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Biological aging results in changes in an organism that accumulate over age in a complex

fashion across different regulatory systems, and their cumulative effect manifests in

increased physiological dysregulation (PD) and declining robustness and resilience that

increase risks of health disorders and death. Several composite measures involving

multiple biomarkers that capture complex effects of aging have been proposed. We

applied one such approach, theMahalanobis distance (DM), to baselinemeasurements of

various biomarkers (inflammation, hematological, diabetes-associated, lipids, endocrine,

renal) in 3,279 participants from the Long Life Family Study (LLFS) with complete

biomarker data. We used DM to estimate the level of PD by summarizing information

about multiple deviations of biomarkers from specified “norms” in the reference

population (here, LLFS participants younger than 60 years at baseline). An increase

in DM was associated with significantly higher mortality risk (hazard ratio per standard

deviation of DM: 1.42; 95% confidence interval: [1.3, 1.54]), even after adjustment for

a composite measure summarizing 85 health-related deficits (disabilities, diseases, less

severe symptoms), age, and other covariates. Such composite measures significantly

improved mortality predictions especially in the subsample of participants from families

enriched for exceptional longevity (the areas under the receiver operating characteristic

curves are 0.88 vs. 0.85, in models with and without the composite measures, p =

2.9 × 10−5). Sensitivity analyses confirmed that our conclusions are not sensitive to

different aspects of computational procedures. Our findings provide the first evidence

of association of PD with mortality and its predictive performance in a unique sample

selected for exceptional familial longevity.

Keywords: physiological dysregulation, statistical distance, mortality, prediction, Long Life Family Study, deficits
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INTRODUCTION

Traditional demographic analyses based on information from
population life tables provide useful insights on historical
patterns of change in mortality, survival curves, and life
expectancy which can also be used to predict future trends
in these characteristics in the entire population or specific
subpopulations. However, such “aggregated” predictions provide
information for an “average” individual from a (sub)population
and may yield little information about mortality risk and
remaining life expectancy for some individuals which are
determined by their unique histories of exposures to various risk
factors during the life-course, by their genetic makeup, or the
interaction of these risk factors and genetics. Therefore, although
age is an important risk factor for mortality and determinant
of remaining life expectancy, individuals of the same age can
have very diverse and unique characteristics that affect their
current health status and future risks of health deterioration
and mortality. Measurements of different physiological and
other variables (biomarkers) provide additional opportunity
for personalized predictions of morbidity and mortality
risks as they can reflect individual age-related changes
occurring at the molecular and cellular levels in different
organs and tissues that result in individual-specific rates of
physiological dysregulation, health deterioration, and mortality
risks. Composite measures based on multiple biomarkers
of different physiological systems [see e.g., (1–4) and recent
reviews (5, 6)] can capture the complex effect of aging on
different regulatory systems and its relation to morbidity
and mortality.

Recently, the statistical (Mahalanobis) distance (denoted
as DM) constructed for the joint distribution of multiple
biomarkers was suggested as a composite measure that can
represent the level of physiological dysregulation in an organism
(2) and aging-related declines in robustness and resilience
(7). This measure was associated with mortality and aging-
related outcomes in numerous studies [see e.g., (2, 7–12)].
In this paper, we constructed DM using measurements of
multiple biomarkers collected at the baseline visit of the
Long Life Family Study (LLFS) to test if the level of PD
is associated with mortality in this study, and whether it
improves mortality predictions compared to the models with
age and common individual risk factors. The LLFS is a unique
study which enrolled participants from families selected for
exceptional familial longevity (13), along with their spouses.
The LLFS participants from the probands’ generation have
much better survival chances than their age peers from the
general population so that the survival curves for the LLFS
participants are shifted to the right compared to population
survival functions computed from respective cohort life tables
(14). Hence, unlike all previous studies applying DM, this paper
investigates whether DM is a useful predictor of mortality in
persons with much lower mortality risk compared to a general
population (and who, respectively, have much higher remaining
life expectancy than that estimated from population-based
cohort life-tables).

MATERIALS AND METHODS

Data
The LLFS is a family-based, longitudinal study of healthy aging
and longevity that enrolled participants at field centers in the
US (Boston, New York, Pittsburgh) and Denmark. During
the baseline visit in 2006–2009, more than 4,900 participants
were enrolled from families determined to have exceptional
longevity according to the Family Longevity Selection Score
(FLoSS) (13). Details on study eligibility criteria are described
elsewhere (15). Socio-demographic variables, data on past
medical history and current medical conditions, medications
use, physical and cognitive functioning, and blood samples
were collected via in-person visits and phone questionnaires
for all subjects at the time of enrollment (15). Blood assays
were centrally processed at a Laboratory Core (University of
Minnesota) and protocols were standardized, monitored and
coordinated through a Data Management Coordinating Center
(Washington University, St. Louis). Written informed consent
was obtained from all subjects following protocols approved by
the respective field center’s Institutional Review Boards (IRBs).
In this paper, we performed secondary analyses of LLFS data
collected at all field centers. This study was approved by the Duke
Health IRB.

LLFS participants were followed up annually to track their

vital and health status. The analyses reported in this paper used

the March 11, 2019 release of LLFS data with the latest recorded

date of death on February 13, 2019. Ages at the baseline visit

were validated using dates of birth from official documents
(such as birth certificate or driver’s license) (16). Ages at death
were computed from available dates of birth and death. Ages
at censoring for those who did not die within the follow-
up period were determined from dates of birth and the last
follow-up in the March 11, 2019 release of LLFS data. We also
computed prevalence (i.e., the disease status at the baseline) and
incidence (i.e., new cases reported during the follow-up) of major
diseases available in the study such as Alzheimer’s disease (AD)
or dementia, cancer, cardiovascular diseases (CVD), diabetes,
for the entire sample and for the reference population used in
construction of DM [see section Construction of the Cumulative
Measure of Physiological Dysregulation (DM)]. Information on
health conditions was collected during the interviews from
study participants or proxies (if a participant was unable to
provide an answer). At the baseline, the question asked was
“Please respond ‘yes’ or ‘no’ if you have EVER been told by
a doctor that you had this condition.” Similar questions were
asked during follow-up interviews (“Please respond ‘yes’ or ‘no’
if you have EVER been told by a doctor that you had this
condition since we last interviewed you on. . . ”). Using responses
to such questions about specific diseases [AD or dementia:
Alzheimer’s Disease or Dementia; cancer: All cancer cites; CVD:
Myocardial Infarction, Heart Attack, Coronary Angioplasty,
Coronary Artery, Bypass Grafting, (Congestive) Heart Failure,
Stroke, Cerebrovascular Accident, Transient Ischemic Attack, or
Mini-Stroke; diabetes: Diabetes] from the baseline and follow-
up interview, we computed the numbers of prevalent cases
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at the baseline and the numbers of new cases reported since
the baseline.

In addition to association and predictive analyses with DM

described in section Association of DM with Mortality and
Predictive Performance Analyses, we conducted descriptive
analyses of the original variables as well as DM in the entire
sample and in generation (probands’ and offspring) and spouse
groups (probands, their siblings and offspring, and their spouses).
Specifically, we computed empirical characteristics (means,
standard deviations, ranges, correlations with age, percentages)
for various variables used in the analyses (see Table 1). Relevant
tests (one-way ANOVA, t-test, chi-square test) were used to
provide statistical inference (see section Descriptive Analyses).
We also computed the Kaplan-Meier estimates of survival curves
(conditional at age 80 years) for subsamples of participants
grouped by the quartiles of the distribution of DM in the analyzed
sample. Age at the baseline or age 80 years (whatever was
the largest) was used as the left truncation variable for these
analyses. The quartiles were computed separately by sex and in
the entire sample as reported in respective figures (see section
Descriptive Analyses). The 95% confidence intervals for the
survival curves were computed based on respective estimates of
cumulative hazards.

Construction of the Cumulative Measure of
Physiological Dysregulation (DM)
The statistical (Mahalanobis) distance (17, 18) constructed for
the joint distribution of biomarkers was recently suggested in
the literature as an approach to construct a composite measure
(denoted as DM) that reflects physiological dysregulation in aging
body (2, 9, 11). It is designed to measure how “aberrant each
individual’s profile is with respect to the overall average (centroid)
of the reference population” (10) that represents the “normal”
physiological state. Such “reference population” can be either a
subsample of the same study or it can come from an external
study. Here we constructed DM using baseline observations
of 19 biomarkers that were used in the study of biomarker
signatures of aging in LLFS (19). The list of biomarkers (that
includes inflammation, hematological, diabetes-associated, lipid,
endocrine, and renal biomarkers) along with their descriptive
statistics (means, standard deviations, correlation with age)
is presented in Table 1. The initial sample contained 4,938
individuals participating in LLFS visit 1. The notes under Table 1
contain information about numbers of missing observations
of these biomarkers and other variables used in the analyses.
After exclusion of individuals with at least one missing
value of respective variables, the resulting sample used in
construction and analyses of DM included 3,279 participants
(1,815 females, 1,464 males, 886 probands/siblings, 128 spouses
of probands/siblings, 1,691 offspring, and 574 offspring spouses).
Further, in the Cox regression analyses described below, we
removed 19 individuals that were lost to follow-up right after
visit 1 (their age at censoring was set to age at baseline) so
that the resulting sample size for the Cox regression model was
3,260 individuals. See also section Sensitivity Analyses regarding
analyses using multiple imputation of missing values.

Observed values of each biomarker were transformed using
the Box-Cox transformation and standardized so that the
transformed biomarkers are all on the same scale (with a zero
mean and a unit variance). When a variable had zeros for
some individuals, all records for that variable were shifted by
adding 0.1, so that the Box-Cox transformation could work.
We used individuals younger than 60 years at the baseline as a
“reference population.” This cutoff age produced a reasonably
large “reference population” for the current analyses (1,361; 815
females, 546 males). Computations of the means and variance-
covariance matrix in the “reference population” [which are
needed for construction of DM (2)] were performed separately for
females and males. The resulting DM was also transformed using
the Box-Cox transformation (see also description of additional
computations in section Sensitivity Analyses). Table S1 provides
characteristics of the reference population used for construction
of DM.

Association of DM With Mortality and
Predictive Performance Analyses
We fitted the Cox proportional hazards models with adjustment
for related individuals (sandwich estimator) to follow-up data on
mortality in the entire LLFS sample. We also performed analyses
stratified by generation (probands’ generation and offspring
generation) and spouse status (probands, their siblings and
offspring, and their spouses). Age was used as a time variable
with age at visit 1 included as the left truncation variable in the
model. The models were adjusted for the following covariates
(in addition to DM): sex (1—male, 0—female), field center (four
levels: Boston, Denmark, New York, Pittsburgh; Denmark was
used as the reference category), education (1—below high school,
0—otherwise), smoking (smoked >100 cigarettes in lifetime: yes
[1]/no [0]), medication use (anti-diabetic, lipid-lowering, anti-
hypertensive) (1—used, 0—did not use), fasting (1—≥ 8 h, 0—
otherwise), and an 85-item deficits index (DI) (20). The DI
(also known as a frailty index) aggregates a number of various
health traits into a single measure and it is computed as the
number of failed or abnormal traits (or “deficits”) divided by
the total number of traits measured in individual at respective
age (21, 22). An important advantage of the DI is that it can
be constructed using the set of variables available in a specific
dataset as its properties are weakly sensitive to the selection of
a specific set of variables as shown in different studies [see e.g.,
(23–26)]. To construct the DI in the LLFS, we used health-related
variables collected in LLFS that cover major health dimensions
such as disability, cognition, morbidities, depression, physical
performance, etc. Dichotomous variables were recoded as 1—
deficit; 0—no deficit. Non-dichotomous variables were recoded
as outlined in Kulminski et al. (20). The list of 85 variables used
in the DI is provided in Table 1 in Kulminski et al. (20). The
DI is constructed as a sum of the recoded variables divided by
the number of variables measured in the respective individual.
We computed receiver operating characteristic (ROC) curves
and areas under the ROC curves (AUC) in logistic regression
models with binary indicator of death (1—died during the follow-
up, 0—alive) as the outcome for four combinations of DM and
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TABLE 1 | Sample characteristics of the Long Life Family Study at the baseline visit.

Sample characteristics Probands’ generation Offspring generation Total sample

Probands and

their siblings

Spouses Offspring Spouses

Number of participants at baseline 1,500 191 2,435 812 4,938

Number of deaths during the follow-up period 1,174 103 178 70 1,525

Age at baseline* 90.4 ± 6.4

[49, 110]

83.4 ± 7.0

[55, 101]

60.5 ± 8.3

[30, 88]

60.9 ± 8.7

[24, 88]

70.5 ± 15.8

[24, 110]

Females (%) 52.67 78.01 57.49 47.41 55.16

Whites (%) 98.93 98.95 99.59 98.65 99.21

Participants from US field centers (%) 84.6 84.82 74.25 53.08 74.32

Low educated participants (below high school) (%) 25.87 17.28 5.79 9.11 12.88

Smokers (smoked >100 cigarettes in lifetime) (%) 37.33 39.27 45.34 45.69 42.73

Medication use: anti-diabetic (%) 6.93 7.85 4.6 4.8 5.47

Medication use: anti-hypertensive (%) 66.87 71.73 30.14 35.1 43.72

Medication use: lipid-lowering (%) 30.33 42.41 25.09 25.74 27.46

Fasting (≥8 h) (%) 87.8 91.1 88.79 92.73 89.23

Follow-up period* 5.8 ± 3.2

[0, 12.3]

7.0 ± 3.3

[0, 12.0]

9.6 ± 2.3

[0, 12.5]

9.3 ± 2.7

[0, 12.3]

8.3 ± 3.2

[0, 12.5]

Follow-up period for dead* 4.8 ± 2.7

[0, 11.9]

5.3 ± 2.7

[1, 11.1]

6.3 ± 2.8

[1, 12.4]

6.2 ± 2.6

[1, 11.3]

5.1 ± 2.8

[0, 12.4]

Follow-up period for alive* 9.4 ± 2.4

[0, 12.3]

9.0 ± 2.7

[0, 12.0]

9.9 ± 2.1

[0, 12.5]

9.6 ± 2.5

[0, 12.3]

9.8 ± 2.2

[0, 12.5]

Prevalence of cancer, N (%) 529 (35.27) 60 (31.41) 430 (17.66) 161 (19.83) 1,180 (23.90)

Prevalence of CVD, N (%) 419 (27.93) 43 (22.51) 134 (5.50) 68 (8.37) 664 (13.45)

Prevalence of AD or dementia, N (%) 111 (7.40) 9 (4.71) 2 (0.08) 6 (0.74) 128 (2.59)

Prevalence of diabetes, N (%) 136 (9.07) 22 (11.52) 145 (5.95) 54 (6.65) 357 (7.23)

Incidence of cancer, N (%) 158 (10.53) 26 (13.61) 274 (11.25) 98 (12.07) 556 (11.26)

Incidence of CVD, N (%) 310 (20.67) 42 (21.99) 141 (5.79) 61 (7.51) 554 (11.22)

Incidence of AD or dementia, N (%) 113 (7.53) 15 (7.85) 21 (0.86) 9 (1.11) 158 (3.20)

Incidence of diabetes, N (%) 21 (1.40) 2 (1.05) 94 (3.86) 32 (3.94) 149 (3.02)

Adiponectin (Adip)** 16,084.1 ± 9,791

0.15 [3.8 × 10−8]

15,369.9 ± 7,812

0.14 [0.07]

10,967.1 ± 6,459

0.10 [1.8 × 10−6]

10,198.8 ± 5,800

0.04 [0.28]

12,526.9 ± 7,959

0.32 [0.0]

Albumin (Album)** 3.8 ± 0.3

−0.20 [2.1 × 10−14]

3.9 ± 0.3

−0.26 [5.3 × 10−4]

4.1 ± 0.3

−0.08 [4.4 × 10−5]

4.1 ± 0.3

−0.11 [1.8×10−3]

4.0 ± 0.3

−0.36 [0.0]

Absolute monocyte count (Abs.M)** 0.7 ± 0.3

0.11 [5.0 × 10−5]

0.7 ± 0.4

−3.8 × 10−4 [1.00]

0.6 ± 0.2

0.11 [5.6 × 10−7]

0.6 ± 0.4

0.09 [0.02]

0.6 ± 0.3

0.20 [0.0]

Creatinine (Creat)** 1.2 ± 0.4

0.11 [3.1 × 10−5]

± 0.3

0.14 [0.07]

± 0.3

0.10 [2.4 × 10−6]

± 0.2

0.23 [5.2 × 10−11]

± 0.3

0.31 [0.0]

Cystatin (Cysc)** 1.5 ± 0.5

0.32 [0.0]

1.2 ± 0.4

0.35 [1.8 × 10−6]

0.9 ± 0.3

0.33 [0.0]

0.9 ± 0.2

0.44 [0.0]

± 0.4

0.63 [0.0]

Dehydroepiandrosterone sulfate (DHEA)** 44.6 ± 30.9

−0.12 [1.7 × 10−4]

42.3 ± 30.9

−0.28 [9.8 × 10−4]

91.0 ± 63.6

−0.30 [0.0]

95.2 ± 65.5

−0.27 [2.6 × 10−13]

78.3 ± 60.6

−0.43 [0.0]

Hemoglobin (Hgb)** 13.2 ± 1.4

−0.22 [0.0]

13.5 ± 1.4

−0.20 [9.5 × 10−3]

14.2 ± 1.3

−0.08 [2.1 × 10−4]

14.3 ± 1.2

0.08 [0.03]

13.9 ± 1.4

−0.34 [0.0]

Glycosylated hemoglobin (HbA1c)** 5.8 ± 0.5

0.03 [0.22]

5.8 ± 0.7

−0.02 [0.78]

5.6 ± 0.6

0.21 [0.0]

5.6 ± 0.5

0.18 [4.8 × 10−7]

5.6 ± 0.6

0.22 [0.0]

High-sensitivity C-reactive protein (hsCRP)** 5.1 ± 11.5

0.09 [7.3 × 10−4]

5.0 ± 11.8

0.03 [0.65]

2.7 ± 4.4

0.03 [0.12]

2.8 ± 6.6

0.04 [0.26]

3.5 ± 7.9

0.15 [0.0]

Insulin-like growth factor 1 (IGF1)** 103.3 ± 47.2 −0.24

[0.0]

104.3 ± 42.8

−0.28 [2.4 × 10−4]

144.1 ± 170.7

−0.02 [0.28]

140.9 ± 49.9

−0.18 [6.7 × 10−7]

129.9 ± 126.3

−0.16 [0.0]

Interleukin 6 (IL-6)** 4.3 ± 10.0

0.13 [2.3 × 10−6]

2.7 ± 4.4

0.12 [0.10]

1.4 ± 3.6

0.04 [0.05]

1.5 ± 4.4

0.11 [2.2 × 10−3]

2.3 ± 6.5

0.21 [0.0]

Mean corpuscular volume (MCV)** 93.8 ± 6.1

−4.8 × 10−4 [0.99]

94.6 ± 5.6

0.08 [0.27]

92.0 ± 5.2

0.07 [1.3 × 10−3]

91.6 ± 5.2

0.14 [1.0 × 10−4]

92.6 ± 5.6

0.17 [0.0]

(Continued)
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TABLE 1 | Continued

Sample characteristics Probands’ generation Offspring generation Total sample

Probands and

their siblings

Spouses Offspring Spouses

N-terminal pro b-type natriuretic peptide (NT-proBNP)** 899.8 ± 1588.1

0.18 [9.6 × 10−12]

487.9 ± 614.0

0.31 [3.2 × 10−5]

105.4 ± 272.1

0.19 [0.0]

99.6 ± 160.5

0.28 [5.3 × 10−15]

359.5 ± 974.8

0.38 [0.0]

Red cell distribution width % (RDW)** 14.5 ± 1.5

0.15 [3.1 × 10−8]

14.3 ± 1.1

0.23 [1.8 × 10−3]

13.6 ± 1.1

0.12 [3.2 × 10−8]

13.7 ± 1.2

0.18 [3.3 × 10−7]

13.9 ± 1.3

0.31 [0.0]

Sex-hormone binding globulin (SHBG)** 85.4 ± 39.1

0.16 [6.3 × 10−10]

80.1 ± 34.2

0.23 [2.4 × 10−3]

61.2 ± 36.0

0.02 [0.29]

59.9 ± 32.1

−0.09 [0.01]

69.0 ± 38.0

0.28 [0.0]

Soluble receptor for advanced glycation endproduct

(sRAGE)**

822.1 ± 626.1

0.14 [2.9 × 10−7]

699.6 ± 405.3

0.16 [0.03]

539.8 ± 401.6

0.06 [1.9 × 10−3]

532.4 ± 430.3

0.02 [0.67]

629.0 ± 501.1

0.26 [0.0]

Total cholesterol (T.Chol)** 187.3 ± 43.7

−0.03 [0.26]

199.3 ± 45.8

−0.20 [6.9 × 10−3]

205.5 ± 40.0

−0.01 [0.49]

204.8 ± 40.1

−0.05 [0.13]

199.7 ± 42.2

−0.18 [0.0]

Transferrin receptor (Transf.R)** 3.3 ± 1.2

0.06 [0.02]

3.1 ± 1.0

0.05 [0.55]

2.9 ± 1.1

9.8 × 10−3 [0.64]

2.9 ± 1.4

0.06 [0.10]

3.0 ± 1.2

0.14 [0.0]

White blood cell count (WBC)** 6.8 ± 2.9

0.07 [0.01]

6.8 ± 2.9

−0.02 [0.84]

6.0 ± 1.8

0.09 [5.2 × 10−5]

6.0 ± 1.7

0.14 [6.6 × 10−5]

6.3 ± 2.2

0.19 [0.0]

(1) *These rows display mean ± SD [range is shown in brackets]; (2) **these rows display mean ± SD and correlation with age [p-value for the null hypothesis on zero correlation is

shown in brackets]; (3) Number of missing data: education−14; smoking−23; anti-diabetic drugs−498; anti-hypertensive drugs−498; lipid-lowering drugs−498; fasting−19; Adip−453;

Album−262; Abs.M−408; Creat−245; Cysc−262; DHEA−993; Hgb−383; HbA1c−277; hsCRP−455; IGF1–466; IL-6–310; MCV−384; NT-proBNP−320; RDW−397; SHBG−263;

sRAGE−261; T.Chol−245; Transf.R−453; WBC−382; Other variables listed in the table have no missing values. (4) The numbers shown in “Number of deaths during the follow-up

period” and “Follow-up period” correspond to the LLFS data release used in this paper (see section Data).

DI variables (both DM and DI, DI only, DM only, none) used
as covariates. All models were adjusted for other covariates
specified above (sex, field center, education, smoking, medication
use, fasting, and age). We did these calculations in the entire
sample and also performed analyses stratified by generation and
spouse status. Leave-one-out cross-validation was used for model
evaluation in all calculations. See also description of additional
computations in section Sensitivity Analyses.

Statistical analyses, data preparation, and visualization were
done in SAS 9.4 (SAS/STAT 14.3) and R 3.5.0.

Sensitivity Analyses
We performed sensitivity analyses to check whether our
conclusions are sensitive to different aspects of the computation
procedures, which might hypothetically affect the results. First,
we considered different sets of biomarkers in computations of
DM. We added the biomarkers used in our previous applications
of DM in the Framingham Heart Study (7, 12) to the list of
the original 19 biomarkers from Sebastiani et al. (19). We also
created DM variants focusing on the subsets of biomarkers
with absolute values of correlations with age exceeding specific
thresholds (0.05, 0.1, 0.15, 0.2) and removing highly correlated
biomarkers (one of a pair of biomarkers with absolute value
of correlation between the biomarkers exceeding 0.8). We also
computed separate DM variants selecting biomarkers positively
and negatively correlated with age. Second, we estimated the
models using the original (non-transformed) values of DM.
Third, we repeated the analyses focusing on the subsample of
whites (which constitute the majority of the LLFS sample, 99%).
Fourth, we modified the method of computation of the reference
population changing the threshold (<65 and <70 years) and also
computing means and variance/covariance matrices separately in

the US and Danish subsamples. We also repeated computations
excluding individuals with prevalent diseases (cancer, CVD,
diabetes, AD or dementia) at the baseline [to focus on healthier
reference populations, as discussed in (10)] and/or spouses (as
the spousal groups are relatively small and spouses may also tend
to share health habits). Fifth, we followed the common practice in
the DI literature [e.g., (27)] and calculated DI only for individuals
in whom < 20% of the respective variables were missing. Sixth,
we repeated the analyses using multiple imputation (MI) for
biomarkers and other covariates with missing data (see notes
under Table 1). We performed MI using the R-package mice
(28) and SAS/STAT PROC MI/MIANALYZE (as needed for
different analyses) in two scenarios: (a) we imputed (Box-Cox
transformed) individual biomarkers under the assumption of
multivariate normality using respective approaches (the joint
modeling in mice, MCMC in SAS); (b) we imputed both (Box-
Cox transformed) individual biomarkers and other covariates
with missing values (education, smoking, anti-diabetic drugs,
anti-hypertensive drugs, lipid-lowering drugs, fasting; see notes
under Table 1) using fully conditional specification (29). The
results using both approaches were similar; therefore, we report
only the latter approach. We generated 25 datasets with imputed
values of biomarkers and other covariates and computed DM

in each dataset using the observed and imputed data. Then
we repeated the Cox model and the ROC/AUC analyses in
each dataset and pooled respective estimates (the regression
parameter estimates and differences between AUCs) using the
standard tools implemented in the software to make statistical
inference from imputed data. Seventh, we estimated the Cox
model with DM included as a categorical variable quantifying
the quartiles of DM with the first quartile as a reference
category (see note under Table 2 about the proportionality of
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TABLE 2 | Results of the Cox proportional hazards model applied to DM at the baseline LLFS visit and follow-up mortality.

Generation Spouse status N N deaths Coef. SE of Coef. P-value HR 95% CI SD of DM

Probands Non-spouses 885 654 2.16 0.38 9.72 × 10−12 1.30 [1.21, 1.41] 0.12

Spouses 128 67 4.23 1.39 1.98 × 10−3 1.75 [1.23, 2.50] 0.13

All 1,013 721 2.22 0.36 4.29 × 10−13 1.32 [1.23, 1.42] 0.13

Offspring Non-spouses 1,682 127 2.31 0.66 9.49 × 10−5 1.40 [1.18, 1.66] 0.15

Spouses 565 50 1.41 1.04 0.27 1.22 [0.86, 1.74] 0.14

All 2,247 177 2.09 0.55 1.72 × 10−4 1.35 [1.16, 1.58] 0.14

All Non-spouses 2,567 781 2.18 0.32 1.89 × 10−14 1.42 [1.30, 1.55] 0.16

Spouses 693 117 2.12 0.78 0.02 1.36 [1.05, 1.77] 0.15

All 3,260 898 2.22 0.30 3.84 × 10−16 1.42 [1.30, 1.54] 0.16

(1) The table displays sample sizes (N), numbers of deaths (N Deaths), estimates of the regression coefficient for the DM variable in the Cox model (Coef.), their standard errors

(SE of Coef.), p-values for the null hypothesis Coef. = 0 (P-value), and hazard ratios (HR) per standard deviation of DM (SD of DM ) along with their 95% confidence intervals (95%

CI). (2) Respective quantities are shown for probands’ generation (Generation = “Probands”; includes probands and their siblings enrolled in LLFS), offspring generation (Generation =

“Offspring”; includes offspring of probands and their siblings enrolled in LLFS) and combined sample of probands’ and offspring generations (Generation= “All”). Within each generation,

the results are shown by spouse status: Spouse Status = “Non-spouses” includes probands and siblings, their offspring, and both, in the respective generations; Spouse Status =

“Spouses” includes spouses of probands and siblings, their offspring, and both, in the respective generations; Spouse Status = “All” includes both spouses and non-spouses from the

respective generations. (3) Proportionality of hazards assumption was tested using the test based on Schoenfeld residuals implemented in the R package “survival.” Respective p-values

were larger than 0.05 (indicating that the use of the proportional hazards model was justified) for all cases displayed in the table except for Generation = “Probands” and Spouse Status

= “All” (p = 0.045) (see Sensitivity Analyses).

hazards assumption). Eighth, we recalculated the ROC/AUC
analyses taking into account the relatedness between individuals
(probands, their siblings, and offspring) using SAS/STAT
PROC GENMOD. The results were nearly identical to those
from SAS/STAT PROC LOGISTIC which did not make such
adjustments; therefore, only the latter are reported in the
text. Ninth, we repeated computations excluding individuals
who died within a short period of time (one and 2 years)
since the baseline to focus on predicting more distant events
(considering the hypothetical possibility of reverse causation
in cases when deaths occurred shortly after the measurements
of biomarkers).

RESULTS

Descriptive Analyses
Table 1 shows the characteristics of the LLFS sample at the
baseline visit including information on the 19 biomarkers
used in construction of DM. See notes under the table for
the number of missing values for each variable. The table
indicates that participants from the probands’ generation are
about 23–30 years older in average than participants from
the offspring generation. The proportion of females in the
“Probands’ Spouses” group is higher than in the other groups
(possibly because females have better survival than males so
that female spouses have higher chances to be included in
this group). The proportion of participants from US field
centers is higher in the probands’ generation reflecting the
sample recruitment specifics of the study. There are differences
in proportions of low educated participants and smokers
between the probands’ and offspring generations that reflect
the cohort/time trends in education and smoking patterns
in the contemporary populations. Medication use also differs
between the generations and it is more prevalent in the older
groups (the probands’ generation). All differences between the
groups for the characteristics described above are significant

(p = 0.0003 for lipid-lowering medication use; p < 0.0001
for all other) except for anti-diabetic medication use (p =

0.07).
The follow-up period since the baseline is relatively long in

this study [e.g., the mean follow-up period for alive participants
in LLFS is similar to the mean follow up in the Women’s Health
and Aging Study used in (2)]. As expected, the mean follow-up
period is larger in the younger groups (the offspring generation)
and the mean time until death is smaller in the older groups
(the probands’ generation). Also expectedly, the mean follow-up
time for those who survived is larger than the mean time until
death for those who died, in all groups (p < 0.0001 in all cases
described above).

Participants from the older groups (the probands’ generation)
had higher prevalence of major diseases (cancer, CVD, diabetes,
and AD or dementia; see section Data; p-values for differences
between the groups: p < 0.0001 for cancer, CVD, and AD or
dementia, p = 0.0003 for diabetes). However, differences in
incidence of new cases of these diseases did not follow the
uniform pattern. While the proportions of new cases of CVD
and AD or dementia were higher in the probands’ generation,
the proportions of new cancer cases did not differ substantially
between the groups and the proportions of new diabetes cases
tended to be higher in the offspring generation. All differences
between the groups were significant (p < 0.0001) except for
cancer incidence (p= 0.5).

Table 1 also presents descriptive statistics for the 19
biomarkers used in computations of DM. We note that the
biomarkers selected for this study were those from Sebastiani
et al. (19) which were found to change with age in that study.
Accordingly, all these biomarkers were highly correlated with
age (p < 0.0001) in our analysis and their mean values changed,
respectively, in the older and younger groups (p < 0.0001). We
note however, that these results are purely descriptive and do
not explore how multiple factors (except age) may contribute to
such differences (or the absence of those) between the groups.We
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take into account appropriate variables in the regression analyses
presented in the next sections.

Figure 1 shows violin plots for DM distribution in the total
sample and by groups. As one would expect (considering the
fact that the offspring generation is much younger than the
probands’ one), DM distributions differ substantially between
the generation groups and participants from the probands’
generation show a higher level of dysregulation (that is, larger
DM) compared to offspring.

We also investigated whether the level of physiological
dysregulation (DM values) at the baseline differentiates
individuals according to their subsequent survival chances.
Figure 2 displays the Kaplan-Meier estimates of the survival
functions (conditional at age 80 years) for the strata defined by
the quartiles of DM distribution (computed separately for females
and males). The figure shows that females and males with the
lowest level of dysregulation (i.e., the first quartile of DM) have
the best survival chances whereas those with the highest level
of dysregulation (i.e., the fourth quartile of DM) have the worst
survival, and those from themiddle quartiles are in between these
two extremes. Figure S1 shows the same curves for the combined
sample of females and males. We note that such figures may
provide some simple empirical evidence about the relationship
between DM and mortality; however, additional analyses are
needed to take into account relevant factors (covariates) that can
confound the observed association of DM with mortality. Such
analyses are presented in the next section.

Association of DM With Mortality
Table 2 displays the results of the Cox proportional hazards
model applied to data on DM constructed from biomarkers

FIGURE 1 | Violin plots with box plots showing DM for the total sample and by

generation and spouse groups. The blue-colored shapes represent a kernel

density plot of the distribution of DM. Line, box, and points represent median,

interquartile range (IQR), and outliers that are outside of 1.5 times the IQR.

measured at the baseline visit and follow-up information on
mortality in LLFS participants (total sample and stratified
analyses by generation and/or spouse status, see notes under the
table). Analyses of the total LLFS sample showed that higher
DM values are associated with higher mortality risk: hazard
ratio (HR) per standard deviation (SD) of DM is 1.42 (95%
confidence interval, CI: [1.30, 1.54]). Similar associations were
observed in strata by generation and/or spouse with HRs per SD
of DM ranging from 1.22 to 1.75 (however, the results were non-
significant for spouses in the offspring generation which had the
smallest number of deaths among all strata).

Predictive Performance Analyses
Table 3 compares the performance of different models in
predictions of mortality during the follow-up in LLFS, for the
total sample and in the strata (same as in Table 2). The table
shows the estimates of the areas under the receiver operating
characteristic curves (AUC) for the reference model which
includes age and other covariates (see section Association of
DM with Mortality and Predictive Performance Analyses) but
does not include DM and DI and the estimates of AUC in
the models with DM and/or DI (along with age and other
covariates) and differences between AUC (dAUC) in these
models and the reference model. The analyses indicated that
addition of DM and/or DI significantly improves the predictive
performance of the models compared to the reference model
in the total sample (p-values for the null hypothesis dAUC =

0 are 1.5 × 10−5, 4.05 × 10−3, and 9.19 × 10−5, for
the models with DM+DI, DM, and DI, respectively). Analyses
in generation and spouse status strata revealed that the largest
increase in AUC was observed for non-spouses from probands’
generation in the model including DM and DI (dAUC = 0.032,
p = 2.87 × 10−5). Similarly, for the model with DM, the
largest increase in AUC was observed in the same stratum.
The models with DI (based on 85 health-related deficits) and
DM (based on 19 biomarkers) produced similar dAUC’s in this
case. Figure 3 displays the AUCs for all four models in this
stratum. Also we observed that in some cases (the offspring
generation in the model with DM and spouses in each generation
in all models) differences between AUCs in the reference
model and in the models with DM and or DI did not reach
statistical significance.

Sensitivity Analyses
We ran different sensitivity analyses (see section Sensitivity
Analyses) in the total sample, which confirmed the observations,
reported above. Specifically: (1) We ran the Cox and logistic
regression (AUC) analyses for DM’s constructed from different
sets of biomarkers (see section Sensitivity Analyses) which
confirmed the associations of DM with mortality (HR ranging
from 1.26 to 1.44; p-values ranging from 2.42 × 10−21 to 8.41 ×

10−11; here and below HRs are per SD of DM) and that addition
of DM significantly improves the predictive performance of the
models (dAUCs range from 0.002 to 0.004 and p-values range
from 5.73 × 10−4 to 3.63 × 10−2 in the model with DM; dAUCs
range from 0.008 to 0.009 and p-values range from 4.36 × 10−7

to 1.6 × 10−4 in the model with DM+DI). (2) We repeated

Frontiers in Public Health | www.frontiersin.org 7 March 2020 | Volume 8 | Article 56

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Arbeev et al. Physiological Dysregulation Measure in LLFS

FIGURE 2 | Kaplan-Meier estimates of conditional survival function of females (A) and males (B) according to the quartiles of DM. (A) Quartiles are calculated from

females who survived until 80 years. (B) Quartiles are calculated from males who survived until 80 years. The numbers in the legend denote values of DM in respective

quartiles. The dark lines denote the point estimates of the survival functions and lighter colored areas denote their 95% confidence intervals.

the analyses with the original (non-transformed) values of DM

which showed similar results: HR = 1.3 (95% CI: [1.22, 1.38]);
dAUC= 0.004 (p= 1.85 × 10−3) for the model with DM, dAUC
= 0.009 (p = 5.75 × 10−6) for the model with DM+DI. (3)
We computed DM and ran analyses in the subsample of whites
which resulted in comparable estimates: HR = 1.42 (95% CI:
[1.31, 1.55]); dAUC = 0.004 (p = 3.83 × 10−3) for the model
with DM, dAUC = 0.009 (p = 1.48 × 10−5) for the model with
DM+DI. (4)We confirmed that the observations are not sensitive
to the choice of the reference population (threshold for reference
population 65 and 70 years, and means and variance/covariance
matrices computed separately in the US and Danish subsamples):
HR range from 1.36 to 1.41 and p-values range from 7.43× 10−16

to 7.72 × 10−15 in the Cox analyses; dAUCs range from 0.003 to
0.004 (from 0.008 to 0.009) and p-values range from 3.18 × 10−3

to 9.1 × 10−3 (from 1.2 × 10−5 to 3.62 × 10−5) in the model
with DM (DM+DI). We also found that the results do not change
substantially when the reference population excludes unhealthy
individuals (see section Sensitivity Analyses) and/or spouses. For
example, for the total sample, HR ranged from 1.41 to 1.45 (p-
values: from 3.72 × 10−17 to 5.30 × 10−16) in the Cox analyses;
dAUCs ranged from 0.0040 to 0.0045 (from 0.0086 to 0.0090) and
p-values ranged from 2.04 × 10−3 to 4.05 × 10−3 (from 7.97 ×

10−6 to 1.34 × 10−5) in the model with DM (DM+DI). (5) We
observed that adjusting the approach to compute DI (calculating
it only for individuals in whom < 20% of the respective variables
were missing) did not substantially affect the results: HR = 1.43
(95% CI: [1.32, 1.56]); dAUC = 0.004 (p = 5.97 × 10−3) for
the model with DI, dAUC = 0.009 (p = 1.8 × 10−5) for the
model with DM+DI. (6) We repeated the analyses using multiple
imputation which replicated the reported findings: HR = 1.38
(95% CI: [1.27, 1.49]); dAUC = 0.003 (p = 1.43 × 10−3) for
the model with DM, dAUC=0.007 (p = 1.37 × 10−7) for the

model with DM+DI. (7)We repeated the Cox regression analyses
in the probands’ generation with DM included as a categorical
variable that confirmed the association with mortality (HR for
3rd quartile vs. 1st quartile of DM: 1.84 [1.28, 2.65]; HR for 4th
quartile vs. 1st quartile: 2.38 [1.66, 3.42]) and also addressed
the issue with the proportionality of hazards assumption in this
stratum (p = 0.47). (8) We ran analyses of the total sample
removing individuals dying within a short time interval (one and
2 years) since baseline. The analyses confirmed the associations
of DM with mortality: HR = 1.4 (95% CI: [1.28, 1.52]) for a 1-
year interval and HR = 1.3 (95% CI: [1.21, 1.45]) for a 2-years
interval. We also found that the conclusions that addition of DM

significantly improves the predictive performance of the models
still holds in such cases: dAUC = 0.004 (p = 5.81 × 10−3)
for the model with DM, dAUC = 0.009 (p = 1.88 × 10−5)
for the model with DM+DI, for a 1-year interval; dAUC =

0.004 (p = 1.02 × 10−2) for the model with DM, dAUC =

0.009 (p = 3.73 × 10−5) for the model with DM+DI, for a
2-years interval.

In sum, our extensive sensitivity analyses confirmed that
our conclusions are not sensitive to different aspects of the
computation procedures.

DISCUSSION

In this paper, we confirmed that the composite measure of
physiological dysregulation (DM) is associated with mortality
in LLFS (with larger DM associated with increased mortality
risk), similar to other studies (2, 7, 9, 12). We showed also
that addition of DM significantly improves mortality predictions
compared to the reference model (containing age, sex, and
other relevant covariates) in the total LLFS sample. We also
found that the largest improvement in predictive performance
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TABLE 3 | Performance of different models in predictions of mortality during the follow-up in LLFS.

Model Generation Spouse status N N deaths AUC dAUC SE of dAUC 95% CI of dAUC P-value

DM+DI Probands Non-spouses 886 654 0.879 0.032 0.008 [0.017, 0.046] 2.87 × 10−5

Spouses 128 67 0.751 0.017 0.023 [−0.028, 0.061] 0.46

All 1,014 721 0.876 0.027 0.007 [0.014, 0.041] 8.60 × 10−5

Offspring Non-spouses 1,691 127 0.785 0.025 0.012 [4.1 × 10−4, 0.049] 0.046

Spouses 574 50 0.820 0.019 0.015 [−0.012, 0.049] 0.23

All 2,265 177 0.802 0.025 0.010 [0.005, 0.044] 0.01

All Non-spouses 2,577 781 0.939 0.008 0.002 [0.003, 0.012] 0.0003

Spouses 702 117 0.890 0.021 0.008 [0.005, 0.037] 0.009

All 3,279 898 0.934 0.009 0.002 [0.005, 0.013] 1.50 × 10−5

DM Probands Non-spouses 886 654 0.866 0.018 0.006 [0.006, 0.029] 0.002

Spouses 128 67 0.738 0.003 0.019 [−0.033, 0.040] 0.86

All 1,014 721 0.866 0.016 0.005 [0.006, 0.027] 0.002

Offspring Non-spouses 1,691 127 0.768 0.008 0.008 [−0.008, 0.024] 0.34

Spouses 574 50 0.805 0.004 0.009 [−0.013, 0.021] 0.61

All 2,265 177 0.784 0.007 0.006 [−0.006, 0.019] 0.30

All Non-spouses 2,577 781 0.935 0.004 0.001 [0.001, 0.007] 0.01

Spouses 702 117 0.877 0.008 0.005 [−0.002, 0.018] 0.11

All 3,279 898 0.929 0.004 0.001 [0.001, 0.007] 0.004

DI Probands Non-spouses 886 654 0.870 0.022 0.007 [0.009, 0.035] 0.0010

Spouses 128 67 0.752 0.017 0.018 [−0.017, 0.052] 0.33

All 1,014 721 0.868 0.019 0.006 [0.007, 0.031] 0.002

Offspring Non-spouses 1,691 127 0.780 0.019 0.010 [−0.001, 0.039] 0.07

Spouses 574 50 0.821 0.020 0.016 [−0.011, 0.051] 0.20

All 2,265 177 0.798 0.021 0.009 [0.003, 0.038] 0.02

All Non-spouses 2,577 781 0.937 0.005 0.002 [0.002, 0.009] 0.001

Spouses 702 117 0.888 0.019 0.008 [0.004, 0.035] 0.01

All 3,279 898 0.932 0.007 0.002 [0.003, 0.010] 9.19 × 10−5

None Probands Non-spouses 886 654 0.848

(reference) Spouses 128 67 0.735

All 1,014 721 0.849

Offspring Non-spouses 1,691 127 0.761

Spouses 574 50 0.801

All 2,265 177 0.778

All Non-spouses 2,577 781 0.931

Spouses 702 117 0.869

All 3,279 898 0.925

(1) The table shows sample sizes (N), numbers of deaths (N Deaths), estimates of the areas under the receiver operating characteristic curves (AUC), their differences from AUC in the

reference model (dAUC), standard errors (SE of dAUC) and 95% confidence intervals (95% CI of dAUC) of the differences, and p-values for the null hypothesis dAUC = 0 (P-value). (2)

See notes to Table 2 regarding columns Generation and Spouse Status. (3) The rows for Model = “DM+DI” display the results for the model with DM also adjusted for DI and other

relevant covariates (see Materials and Methods) vs. the reference model including only the other covariates but not DM and DI [Model = “None (reference)”]. The rows for Model = “DM”

(Model = “DI”) correspond to the results for the model with DM (DI) and the other covariates vs. the reference model. (4) Differences between N in this table and Table 2 are because

Cox models removed individuals whose age at baseline was equal to age at censoring (19 individuals were lost to follow-up right after visit 1 so that their age at censoring was set to

age at baseline).

when adding DM to the predictive model [with or without
another composite index, DI, (20)] is observed in the proband’s
generation, that is, for individuals from the families selected
for exceptional longevity. The LLFS participants from such
families constitute by design a very selected sample from the
general population [e.g., only about 2.2% of participants from
the Utah Population Database (30) would be enrolled in the
LLFS according to its criteria] and the LLFS participants have

much better survival chances than their age peers from a
general population (14). The present work is the first study
that explored the association of DM with mortality and its
predictive performance in such a unique sample. As we showed
in Yashin et al. (14), the improved predictions of lifespans
based on applications of the deficit index (DI) (20) resulted
in detection of additional signals in genome-wide association
studies (GWAS) of longevity which were not observable in
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FIGURE 3 | Receiver operating characteristic (ROC) curves for different

models applied to a sample of LLFS probands and their siblings. “DM+DI”

displays the ROC curve for the model with DM also adjusted for DI and other

relevant covariates (see Materials and Methods). “DM” (“DI”) corresponds to

the ROC for the model with DM (DI) and the other covariates. “None” shows

the ROC for the reference model including only the other covariates but not

DM and DI. Areas under the ROC curves (AUC) and p-values for the null

hypotheses about a zero difference between AUCs in the respective model

and the reference model (“None”) are presented in parentheses.

GWAS with actual ages at death of deceased individuals.
Importantly, we showed that the benefits of using predicted vs.
observed lifespan data in the GWAS of human longevity are
most noticeable for shorter follow-up periods, which is the case
for many contemporary studies collecting genetic data, including
LLFS. As the results of the present work indicate, including DM

in predictive models can provide further benefits for GWAS
of human longevity. There are additional opportunities for
improving the power of such studies if appropriate methods are
used (31).

As other studies showed, DM is associated not only with
mortality but also with other health and aging related outcomes
(7, 9, 11, 32). In particular, as discussed in our recent study (7),
DM can be a promising indicator of declining robustness and
resilience during aging, and may precede clinical manifestation
of not just one but many diseases even in the absence of
strong clinical diagnostic markers pointing out to a specific
pathology. Given that, DM could be an especially useful predictor
of mortality among the elderly without major chronic diseases.
In Arbeev et al. (12), we implemented DM in the framework
of the stochastic process model (SPM) of aging (33), which
allowed us to observe regularities in dynamic characteristics
of trajectories of DM in relation to different aging-related
characteristics such as decline in stress resistance and adaptive
capacity, and to evaluate how such characteristics might be
associated with an increase in mortality risk with age. The
LLFS provides opportunities to perform similar analyses in

a unique sample of individuals from families enriched for
exceptional survival who not only have better survival (14)
but also have better health and functioning (15) than a
general population. Applications of SPM to analyses of DM

in this unique sample and comparison with other studies
can help reveal which particular aging-related characteristics
differ in individuals with exceptional health and lifespan
compared to average individuals and how these differences
can propagate to the observed differences in morbidity and
mortality risks. Applications of this model will also provide
opportunities to take into account varying strength of association
of biomarkers with mortality at different ages in construction
of the composite measures. In addition, the SPM versions
developed for analyses of genetic data (34, 35) can be applied
to find genetic factors associated with various hidden aging-
related mechanisms (e.g., decline in adaptive capacity and stress
resistance, allostatic adaptation) which are not directly observed
in the data but can be estimated by this model using longitudinal
measurements of biomarkers and follow-up data on mortality
or morbidity.

In addition to composite biomarkers such as DM, other
approaches were suggested in the literature to quantify
biological aging, which can shed light on different aspects of the
aging process (32, 36). The upcoming collection of extensive
omics information (whole genome sequencing, methylomics,
transcriptomics, metabolomics, proteomics) in the LLFS
participants should open new perspectives for comprehensive
evaluation of potential biological mechanisms and pathways
related to exceptional longevity and delayed aging in this unique
sample. We note also that these future studies need to be
accompanied by relevant methodological developments that
would take into account specifics of the data (e.g., informative
missingness, multi-generational sample, longitudinal omics
profiles) to generate valid statistical inferences.

This study has several limitations. We analyzed a unique
sample (LLFS) which was selected for exceptional longevity
(which was the goal of this study) and the LLFS participants
also have better health and function in several domains
compared to other cohorts (15). Therefore, the results are
not generalizable to the general population. However, the
association of DM with mortality was already established in
several other studies with health and survival patterns closer
to a general population [e.g., (2, 7, 9, 12)]. The sample
analyzed in our study is predominantly white (Table 1). Thus,
applications to studies with sizable samples of other race and
ethnic groups are necessary to confirm the results for such
groups. As we do not have verified information on causes of
death for deceased participants, we cannot exclude that some
participants had non-natural causes of death (such as accidents,
homicides, etc.) which are not related to DM. However, we
note that most participants in our study are very old and
these causes are not among the leading causes of death for
such ages. In this study, we analyzed only one (baseline)
measurement of DM. Even though the observed associations
were still strong despite a relatively long follow-up period since
baseline, future analyses of repeatedmeasurements of biomarkers
will allow investigating associations of dynamic characteristics
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of trajectories of cumulative biomarkers (such as DM) with
mortality and exploring genetic underpinnings of such dynamics.
This requires applying advanced statistical tools to appropriately
handle methodological challenges in such analyses and this is a
subject of our ongoing research.

Although this study was not performed in the clinical settings
with patients’ data, there is a potential for applications of DM

in such settings as we discussed in our prior research (7). Blood
tests results and other relevant measures are routinely collected
from patients and they can be used to construct DM that can
inform health practitioners about underlying transition to an
unhealthy state even in the absence of specific pathological
values of individual biomarkers. Also importantly, there is
no “pre-defined” set of biomarkers that need to be included
in such a measure. Therefore, it can be constructed from
available biomarkers (e.g., standard laboratory tests) without
incurring additional costs for data collection. As we showed
in sensitivity analyses, the associations with mortality and
improved predictive performance was observed for different
subsets of biomarkers used in DM (some of those sets were
parsimonious ones with just a few biomarkers). Even though
the concept of statistical distance measure computed from
biomarkers showed its usefulness in several applications, this
is still an active area of research. In particular, the approach
to specify such a distance considering non-linear patterns of
changes of many biomarkers with age is a subject of our
ongoing research.
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