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Evolutionary dynamics of organised 
crime and terrorist networks
Luis A. Martinez-Vaquero   1,2, Valerio Dolci3,4 & Vito Trianni   1

Crime is pervasive into modern societies, although with different levels of diffusion across regions. Its 
dynamics are dependent on various socio-economic factors that make the overall picture particularly 
complex. While several theories have been proposed to account for the establishment of criminal 
behaviour, from a modelling perspective organised crime and terrorist networks received much 
less attention. In particular, the dynamics of recruitment into such organisations deserve specific 
considerations, as recruitment is the mechanism that makes crime and terror proliferate. We propose 
a framework able to model such processes in both organised crime and terrorist networks from an 
evolutionary game theoretical perspective. By means of a stylised model, we are able to study a variety 
of different circumstances and factors influencing the growth or decline of criminal organisations and 
terrorist networks, and observe the convoluted interplay between agents that decide to get associated 
to illicit groups, criminals that prefer to act on their own, and the rest of the civil society.

Criminal organisations (COs) and terrorist networks (TNs) represent different outcomes of a similar process, 
whereby individuals join together into illicit groups to bring forth criminal activities at the expenses of the civil 
society that they want to exploit or intimidate1,2. Despite being inspired by different objectives and modus oper-
andi, theories have been advanced about organised crime and terrorism laying at the two extremes of a contin-
uum, in which differences get blurred in a mix of illegal and violent activities aimed at gaining both economical 
power and supremacy over the states3,4. It is not uncommon to see criminal organisations engaged in terror 
tactics, or terrorist networks perpetrating all sorts of criminal activities5–8. Although empirical evidence about 
the relevance of a deep crime-terror nexus is still scarce, it is reasonable to consider that the growth or decline of 
COs or TNs are bound to similar dynamics that pertain their sustainability and attractiveness towards possible 
recruits.

Modelling crime through the lenses of physics9 or through computational approaches10 can provide useful 
insights to understand the dynamics and forces underlying its development in relation to law enforcement strat-
egies, and to evaluate rehabilitation programs11–15. Different approaches have been attempted to model criminal 
behaviour, from abstract dynamical systems models16—possibly including spatial factors influencing crime dif-
fusion17,18—to models following an evolutionary game theory approach, in which players display competitive 
strategies (e.g., criminals versus punishers) and interact within the context of an adversarial game11,19–22. However, 
despite a raising interest into crime dynamics from a complex systems perspective, organised crime and terrorism 
received relatively little attention to date23,24. Agent-based models have been proposed in the context of extortion 
racket25,26. A similar approach has been taken to study fundamentalism and radicalisation in the context of ter-
rorism27–30, but here attention has been directed mainly towards the analysis of network properties and the eval-
uation of disruption interventions28,31–35. Recruitment to organised crime and terrorism has not been thoroughly 
investigated so far, despite being at the core of the dynamics of such groups, and should therefore be one basic 
ingredient for any modelling study that aims at unveiling the complex interactions underlying CO/TN dynamics.

In this study, we introduce a stylised model that can be easily parametrised to represent both the dynamics of 
COs and of TNs. Similarly to previous studies11,19, we introduce a N-person adversarial game that contrasts agents 
engaging in illicit activities and regular honest individuals that instead may just lose out. Differently from previous 
studies, we differentiate the criminal population into agents associated into COs or TNs, and individual agents 
acting on their own—be they criminals not structured within a CO, or terrorists not belonging to a TN, hereaf-
ter both referred to as lone wolves for brevity. In this way, we can identify the conditions under which joining a 
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criminal or terrorist organisation is advantageous. We consider different possible interactions among the players, 
taking into account the effects of punishment from institutions, from the CO/TN itself as well as social control 
enacted by the civil society36. Punishment represents a strong driver for positive behaviour, as several theoretical 
and experimental studies demonstrated37–40. Indeed, punishment is at the basis of law enforcement strategies, and 
also permeates the world of COs and TNs, making it a fundamental mechanism to consider for the study of CO/
TN dynamics19,21. When focusing on COs, we observe that under certain conditions criminals contribute to the 
eradication of non-organised crime by lone wolves, actually providing a form of protection to the civil society, 
as suggested by criminological theories41,42. When focusing on TNs, instead, we identify conditions from which 
TNs coexist in an equilibrium with lone wolves, effectively benefiting from their illicit activities without paying 
related costs43,44. In the following, we will describe the details of the proposed stylised model, and we discuss the 
dynamics characterising the above mentioned cases, and beyond.

Methods
We consider an adversarial game in a multi-agent framework, in which agents play in small groups formed ran-
domly from a larger well-mixed population. The latter represents a given community—within a quartier, a city or 
a region—that is tight enough to make well-mixed interactions possible. The small groups within which adver-
sarial games are played represent instead temporary gatherings that may form and disband at any time. Agents 
within the population can take one of the following roles: (i) honest citizens H not committing any illicit action; 
(ii) criminals C associated to a CO or a TN, who share the benefits and burden of their actions; and (iii) lone 
wolves W acting independently from any organisation. The game is divided into two phases: the acting stage, 
in which some criminal activity may take place by a victimiser (wolf or criminal) to the detriment of a subset of 
agents victims within the group; and the investigation stage, in which victimisers may get punished, either from 
some state institutions or from other individuals within the group. Note that we use the term crime for both crim-
inal and terrorist actions. After a certain number of rounds, the evolutionary dynamics take place on the basis of 
the payoff cumulated by every agent, modelling the opportunistic change of strategies within the population. We 
study this adversarial game with an analytical mean field model and complement it with Monte Carlo simulations, 
as detailed below.

Mean field evolutionary model.  We first discuss the details of the proposed adversarial game in the 
context of a mean field approximation with replicator dynamics45, where we calculate the average payoff that 
each agent obtains after an infinite number of rounds played in every possible configuration of groups in the 
population.

We consider a well-mixed population of Z individuals. Within the overall population, each role k is present 
with a fraction xk = Zk/Z, where ∑ =Z Zk  and k = {H, C, W} stands for honest, criminal and lone wolf, respec-
tively. We will use the notation 〈ZH, ZC, ZW〉 to indicate a population formed by ZH honest citizens, ZC criminals, 
and ZW lone wolves. From such population, individuals are randomly chosen to form groups of N individuals, and 
each group is composed by Nk individuals of each type. Similarly, we refer to a specific group configuration as 
〈NH, NC, NW〉.

Acting stage.  After a group is set up, one agent is taken randomly from the group to perform its predefined 
action. The probability that any given player is chosen from the group is then p1 = 1/N, while the probability of 
choosing a player with role k is pk = Nk/N. If a honest agent is selected (with probability pH), nothing happens. 
Instead, when the selected agent is a criminal (with probability pC) or a lone wolf (with probability pW), some 
criminal action is performed. In the case of lone wolves, the probability of acting is reduced by a factor 

δ′ = − −p p1 (1 )W C , which represents the correlation between the presence of criminals within the group and 
the likelihood that lone wolves take action. For instance, in the terrorism scenario, lone wolves would act mainly 
when driven by propaganda from TNs (δ = 1), and would otherwise stay quiescent.

Whenever the chosen player is a criminal or a wolf, she will cause a damage with value ck in each one of the 
victims in the group and obtain a benefit rkck from each one of them. If the victimiser is a criminal, honests and 
wolves are the only victims and the obtained benefits are shared among all the criminals within the group (since 
criminals belong to the same organisation, they act as a group: they do not damage each other but rather share 
the benefits of their actions). The average benefit bC obtained by criminals and the average damage dC caused on 
others can be computed as follows:

= − = − = .b
N

r c p N N r c p d c p1 ( ) (1 ),
(1)C

C
C C C C C C C C C C

On the other hand, if this victimiser is a wolf, her victims are all the other members of the group, including 
other wolves and criminals. Hence, the average benefit bW and the average damage dW can be computed as follows:

= − ′ = ′
′

| ′b r c N p p d c p N
N

( 1) , , (2)W W W W W N W W
W

1 W

where ′N W represents the number of wolves in the group other than the focal player, and is specified to take into 
account the probability that a wolf different from the focal player commits a crime. Specifically, ′ =N NW W when 
considering the damage inflicted by wolves to honests and criminals, while ′ = −N N 1W W  when considering the 
damage inflicted by a wolf on the other wolves in the group. Finally, we consider the possibility that a fraction τ of 
the benefit obtained by wolves is actually benefiting the criminals. For instance, a terrorist network would gain in 
reputation and power also when the criminal activity is executed by lone wolves without paying any cost for it.
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Overall, from Eqs (1) and (2), it is possible to compute the average payoffs in the acting stage wk
A, as follows:

= − −|〈 〉 |w d d (3)H N N N
A

C W N, ,H C W W

τ= + −|〈 〉 |w b b d (4)C N N N
A

C W W N, ,H C W W

τ= − − −|〈 〉 | −w b d d(1 ) (5)W N N N
A

W C W N, , 1H C W W

It is possible to notice that honests are only harmed by others in this stage, while criminals and wolves can 
get a benefit from illicit actions, but also suffer from the criminal activities of other individuals within the group.

Investigation stage.  After each criminal act, an investigation is conducted. To this end, individuals are chosen 
from the group and a control is made on them to ascertain if they committed a crime. If the victimiser is found, 
she will receive a punishment. We consider three types of investigations and corresponding punishments:

•	 State: an investigation performed by a law enforcement organisation against any victimiser. The law enforce-
ment organisation is not modelled explicitly in the multi-agent framework, but as a super-agent. The effects 
of the corresponding investigation are included through the parameter βS, which represents the level of pun-
ishment inflicted to any victimiser and is independent from the group/population configuration.

•	 Civil: social control carried out by the civil society—i.e., honest individuals—against any victimiser. When 
successful, this type of investigation leads to the punishment βH to be inflicted to the victimisers. In this case, 
the probability of success of such an investigation is proportional to the fraction of honest individuals pH.

•	 Criminal: an investigation performed by the criminal organisation against its potential rivals, the wolves. 
Punishment is controlled by the parameter βC and the probability of success for the investigation is propor-
tional to the fraction of criminals pC.

Note that wolves can receive a higher level of punishment since also criminals may punish them. In the case of 
criminals, instead, we consider that being part of a CO can lead to the punishment of any members within the 
group. The investigated criminal will receive the full punishment and her partners will receive that punishment 
reduced by a factor γ, since capturing a criminal can lead to capturing the rest of the criminals involved in the 
organisation. Overall, criminals are easier to identify than wolves due to chance only, but the former have the 
capacity to punish the latter. The reductions in the payoffs that each type of victimiser is obtaining from this stage 
wk

I are, in average, as follows:

=|〈 〉w 0 (6)H N N N
I

, ,H C W
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In computing these payoffs, we model the fact that an agent must first commit a criminal act, which happens 
with probability ′p p W1  for wolves and pC for criminals, and then gets punished upon investigation, which happens 
with probability p1 for wolves and [γpC + (1 − γ)p1] for criminals, to account for the collective punishment dis-
cussed above.

Evolutionary dynamics.  In order to compute the average payoffs ωk that each type of individual k is obtaining in 
a given population, we compute the average payoff that this individual is getting in all the possible groups she can 
be part of, considering all the combinations of remaining N − 1 individuals in the group. More specifically, the 
group of N individuals 〈NH, NC, NW〉 is formed by the focal player k and a subgroup 〈 ′ ′ ′ 〉N N N, ,H C W k such as 

= ′ +N N 1k k  and = ′
 

N Nk k for ≠k k. The subgroup is drawn from the population excluding the focal player 
〈 ′ ′ ′ 〉Z Z Z, ,H C W k with = ′ +Z Z 1k k  and = ′

 

Z Zk k for ≠k k. The likelihood of obtaining 〈 ′ ′ ′ 〉N N N, ,H C W k drawn 
from 〈 ′ ′ ′ 〉Z Z Z, ,H C W k is given by the multivariate hypergeometric distribution  〈 ′ ′ ′ 〉N N N[ , , ]H C W k :

 ′ ′ =
















′
′











′
′











′
′






−
−

∀ ′ ≤ ′⟨ ⟩ ( )N N N

Z
N

Z
N

Z
N

Z
N

j N Z[ , , , ] 1
1

if

0 otherwise (9)

H C W k

H

H

C

C

W

W
j j

The average payoff can be then computed starting from Eqs 3–8, and weighting the payoff obtained in each 
subgroup with :
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We assume that the dynamics of the system follow the replicator dynamics equation. For each subpopulation, 
we compute the direction and strength of change as follows:

ω ω= −x x ( ), (11)k k k

where ω ω= ∑ xi i i is the average payoff including every individual of the population. In order to calculate the 
most important (or most visited) configurations of the finite-size population, we assume that in each evolutionary 
time-step, only one individual can change state. From each possible configuration 〈ZH, ZC, ZW〉, we calculate the 
closer next point on the trajectory determined by the replicator dynamics from Eq. 11.

In this way, we can build the transition matrix among all the possible configurations of the population (note 
that to avoid numerical issues, we add a small probability of μ = 10−6 to every transition, and we renormalise all 
transition probabilities afterwards ensuring a correct transition matrix for the Markov chain). The stationary dis-
tribution from the Markov chain represented by this matrix in then computed. The probabilities in the stationary 
distribution represent the importance of each configuration or, in other words, the time that the system spends 
in each configuration point.

Monte carlo simulations.  We developed a multi-agent simulation with the purpose of validating the results 
from mean-field approximations as discussed above. Mean field approximations and the replicator dynamics are 
based on a good estimation of the average payoff, which determines the outcome of the evolutionary process. In 
real systems, estimations are noisy and bound to many factors, such as the group size or the particular settings of 
the studied game. It is therefore important to verify the validity of the analytical results in the light of the available 
knowledge.

Simulations are implemented following the same stages as discussed above. Also in this case, a population of 
Z individuals evolves with individuals changing their role between honest, organised criminals and lone wolves. 
To compute the payoff ωj for each agent j, G games are played, and in each game the population Z is partitioned in 
Z/N groups that undergo the acting and investigation stages. Payoffs are assigned to each individual and cumu-
lated across different games. After each game, the population is reshuffled and partitioned to generate another set 
of data. Once computed an average payoff for each individual over the G games, the evolutionary step takes place 
by selecting two players at random and having them change their role probabilistically according to their relative 
payoffs. The probability that agent i copies the role of agent j is computed according to the Fermi function:

← =
+ω ω− −

P k k
e

( ) 1
1 (12)i j T( )/j i

where T is a parameter determining the steepness of the sigmoid function. With a small probability μ, mutations 
take place instead, and one randomly selected individual chooses among the three roles with equal probability. 
Simulations have been optimised to efficiently compute the evolutionary dynamics over a long time, so as to 
identify the trajectory of the system.

Results
The dynamics grasped by the proposed model are determined by the chosen parameterisation in a non-intuitive 
way. We exploit the possibilities offered by the model to represent different contexts by fixing a number of param-
eters that characterise the criminal scenario (e.g., the influence δ played by criminals on the acting probability of 
lone wolves), and for each context we study the importance of the different types of investigation and punishment 
onto the population dynamics by varying βS, βH, and βC. For each combination of these parameters, we study the 
dynamics and calculate the basins of attraction of the population dynamics by looking at the stationary distribu-
tion of the different individual types, therefore identifying when criminals prevail over lone wolves or vice versa, 
or when crime remains under control or gets totally eradicated from society.

Organised crime.  We start by exploring a scenario representing the presence of a CO within our abstract 
society. In this case, we consider that there is no favourable interaction between the CO and the lone wolves acting 
independently, neither in the probability of committing a crime (i.e., δ = 0) nor in the remission of any benefit 
(i.e., τ = 0). In practice, criminals and wolves are in competition: they commit crimes independently one from 
the other, harm each-other and keep the benefit resulting from their criminal action for themselves. Without loss 
of generality, we assume that wolves and criminals produce the same harm and obtain the same benefit from it, 
hence cW = cC and rW = rC = 1. When not stated otherwise, we assume that punishment to criminals other than 
the investigated one is halved (i.e., γ = 0.5).

We first consider the case in which the civil society is not contributing to investigations and punishment 
(i.e., βH = 0). In Fig. 1, we represent the proportion of each individual type in the stationary distribution for 
a wide range of values for βS and βC, as well as the system dynamics for representative combinations. The sta-
tionary distributions reveal the presence of different possible regimes, and indicate that punishments from the 
state organisation and from criminals interact in a non-trivial way (see Fig. 1a). As expected, when punishment 
from criminals is relatively small (βC < 50), wolves take over the population, unless the punishment βS is also 
very small. In correspondence of a weak state, there exist a region in which criminals and wolves coexist at the 
expenses of the civil society (see Fig. 1b), and also a region where the CO proliferates by increasing punishment 
against lone wolves (as shown in Fig. 1c, where βC = 400). In this latter condition, the CO practically takes over 
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the role of the state in punishing criminal acts carried out by wolves, providing a form of protection41. The model 
predicts that, in correspondence of a low punishment from the state organisation, criminals and honests can 
coexist in the society. With increasing levels of punishment from the state organisation, the CO gradually dis-
appears to the benefit of the civil society. However, an undersized CO also has a low control potential against 
lone wolves, leaving room to their proliferation: when a specific value of βS is reached (see for instance βC = 400 
and βS = 200 in Fig. 1), a phase transition takes place and wolves take over the entire population. Indeed, βS is 
high enough to undermine the power of criminals but not to punish efficiently wolves. Without criminals able 
to control wolves and a state not strong enough to do it by itself, the population is at mercy of wolves. Only with 
a sufficiently strong state punishment (e.g., βS > 100) crime can get completely eradicated (see Fig. 1a and the 
Supplementary Fig. S1). The fact that wolves can have an advantage over criminals for medium values of βS finds 
its explanation in the way in which investigations are modelled, which make the identification of a criminal group 
much more likely than a single lone wolf. This is a simplification introduced by the model, which however shows 
the interesting effects introduced by a differential probability of being caught. Additionally, punishment is not 
limited to the investigated criminal, but also affect the other criminals in the group via the factor γ. Indeed, the 
CO dominates in a large part of the parameter space with low values of γ, and conversely is less powerful when γ 
is high (see the Supplementary Fig. S2).

Slightly different dynamics are observable when punishment comes also from the civil society (i.e., βH > 0). 
When the state organisation is absent (βS = 0, see Fig. 2a), crime control falls on the shoulder of honest individu-
als, and their effectiveness is proportional to the size of the honest population. Hence, larger punishment values 
are required to produce a similar effect as with the state organisation. Also in such conditions, criminals prevail 
for low values of punishment βH, and are then gradually replaced by wolves when the punishment increases. 
Punishment from criminals to lone wolves provides an advantage to the former as long as βH remains sufficiently 
small (see Fig. 2b). However, instead of having a clear phase transition to the domination of wolves, now spirals 
in the population dynamics appear (see Fig. 2c). In the presence of many honest individuals, criminals are those 
that lose out first, as they are easily victim of investigations. When the fraction of criminals is low, they do not 
sufficiently contribute to control the wolves, which can therefore dominate. However, as soon as honest are not 
enough to be exploited and to keep criminals under control, the residual punishment from criminals leads again 
to the recovery of the CO. Figure 2c shows that these dynamics are captured by a slow repelling spiral for βS = 0, 
eventually leading to the dominance of organised crime. Depending on the specific value of βH and βC, the final 
state can change favouring the one or the other group (see also the Supplementary Fig. S3a,b). The combined 
action of punishment from the state organisation and from the civil society has a strong effect on the subsistence 
of the CO (see Fig. 2d, where βS = 10). In this case, lone wolves dominate in a large region of the parameter space. 
We can observe again spiralling dynamics (see Fig. 2e), which however tend to converge to a mixed equilibrium 
with many wolves and few honests and criminals. With increasing punishment from the civil society, the equilib-
rium shifts in favour of wolves first, and honest individuals later (see Fig. 2f and the Supplementary Fig. S3). We 
have also observed that criminals can coexist in a stable way with both wolves and honest. However wolves and 
honests are not able to coexist and maintain an equilibrium: if both are present in the population, they also need 
criminals for a stable coexistence.

As already mentioned, the parameter γ influences the success of the CO over lone wolves: the lower the pun-
ishment towards co-offenders, the higher the power of the criminal organisation with respect to lone wolves (see 
Supplementary Fig. S2). The size of the groups N also significantly affects the population dynamics: the larger the 

Figure 1.  Effect of punishment from the state (βS) and criminal organisation (βC) when the civil society does 
not participate to the investigation phase (βH = 0). (a) Proportion of honest individuals (green), lone wolves 
(blue) and criminals (red) in the stationary distribution for different values of βS and βC. The inset shows the 
colour-coding corresponding to every point in the simplex representing the percentage of each individual type 
within the population. Circles correspond to representative configurations displayed in the accompanying 
panels (filled circles) or in the Supplementary Fig. S1 (empty circles). (b,c) Simplex describes the dynamics of 
the system for βC = 400 and different values of βS. Arrows represent the direction of change for the three sub-
populations, while the background colour represents the intensity of change—the darker the stronger. Filled 
circles indicate the most visited states: the grey scale represents the corresponding probability in the stationary 
distribution—the darker the higher—normalised according to the most visited state and using a minimum 
threshold of 10%. Parameters of the model for this figure: γ = 0.5, N = 10, cW = cC = rW = rC = 1, Z = 50.
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groups, the larger the benefit for victimisers, especially for wolves as shown in the Supplementary Fig. S4. In order 
to obtain a better insight, one can deduce how much punishment is necessary for eradicating victimisers under 
the limit of N = Z and when only two types of individuals are in the population (note that most of the resting 
points are found on the borders of the simplexes, hence justifying this assumption). Comparing the payoffs 
ω ω+k

A
k
I  from Eqs 3–8 of each two pair of types of actors (and assuming for simplicity that rC = rW = 1, 

cC = cW = c, and δ = τ = 0), we obtain that:

•	 If xC = 0, honest individuals defeat wolves if β′ > N2.
•	 If xW = 0, honest individuals overcome criminals if β′ > (g pC)−1.
•	 If xH = 0, criminals defeat wolves if βC > (N2g pC − 1)βS.

Where β′ = (βS + βHxH)c−1 and g = (1 − γ)p1 + γpC. In a population with only wolves and honest individuals, 
the punishment β′ required for the latter to overcome the former is proportional to N2, confirming that larger 
groups provide a benefit to wolves. If instead of wolves the victimisers are only criminals, that punishment 
depends on how trackable are criminals, as determined by the parameter γ: if from one criminal it is easy to catch 
the others (γ ≈ 1 → g ≈ pC), the punishment β′—required to observe honest individuals prevailing on criminals—
decreases with the square of the fraction of criminals (β′ > −pC

2), whereas in the opposite case (γ ≈ 0 → g ≈ p1) 
this punishment decreases with the fraction of criminals but increases with the size of the population 
(β′ > −N pC

1). This illustrates why both victimisers increase their power in bigger groups, but wolves do that in a 
greater way. Finally, in the competition between wolves and criminals, the latter gets a disadvantage under strong 
punishment from the state organisation, as well as when γ is high: for γ ≈ 1, the punishment that criminals have 
to inflict to wolves is β β> −N( 1)C C S

2 , scaling quadratically with the size of the CO, so as to compensate the costs 
paid from the investigation stage.

To understand under what conditions the criminal strategy is viable, we tested different parametrisation for 
the system by varying the level of harm inflicted by criminals and wolves during the acting stage, and the relative 
benefit they obtain from it (see Supplementary Fig. S5). In all cases, the stationary distribution is similar to the 
main cases described above, although scaled in favour of the one or the other type of victimiser, as expected by 
the relative strength provided by different costs-to-benefit ratios. Overall, following a CO pays off both when 
the harm inflicted is higher, as well as when the resulting reward is bigger than those of wolves. This means that, 
under the considered conditions, the CO needs to get some advantage in terms of professionalisation of the crim-
inal activities in order to be sustainable.

Figure 2.  Effect of punishment from honest individuals (βH) and criminal organisation (βC) when the state 
is absent (βS = 0, top row) or when it is present but weak (βS = 10, bottom row). (a,d) Stationary distribution 
for different values of βH and βC. Circles represent relevant configurations shown in the side panels, or 
in Supplementary Fig. S3. (b,c,e,f) Dynamics of the model under specific parametrisations. See Fig. 1 for 
additional details. Parameters of the model: γ = 0.5, N = 10, cW = cC = rW = rC = 1, Z = 50.
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A set of Monte Carlo simulations were performed ratifying the results obtained using mean-field approx-
imation. In Fig. 3, three different conditions are shown, respectively corresponding to Figs 1c and 2c,e. Each 
trajectory has been obtained by averaging over 500 independent runs, each run lasting 50000 iterations. At each 
iteration, G = 100 games have been performed to compute the average payoff of each individual within the pop-
ulation. The average trajectories shown in Fig. 3 closely correspond to the theoretical predictions, although the 
spiral center in Fig. 3c is shifted to the right.

Terrorist networks.  To model the terrorist scenario, we assume that criminals are terrorists that belong to 
an organised network, while wolves are terrorists that act on their own. We use the same names to refer to them 
in spite of the different roles they represent. With respect to the organised crime case, there are three important 
aspects that need to be taken into account. First, criminals organised in a TN have aligned interests with lone 
wolves. Both are willing to threaten and destabilise society, and are therefore not in competition. To model this 
aspect, we remove the direct punishment from criminals to wolves (βC = 0). Second, the TN can directly benefit 
from criminal activities perpetrated by lone wolves, by gaining in power and in reputation at the expenses of the 
individuals that are directly involved in the terrorist act, who sometimes even sacrifice their lives for the cause. 
We model similar aspects of the terrorist interaction as a transfer of benefit from wolves to criminals by a frac-
tion τ ∈ [0, 1], where a value of 1 implies a full transfer of benefit. Third, we consider the possibility that the TN 
actively promotes actions by lone wolves through their propaganda against the state. This is an effective strategy 
that can be modelled by linking the probability that lone wolves commit a terrorist act to the size of the TN: the 
larger the network, the stronger the propaganda, the more likely lone wolves act. We model this through the 
parameter δ linking the likelihood of wolves’ action to the fraction of criminals in the group.

The effect of the parameters τ and δ on the stationary distribution of roles within the population reveals that 
propaganda alone does not determine the dominance of the TN within the population (see Fig. 4). More specif-
ically, we can observe that, when there is no propaganda and no transfer of benefit, the TN persists only for very 
low values of punishment βS from the state organisation and βH from the civil society (see Fig. 4a). Otherwise, 
wolves take over the entire population (see for instance the dynamics displayed in Fig. 4b,c), unless punishment 
is high enough (βS > 100 or βH > 1000).

Conclusions
We have presented an evolutionary model that grasps interesting dynamics related to the proliferation of organ-
ised crime and terrorism in a population. The model accounts for offences perpetrated by criminals, individually 
or organised into criminal organisations or terrorist networks, at the expenses of other agents in the population. 
Different forms of punishment are considered to control the spread of crime into the modelled society, including 
social control by institutions and the civil society as well as punishment from organised criminals towards lone 
wolves.

A close look to the results presented in this study provides support to criminological theories about the devel-
opment of organised crime and terrorist networks. Related to organised crime, our model predicts the estab-
lishment of a CO as an entity capable of providing protection to the population41,42, especially when they face a 
relatively weak state and when the civil society does not participate to punishment. The CO in this case takes the 
role of governance, controlling the criminal acts from wolves to impose their own rules. When instead honest citi-
zens oppose themselves to the CO, an equilibrium is unlikely and cycles may be observed in which criminal activ-
ities grow and shrink in response to the reaction from the civil society. Similar complex patterns are found also 
in other modelling approaches to studying crime21, however in this case they are the result of dominance among 
different strategies that are made possible by frequency-dependent punishment, which introduces non-linearities 
that are relevant for the emergence of complex dynamical patterns.

Related to terror networks, we observed how the role of propaganda is central in promoting a stable equi-
librium between the TN and the lone wolves, more than a possible transfer of benefit from wolves to the TN. 
Propaganda is recognised as a central aspect for terrorism, and is found in all its manifestations, especially 
recently with the strong exploitation of the Internet and of social media technologies46. The latter provide a rather 
cheap mean of publicising terror strategies, although their effect in effectively promoting radicalisation and 

Figure 3.  Dynamics resulting from Monte Carlo simulations for different values of βS, βH, and βC. Different 
colours show the dynamics from different initial conditions (marked here with a black filled circle) averaged 
over 500 realisations. Parameters of the model: δ = 0, τ = 0, γ = 0.5, N = 10, cW = cC = rW = rC = 1.

https://doi.org/10.1038/s41598-019-46141-8


8Scientific Reports |          (2019) 9:9727  | https://doi.org/10.1038/s41598-019-46141-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

terrorist acts still needs to be ascertained47. The model predicts that, when propaganda is successful, the TN can 
remain relatively small in size, but the terror goal is anyway reached thanks to the action of lone wolves. There is 
instead less evidence of a direct transfer of benefit from wolves to the TN other than a return in reputation and 
strength of the TN that claims responsibility on the attack, which however can be framed in a sort of competition 
between the terrorist organisation and the lone wolves48. Ultimately, criminology research confirms that any TN 
needs lone wolves either as autonomous cells that can perpetrate terror acts on their own, or as possible recruits to 
increase their dimension and power43,44. The proposed model can help in grounding different conceptual frame-
works into tangible social dynamics.

Overall, despite being conceptually very simple, the proposed model grasps interesting patterns related to the 
development of CO and TN when embedded in a society in which also non-organised criminal activities are pres-
ent. Real-world scenarios are clearly more complex than what pictured here, as they can involve both competition 
and collaboration between different criminal organisations, which can behave in a range of different ways against 
non-organised criminals, at times punishing, ignoring or promoting their activities. For instance, in our model, 
we do not consider the possibility of retaliation, which has been found to be relevant in other studies on crime 
dynamics9,19 and can be related to theoretical studies of antisocial punishment49–52. Nevertheless, the dynamics we 
observe are already rich enough to provide useful accounts on the underlying CO/TN dynamics, which could be 
matched with real-world instances. In this respect, an interesting possibility to study the dynamics of organised 

Figure 4.  Effect of the propaganda (δ) and transfer of benefit (τ) in modelling the dynamics of TNs. We 
consider a baseline case in which neither of the proposed mechanisms are present (δ = 0 and τ = 0, first row), 
the case in which only propaganda is used (δ = 0.5 and τ = 0, second row), and the case in which only the 
transfer of benefit is considered (δ = 0 and τ = 0.5, third row). The combined effects of both mechanisms is 
shown in the Supplementary Fig. S6. (a,d,g) Each panel shows the stationary distribution of the different roles, 
similar to Fig. 1a, but for βC = 0 and different values of βH and βS. Filled circles represent relevant configurations 
displayed. (b,c,e,f,h,i) Dynamics of the model under relevant parametrisations.

https://doi.org/10.1038/s41598-019-46141-8


9Scientific Reports |          (2019) 9:9727  | https://doi.org/10.1038/s41598-019-46141-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

crime with respect to non-organised criminals is looking at the transplantation of a CO, whereby new territo-
ries not occupied by other COs are colonised by branches of organisations elsewhere very powerful53. Similar 
conditions offer an interesting opportunity to contrast the prediction from the proposed model to real-world 
observations, pointing to the need of collecting precise data about the spread of COs in correspondence to trans-
plantation attempts.

The complex dynamical patterns that emerge from the study point to the need to take into account the social 
context in which certain criminal behaviour are observed. Indeed, more than individual predisposition to crim-
inal activities, the theory of social opportunity structure54 postulates that involvement into criminal activities is 
strongly determined by social contacts and contingent opportunities that can become available at any point in 
the life of an individual. The evolutionary perspective that we take in this paper follows from the explanations 
provided by the social opportunity structure, as the mutation towards criminal activities is determined by the 
opportunities that are given by higher potential payoffs. To further build on this theory, models can be developed 
in which social ties are explicitly taken into account, for instance by having agents interact on heterogeneous 
networks, possibly changing over time to adapt to social contingencies, hence strengthening or loosing ties32. 
Interesting perspectives can be given by studying the evolutionary dynamics on multilayer networks55,56, which 
can grasp the existence of different types of relations between agents (family ties, friendship, work ties and so 
forth). In this way, it could be possible to include more detailed mechanisms for recruitment and radicalisation 
of individuals, further testing theories related to the social opportunity structure that accompanies the evolution 
of organised crime.
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