RESULTS

3.1  |  A glioma functional network (GFN) generated 
from gene fitness screening data

Genome- wide CRISPR screening of gene fitness in cancer cell lines 
has provided abundant data to generate functional networks43 and 
elucidated the landscape of gene regulations in an unprecedented 
systematic manner. However, methodologies involved in these 
studies were limited to Pearson's correlation coefficient43 or linear 
modelling.16 We sought to implement a novel systematic strategy by 
incorporating similarity metrics with machine learning approaches to 
generate functional scores (Figure 1A). After data preprocessing, we 
first applied ten similarity metrics (see Methods) to pairwise com-
binations of 959 candidate genes. Then, the resulting feature data 
were fitted with four machine learning models, including random 
forest (RF),18 Multivariate Adaptive Regression Splines (MARS),19 
Support Vector Machines20 with Radial Basis Function Kernel (svm-
Radial) and Weighted k- Nearest Neighbor Classifier (kknn)21 for 
training. We evaluated performances of these algorithms by receiver 
operating characteristic (ROC) analysis. As shown in Figure 1B, 
MARS performed better than other algorithms with the largest area 
under ROC (AUROC) of 0.94. The algorithm aims to ensemble a se-
ries of linear models and non- linear models. Thus, it achieved the 
best prediction performance. From the ROC analysis, the cut- off of a 
score of 0.02 was chosen to identify a total of 47,475 high confident 
co- functional associations (Figure 1C, Table S1) as glioma functional 
networks (GFN) from 459,361 scored gene pairs. At this cut- off, the 
machine learning strategy yielded a sensitivity of 0.86 and a speci-
ficity of 0.90. As shown in Figure 2A, the majority (93.3%) of the 
co- functional associations were not published, while the remaining 
overlapped with recently published databases, including InBio_Map 
(598), STRING (1071) and BIOGRID (1498). Although poorly overlap-
ping with existing databases, GFN yielded significantly higher GO 
semantic similarities of 0.20 in biological processes, 0.52 in cellular 

components and 0.55 in molecular functions (Figure 2B), which sug-
gested as a novel resource with high biological relevances.

We then hypothesised that GFN may involve the pathogene-
sis of gliomas. Test this, each gene in the GFN was ranked by the 
Kleinberg's hub centrality scores,44 and top 8 genes, which included 
RTCB (RNA 2’,3’- Cyclic Phosphate And 5’- OH Ligase), SAMM50 (sort-
ing and assembly machinery component), TRMT61A (tRNA meth-
yltransferase 61A), MRE11 (double- strand break repair nuclease), 
METTL14 (Methyltransferase 14, N6- adenosine- methyltransferase 
subunit), MFN2 (Mitofusin 2), CDIPT (CDP- diacylglycerol- inositol 
3- phosphatidyltransferase) and TIMM9 (Translocase of inner 
mitochondrial membrane 9), were identified as GFN hub genes 
(Figure 1C). Six of the eight hub genes exhibited consistent patterns 
in the changes of expression levels across three independent cohorts 
of glioma samples (Figure 3). MRE11, RTCB, TIMM9 and METTL14 
were up- regulated in gliomas, while CDPIT and MFN2 were down- 
regulated. MRE11 is engaged in DNA damage repair pathways, and 
it was previously reported to be involved in the breast cancer pro-
gression,45 and played a role in the response of drug treatment in 
glioma.46 METTL14 promoted differentiation of embryonic stem 
cells47 and may regulate genes involved in cell proliferation, differ-
entiation and DNA damage.48 On the contrary, MFN2 was known as 
a tumour suppressor and exhibited lower expression in cancers.49 
Taken together, as central players in the network, dysfunctions of 
these genes would suggest GFN identified from this study played 
roles in glioma tumorigenesis.

3.2  |  GFN modules significantly enriched in 
biological pathways

We next implemented a clustering algorithm, ClusterOne, to 
identify a total of 88 functional modules from GFN (Figure 4A, 
Table S2), which consisted of a range of 5 to 212 members. Gene set 
enrichment analysis revealed that the glioma functional modules 
significantly enriched in biological pathways, including aminoacyl 
tRNA biosynthesis (CID- 02, p = 1.83 × 10−11), Terpenoid backbone 
biosynthesis (CID- 06, p = 5.59 × 10−3), vibrio cholerae infection 
(CID- 16, p = 7.06 × 10−10) and soluble N- ethylmaleimide- sensitive 

F I G U R E  2  Benchmarking of GFN with published databases, including InBio_Map,38 STRING (version: 11.5)39 and BioGRID (version: 
4.4.202).40 (A) Pie chart showing numbers of co- functional gene pairs published in public databases. (B) Bar graphs showing comparisons 
of average GO semantic similarities among gene pairs from GFN and other published databases. (***p < 0.001 by Wilcoxon rank sum and 
signed rank tests)
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factor attachment protein receptor (SNARE) interactions in ve-
sicular transport (CID- 32, p = 4.40 × 10−3). Aminoacyl- tRNA 
biosynthesis involved in the various biological functions, includ-
ing immune regulation.50 It also played roles in neurodegenera-
tive disease,51 and pontocerebellar hypoplasia.52 Deregulations 
of pathway members including AIMP1, AIMP2 and AIMP3 were 
observed in gastric and colorectal cancer.53 One previous study 
showed that the Terpenoid backbone biosynthesis pathway was 
down- regulated in glioblastoma cells due to the knock- down of 
lncRNA HULC, which was involved in cell proliferation.54 Glioma 
progression associated genes identified from clustering and differ-
ential expression analysis were significantly enriched in the vibrio 
cholerae infection pathway.55 The SNARE interactions in vesicu-
lar transport involved in the fusion of multivesicular body and cell 

membranes.56 Knockdown of one of SNARE proteins, Stx1, could 
inhibit cell growth and invasion in glioblastoma.57 In summary, 
pathway analysis revealed the GFN modules significantly enriched 
in glioma tumorigenesis, which could assist investigating glioblas-
toma biology.

Previous studies demonstrated that co- functional networks 
could recapulated protein complexes.15 Consistent with these find-
ings, GFN modules were also significantly overlapped with pro-
tein complexes, including 55S mitochondrial ribosome (CID- 02, 
p = 1.83 × 10−11), origin recognition complex (CID- 05, p = 7.44 × 10−4), 
PPP2CA- PPP2R1A complex (CID- 06, p = 1.61 × 10−3), Condensin 
II (CID- 08, p = 1.05 × 10−3), ITGA3- ITGB1- BSG complex (CID- 11, 
p = 6.43 × 10−4), Rnase/Mrp complex (CID- 12, p = 4.84 × 10−5), 
Spliceosome (CID- 13, p = 7.30 × 10−4; CID- 27, p = 7.67 × 10−4), 

F I G U R E  3  Box plots showing 
comparison of expression levels of 
glioma functional network hub genes 
in normal healthy and glioma samples. 
Genome- wide expression profiles were 
retrieved from three independent studies: 
GSE68848 (Rembrandt), GSE16011 25 
and GSE50161.26 (ns, not significant, 
*p < 0.05; ** p < 0.01; ***p < 0.0001, 
****p < 0.00001,by Wilcoxon rank sum 
and signed rank tests)
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Mediator complex (CID- 14, p = 6.65 × 10−4), v- ATPase- Ragulator- 
AXIN/LKB1- AMPK complex (CID- 16, p = 8.35 × 10−3), CENP- A- 
histone H4 heterodimer- HJURP complex (CID- 23, p = 4.45 × 10−5), 
eIF3 complex (CID- 26, p = 1.94 × 10−4), MYC- MAX complex (CID- 
39, p = 1.21 × 10−5), Prefoldin complex (CID- 49, p = 4.57 × 10−4), 
RAD6A- KCMF1- UBR4 complex (CID- 50, p = 3.96 × 10−03), 
RAD51B- RAD51C- RAD51D- XRCC2- XRCC3 complex (CID- 62, 
p = 7.67 × 10−6), RAD51C- XRCC3 complex (CID- 73, p = 9.08 × 10−6) 
and 20S proteasome (CID- 83, p = 3.61 × 10−4). As proteins tend to 
interact as complexes to carry out functions, GFN modules provide 
an extra layer of information to better understand various roles in 
the underlying biology of glioma pathogenesis.

3.3  |  Prediction of β- catenin targets from glioma 
functional modules

Accumulating evidence suggests that one of the embryonic stem 
cell signalling pathways, Wnt/β- catenin pathway, is involved in the 
proliferation58,59 and prognosis60 of gliomas, which prompts this 
pathway as potential therapeutic target.61 Therefore, β- catenin dys-
regulations served as a hallmark in cancer progression.62 Alongside 
with the concept of glioma stem cells (GSCs), the Wnt/β- catenin 
pathway has gained interest from the research community in re-
cent decades.63 Thus, we sought to further predict β- catenin po-
tential targets inferred by the glioma functional modules, since 

F I G U R E  4  Generation of glioma 
functional communities. (A) Overview 
of 88 identified glioma functional 
communities. (B) Zoomed in view of 
the functional community consisting of 
β- catenin (magenta) and its predicted 
targets (blue) based on co- functional 
associations

Gene Symbol GeneID
Chromosome 
location Description

AARSD1 80755 17q21.31 Alanyl- tRNA synthetase domain 
containing 1

HOXB5 3215 17q21.32 Homeobox B5

ITGA6 3655 2q31.1 Integrin subunit alpha 6

LRRC71 149499 1q23.1 Leucine rich repeat containing 71

MED19 219541 11q12.1 Mediator complex subunit 19

MED24 9862 17q21.1 Mediator complex subunit 24

METTL11B 149281 1q24.2 N- terminal Xaa- Pro- Lys N- 
methyltransferase 2

SMARCB1 6598 22q11.23|22q11 SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin, 
subfamily b, member 1

SMARCE1 6605 17q21.2 SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin, 
subfamily e, member 1

TAF6L 10629 11q12.3 TATA- box binding protein associated 
factor 6 like

TENT5A 55603 6q14.1 Terminal nucleotidyltransferase 5A

ZNF281 23528 1q32.1 Zinc finger protein 281

TA B L E  1  List of 12 predicted β- catenin 
targets
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the regulator and its targets may be functionally associated. We 
identified that β- catenin is among the members of module CID- 02 
(Figure 4B) and was functionally associated with 12 genes includ-
ing AARSD1 (Alanyl- tRNA synthetase domain containing 1), HOXB5 
(Homeobox B5), ITGA6 (Integrin subunit Alpha 6), LRRC71 (Leucine- 
rich repeat containing 71), MED19 (Mediator complex subunit 19), 
MED24 (Mediator complex subunit 24), METTL11B (N- Terminal 
Xaa- Pro- Lys N- methyltransferase 2), SMARCB1 (SWI/SNF- related 
matrix- associated actin- dependent regulator of chromatin subfam-
ily B member 1), SMARCE1 (SWI/SNF- related, matrix- associated, 
actin- dependent regulator of chromatin, subfamily E, member 1), 
TAF6L (TATA- box binding protein associated factor 6 like), TENT5A 
(Terminal nucleotidyltransferase 5A) and ZNF281 (Zinc finger pro-
tein 281) (Table 1). Some of predicted targets are in line with previous 
studies, as Wnt/β- catenin pathway has potential affect in mediator 
complexes and SWI/SNF complexes.64 Additionally, HOXB5 was one 
of homeobox genes and interacted conservely with Wnt/β- catenin 
pathway.65 Experimental data suggested that HOXB5 involved in the 
progression of breast cancer through Wnt/β- catenin pathway.66 In 
summary, various pieces of evidence suggested biological functions 
of β- catenin targets, which could play roles in glioma pathogenesis.

Notably, we compared predicted scores of β- catenin targets from 
our study with previously established methods based on Pearson 
correlation coefficient (PCC). The PCC scores of the predicted tar-
gets ranged from −0.06 to 0.12 (Figure 5), while the GFN scores 
exceeded the cut- off threshold. This suggested that the machine 
learning strategy implemented in our study was able to reveal non- 
linear co- functional associations, which could be neglected based on 
previously established methods.15

3.4  |  β- catenin targets significantly associated with 
glioma prognosis

While β- catenin dysregulations may involve in glioma progressions, 
we sought to fit expression levels of the predicted β- catenin tar-
gets in the proportional hazards regression models34 using multi-
variate analysis. The samples were divided into high-  and low- risk 
groups with a cut- off of median value of the prognostic risk scores 
(Figure 6). The established models from β- catenin target signature 
could successfully distinguish glioma patients in seven independent 
cohorts: TCGA (p = 0.00137), GSE13041 (p = 0.0127), GSE83294 
(p = 0.000384), GSE68848 (p = 0.00995), GSE16011 (p = 0.00105), 
GSE7696 (p = 0.0102) and GSE83130 (p = 0.00404) (Figure 6).

3.5  |  Identification of a glioblastoma neoplastic cell 
marker from GFN modules

For decades, great challenges remained in glioblastoma treatment 
due to tumour heterogeneity.67 Nevertheless, the recent advanc-
ing single- cell RNA- seq technologies helped reveal gene expression 
profiles from gliomas at single- cell resolution.37 From GFN mod-
ules, we identified one glioblastoma neoplastic cell marker, TRIB2 
(Tribbles Pseudokinase 2) from CID- 40. Typically, neoplastic cells 
originated from tumour cores and exhibited high expression levels in 
EGFR and SOX9.37 As shown in Figure 7, TRIB2 exhibited 1.38– 2.22 
fold- change in neoplastic cells compared to non- neoplastic cells 
(p < 4.53 × 10−26). TRIB2 was previously identified as an important 
oncogene in lung cancer,68 liver cancer69 and colorectal cancer.70 For 

F I G U R E  5  Fitness profiles in cancer 
cell lines (n = 1032) for β- catenin and 
its predicted targets from the glioma 
functional modules. Functional associated 
scores between β- catenin and its 
predicted targets were computed using 
PCC and retrieved from the GFN. Rows 
(genes) are hierarchically clustered based 
on PCC scores
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gliomas, one recent study demonstrated that its combined elevated 
expression with MAP3K1 was significantly associated with survival 
and chemoresistance.71 Our study showed specificity of TRIB2 ex-
pression in glioblastoma neoplastic cells. While these data were at 
single- cell resolution and the elevated patterns are consistent in 
three independent cohorts, this could shed light on the possibility of 
becoming a drug target.

4  |  DISCUSSION

In this study, we presented a systems biology approach to identify 
GFN by applying machine learning algorithms on multiple similari-
ties of genome- wide fitness screening data. We demonstrated the 
networks involved in glioma tumorigenesis and predicted potential 
targets of WNT/β- catenin pathways. These targets are significantly as-
sociated with glioma overall survival prognosis and also could be used 
as cell type- specific markers for the scRNA- seq data analysis. While 

most gene co- functional associations have not been reported before, 
they were significantly enriched biological pathways. This could serve 
a novel resource for studying tumour biology in gliomas. Additionally, 
we have demonstrated our computational strategy could capture gene 
co- functional associations that may be lost in previously established 
methods.15 We reasoned that functionally associated gene pairs may 
share similar fitness patterns in a non- linear manner, which could be 
utilized by machine learning algorithms. This has provided another ap-
proach to identify gene co- functional associations in addition to linear 
methods, such as PCC and PCA.

From the GFN, we further identified a total of 88 glioma func-
tional modules, which are densely connected in the GFN. Consistent 
with previous findings,15 these modules are significantly enriched in 
biological pathways, or protein complexes. From one of the mod-
ules, we predicted β- catenin targets from its direct functional asso-
ciations. Statistical modelling of expression levels of these targets 
was significantly associated with glioma overall survival prognosis. 
However, these findings need to be verified in ChIP- seq for binding 

F I G U R E  6  Survival analysis of β- catenin target genes in four glioma studies. Left panel: samples were divided into high-  and low- risk 
groups based on the risk scores generated from prognostic modelling using expression levels of β- catenin target genes. Right panel: Kaplan- 
Meier estimated the two groups associated with overall survival. P value was computed using the log- rank test
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sites and loss- of- function experiments. Lastly, we showed the iden-
tification of a glioma neoplastic cell marker, TRIB2, from single- cell 
RNA- seq data analysis, which could potentially become a drug tar-
get to tackle tumour heterogeneity challenges.

Taken together, we anticipate that the outcome of this study will 
significantly advance the understanding of tumour biology and the 
molecular attributes of glioma progression, but also facilitate the 
development of diagnostic assays for clinical applications as a com-
plementary to the traditional histopathological assessments. We 
have also demonstrated the powerful capacity of the systems biol-
ogy approach implemented in this project to elucidate biomarkers 

in various types of cancer. As the wealth of multi- omics data grows, 
the robustness of biomarkers could be improved by optimizing data 
from various sources, which could be expanded to a wider range of 
aspects, such as drug repurposing and personalized treatments in 
cancer.
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