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Abstract

The single gene encoding cyclopropane fatty acid synthetase (CFAS) is present in Leishmania infantum, L. mexicana and L.
braziliensis but absent from L. major, a causative agent of cutaneous leishmaniasis. In L. infantum, usually causative agent of
visceral leishmaniasis, the CFAS gene is transcribed in both insect (extracellular) and host (intracellular) stages of the parasite
life cycle. Tagged CFAS protein is stably detected in intracellular L. infantum but only during the early log phase of
extracellular growth, when it shows partial localisation to the endoplasmic reticulum. Lipid analyses of L. infantum wild type,
CFAS null and complemented parasites detect a low abundance CFAS-dependent C19D fatty acid, characteristic of a
cyclopropanated species, in wild type and add-back cells. Sub-cellular fractionation studies locate the C19D fatty acid to
both ER and plasma membrane-enriched fractions. This fatty acid is not detectable in wild type L. major, although
expression of the L. infantum CFAS gene in L. major generates cyclopropanated fatty acids, indicating that the substrate for
this modification is present in L. major, despite the absence of the modifying enzyme. Loss of the L. infantum CFAS gene
does not affect extracellular parasite growth, phagocytosis or early survival in macrophages. However, while endocytosis is
also unaffected in the extracellular CFAS nulls, membrane transporter activity is defective and the null parasites are more
resistant to oxidative stress. Following infection in vivo, L. infantum CFAS nulls exhibit lower parasite burdens in both the
liver and spleen of susceptible hosts but it has not been possible to complement this phenotype, suggesting that loss of
C19D fatty acid may lead to irreversible changes in cell physiology that cannot be rescued by re-expression. Aberrant
cyclopropanation in L. major decreases parasite virulence but does not influence parasite tissue tropism.
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Introduction

Leishmania are obligate intracellular protozoan parasites that

infect humans and other mammalian species causing broad

spectrum diseases termed the leishmaniases. Parasites are trans-

mitted as extracellular flagellated forms (metacyclic promastigotes)

by female sandflies during blood feeding [1]. Once in the host, the

metacyclic promastigotes are phagocytosed by host cells (including

neutrophils and macrophages) and differentiate into replicative

amastigotes within intracellular phagolysosomal compartments.

Maintenance of parasites at dermal sites or subsequent dispersal to

internal tissues contributes to disease progression, resulting in the

distinct pathologies associated with cutaneous (CL), mucocutane-

ous (MCL), diffuse cutaneous (DCL) and visceral leishmaniases

(VL) [2,3]. These diseases are often associated with particular

parasite species: L. infantum and L. major usually causing VL and

CL respectively, while L. braziliensis is a major causative agent of

MCL. The immune response to infection in the host also has a

dominant role in determining clinical outcome (reviewed in [4]).

The genome sequences of L. major, L. infantum, L. braziliensis, L.

donovani and L. mexicana have been published [5,6,7,8]. Compar-

ative analysis of these five published reference genomes has

identified only a few species-specific genes that could be implicated

in contributing to parasite tissue tropism and disease pathogenesis

in the host, following infection with different Leishmania species.

Most of these genes code for proteins that share low identity with

functionally characterised molecules from other organisms

[5,7,8,9]. One exception is an orthologue of the metabolic

enzyme, cyclopropane fatty acid synthetase (CFAS), which is

present in the L. infantum, L. donovani, L. braziliensis and L. mexicana

genomes but absent from L. major and other kinetoplastids

including Trypanosoma species [5]. A CFAS-like sequence (Cf_Con-

tig1069, WUSTL, P value 0.00041) has been found in the recently

sequenced genome of Crithidia fasciculate however. Phylogenetic

analysis suggests that the Leishmania genus acquired the CFAS gene
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by horizontal transfer (probably from bacteria) with secondary loss

from L. major [5].

CFAS enzymes catalyse the cyclopropanation of unsaturated

fatty acids, a reaction which, in bacteria, involves the transfer of a

methylene group from a S-adenosyl-L-methionine (SAM) donor to

a carbon-carbon double bond within a fatty acyl chain [10].

Although the position of the cis double bond on the acyl chain is

variable in Escherichia coli, Mycobacterium tuberculosis produces several

site-specific cyclopropane synthetases that modify mycolic acids

[11]. Cyclopropanation of the M. tuberculosis cell envelope

mycolates has been shown to play a role in the modulation of

host innate immune responses during infection, a response

associated with pathogen persistence in the host [12]. A

physiological role for cyclopropanation has not been fully

elucidated in other bacterial species, however, although CFAS-

catalysed membrane modifications have been associated with

stress responses to changes in pH, temperature or salinity of the

local environment in E. coli [13]. Most recently, CFAS mutants of

the probiotic bacterium, Lactobacillus reuteri, have been shown to be

defective in inhibiting the TNF (tumor necrosis factor) immuno-

modulatory activity that characterises certain human-derived

strains but this is an indirect effect, postulated to be due to a

decrease in bacterial membrane fluidity [14].

Here we describe functional characterisation of the L. infantum

cyclopropane fatty acid synthetase, which is expressed in both

promastigote (extracellular) and amastigote (intracellular) parasite

forms. The membrane-associated enzyme is required for fatty acid

modification in L. infantum, generating cyclopropanated fatty acids.

Interestingly, expression of a CFAS transgene in L. major parasites

which normally lack the single copy CFAS gene generates

cyclopropanated fatty acids, suggesting that the substrate for this

modification may be common to all Leishmania species. Loss of the

CFAS gene in L. infantum does not affect promastigote growth or

phagocytosis by macrophages in vitro but does appear to influence

membrane transport and resistance to oxidative stress. Animal

studies indicate that CFAS loss can also compromise parasite

survival in vivo but rescue of this phenotype has not been achieved,

despite rescue of the biochemical phenotype by complementation

in the infecting parasites.

Results

Expression and Localisation of Cyclopropane Fatty Acid
Synthetase in Leishmania infantum

Comparative analysis of the Leishmania reference genomes

identified a gene orthologue encoding CFAS that is present in L.

infantum, L. braziliensis and L. mexicana but absent from L. major

[5,7]. This gene (LinJ.08.0560, located on chromosome 8 of L.

infantum) encodes a 55 kDa protein that shares 48% amino acid

similarity with CFAS-encoding genes of Mycobacterium tuberculosis

and Escherichia coli. Primary sequence alignment [15] identified a

structurally conserved S-adenosyl-L-methionine (SAM) binding

domain (residues 265–363) together with other conserved amino

acids characteristic of this class of enzymes (Figure S1).

Using RT-qPCR to analyse CFAS mRNA levels during the L.

infantum life cycle, CFAS transcripts were detected in both

promastigotes and amastigotes, indicative of constitutive expres-

sion in both extracellular and intracellular stages of the parasite life

cycle. Quantitative analysis showed a two-fold higher mRNA

abundance in tissue-derived amastigotes compared to promasti-

gotes (Figure 1A). Given the absence of transcriptional regulation

as a general mechanism for the control of gene expression in

kinetoplastid species including Leishmania [16], these data are

consistent with increased stabilisation of CFAS transcripts in

intracellular amastigotes. To investigate expression of CFAS

protein, a C-terminally myc-tagged CFAS was transfected into

L. infantum promastigotes and protein expression monitored during

the extracellular growth phase by immunoblotting (Figure 1B).

This analysis identified two proteins, of ,55 kDa (the predicted

size for CFAS) and ,53 kDa, which were detectable only during

the early and mid-logarithmic stage of growth. In the same

parasites, increased expression of the metacyclic marker protein,

HASPB, was detected in stationary phase as shown previously in

L. major and L. donovani [17,18,19,20], while the constitutive

marker, BiP, was expressed throughout the growth cycle [21]. The

55 kDa CFAS-myc protein is more unstable than the smaller

protein, degrading within hours if kept at 4uC or after 7 days of

storage at 220uC (data not shown). To investigate this further, an

alternative C-terminally HA-tagged CFAS mutant line was

generated and analysis of mid log promastigote lysates again

showed expression of two HA-tagged CFAS proteins (Figure 1C,

left-hand panel). Sub-cellular fractionation following lysis of these

parasites, using differential centrifugation to separate cytosolic and

membrane-containing fractions prior to immunoblotting, detected

both CFAS-HA proteins predominantly in the membrane fraction,

suggesting that CFAS is membrane-associated in Leishmania

(Figure 1C, right-hand panel). As expected, the surface GPI-

anchored Leishmania protein, GP63 [22,23] fractionated as an

exclusively membrane protein while BiP separated between both

cytosolic and membrane fractions in this analysis [21]. The two

HA-tagged CFAS isoforms detected in this analysis may result

from either co- or post-translational modifications (that might

explain the membrane-localisation of the CFAS protein) but these

are unlikely to involve the protein termini as the same expression

pattern was detected using a third, N-terminal HA-tagged CFAS

protein (data not shown). Both products are rapidly degraded as

the parasites enter late logarithmic and stationery phases of growth

(Figure 1B).

The E. coli CFAS is unstable [24,25,26], a property shared by

the L. infantum CFAS protein when expressed in bacteria, making

the production of recombinant protein for biochemical analysis or

antibody generation a major challenge. In the absence of an

antibody for detection of wild type CFAS protein, subcellular

localisation was investigated by immunofluorescence microscopy

of promastigotes and amastigotes expressing the C-terminally HA-

tagged expression construct (described above). CFAS-HA signal

was detected in the cytoplasm but the strongest signal in

promastigotes was detected in the perinuclear region and showed

some co-localisation with the ER protein BiP [21], suggesting that

CFAS is at least partially localised in the ER (Figure 2A). To

investigate expression in amastigotes, late stationary phase HA-

tagged CFAS mutant promastigotes were used to infect bone

marrow-derived macrophages in vitro. Infected macrophages were

fixed at 72 hr post-infection and expression of CFAS analysed by

immunofluorescence. As shown in Figure 2B, strong staining for

CFAS-HA fusion protein was detectable at this time point,

indicating that stable CFAS protein can be detected in intracel-

lular amastigotes, in keeping with the increased RNA expression

levels observed in Fig. 1A.

Generation of L. infantum CFAS Mutant Parasites
To facilitate functional characterization of CFAS, the single

gene was deleted from the genome of L. infantum by targeted gene

disruption, using constructs that replaced each of the two alleles

with either a hygromycin or puromycin cassette (Figure 3A). A

number of complemented cell lines containing a single ‘‘add-back’’

gene were also generated. These were designed to express CFAS

from either the ribosomal locus ([+pSSU NEO CFAS] constructs)

Cyclopropanated Lipids in Leishmania Species
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or following integration back into the chromosome of origin

([+CFAS::NEO] constructs) in the null mutant (CFAS2/2,

DCFAS::HYG/DCFAS::PAC) genetic background (Table 1).

As wild type L. major parasites lack the CFAS gene, transgenic L.

major expressing L. infantum CFAS were also generated, in order to

test whether cyclopropanation could occur when the CFAS gene

was present and if so, the functional consequence of aberrant

cyclopropanation in this species. Successful creation of the CFAS

mutant cell lines was confirmed by Southern blot analysis (an

example is shown in Figure 3B) and fatty acid analysis (Figure 4).

There were no promastigote growth phenotypes associated with

CFAS deletion in L. infantum (Figure 3C) and only a minor growth

retardation, dependent on culture conditions, following expression

of CFAS in L. major (Figure 3D).

Confirmation of CFAS Function Using Mutant Parasites
The catalytic activity of CFAS was confirmed by analysis of

the fatty acid content of wild type parasites and the different

transgenic lines using gas chromatography-mass spectrometry

(GC-MS). As shown in Figure 4A, a spectral peak corresponding

to CFAS-modified fatty acid (C19D), with a retention time of

,45 min, was identified in wild type parasites but absent in

promastigotes of the L. infantum CFAS null line (CFAS2/2,

DCFAS::HYG/DCFAS::PAC). This fatty acid represents a minor

component (approximately 0.2%) of the total promastigote fatty

acid content. The CFAS2/2 cells showed a complete loss of the

C19D species without any dramatic affect on the total fatty acid

content of these parasites. The cyclopropanated fatty acid was

restored upon ectopic expression of the CFAS gene in the

CFAS2/2 cell lines, indicating that this component is a CFAS-

modified product. Quantitation of the C19D fatty acid level in

the add-back line (CLN2-C2, CFAS2/2/+) showed a 3.5 fold

increase compared to that present in wild-type L. infantum

(Table 1).

These analyses confirm that the single CFAS gene is expressed

as a functional protein in L. infantum. To investigate whether CFAS

activity can also produce cyclopropanated fatty acids in L.major,

mutant lines were generated expressing CFAS following gene

integration into the ribosomal locus ([+pSSU NEO CFAS]) and

their fatty acid content analysed. No C19D fatty acid was detected

in wild type L. major parasites (Figure 4B) but a peak corresponding

to C19D fatty acid, with a retention time of 45 min, was detected

in the CFAS mutant cell line (CLN-4, +CFAS). Quantitatively, a

six-fold increase in C19D fatty acid was found compared to that

measured in L. infantum wild type cells (Table 1). Thus, these

transgenic parasites, together with the L. infantum CFAS comple-

mented line CLN-C2 (CFAS2/2/+) are assumed to be over-

expressing CFAS protein following random gene integration into

the ribosomal locus. To investigate this over-expression phenotype

further, a number of other lines were generated and the transgene

integration sites within the ribosomal locus mapped using pulsed-

field gel electrophoresis and Southern blotting (Figure S2). This

analysis demonstrated a correlation between the site of transgene

integration relative to the position of the ribosomal promoter and

the expression of active protein, as monitored by production of

cyclopropanated fatty acid (Table 1). In the two examples shown,

the dominant hybridising fragment is smaller in CLN-3 than in

CLN- 2, indicative of DNA integration closer to the ribosomal

promoter. Other clones in which integration occurred further

downstream of the promoter produced lower levels of cyclopro-

panated product (data not shown).

Location of Cyclopropanated Fatty Acids in L. infantum
To determine the localisation of the cyclopropanated fatty acid

end products of CFAS activity, rather than the localisation of the

enzyme itself, mid log phase parasite lysates were gradient-

separated by ultracentrifugation and fractions analysed by

immunoblotting and GC-MS. As shown in Figure 5, a spectral

peak corresponding to CFAS-modified fatty acid (C19D) with a

retention time of ,41.8 min, was detected in Fractions 18–23 of

the gradient, with .80% of the total localising in Fraction 23.

(Note that the lower retention time, compared to Figure 4, was due

to removal of a small section of the front of the column between

runs; this led to a concomitant proportional drop in retention time

of the internal standard C17 fatty acid). The separation of plasma

membrane, ER and ER/cis-Golgi components through the

gradient was detected using antibodies to GP63, BiP and Rab1

respectively. These data suggest that C19D fatty acids can be

localized in both ER and plasma membrane fractions but most are

found elsewhere in the parasite.

In vitro Analysis of CFAS Null Parasites
To address the physiological role of CFAS fatty acid modifi-

cation in L. infantum, a range of cell-based analyses were used to

investigate the phenotype of parasites deleted for CFAS activity.

Figure 1. CFAS expression in L. infantum. (A) Quantitative analysis
(RT-qPCR) of CFAS RNA expression in mid-log promastigotes (Pro) and
amastigotes (Ama). RQ, relative quantity with reference to EF1a control;
error bars represent standard error of mean. (B) Immunoblotting
analysis of L. infantum promastigotes expressing C-terminal myc-tagged
CFAS (CFAS-myc) harvested in early (EL), mid (ML) and late (LL) log
phase growth and in early (ES) and late (LS) stationary phase growth.
CFAS-myc is detected by anti-myc; the metacyclic protein HASPB is a
marker for in vitro differentiation; the ER marker BiP is constitutively
expressed during the Leishmania growth cycle. (C) Left: immunoblot-
ting of wild type (WT) and early log phase L. infantum CFAS-HA
promastigote total lysates. Right: fractionation of CFAS-HA total lysate
(TL) into cytosolic (soluble, S) or membrane (pellet, P) fractions prior to
immunoblotting. GP63, membrane-specific marker; BiP, loading control.
doi:10.1371/journal.pone.0051300.g001
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Firstly, uptake and maintenance of wild type, CFAS null and

CFAS complemented promastigotes in bone marrow-derived

macrophages, as compared to wild type, were monitored over a

time course (Figure 6A). At time point zero (after a 3 hr pre-

incubation), all parasites lines showed similar levels of invasion

(43–58% infectivity, with similar parasite numbers in each, data

not shown) while these figures had fallen to less than 10% within

24 hr, indicative of macrophage killing, with no statistical

difference between the different parasite lines. Numbers of infected

macrophages at 48 hr, by which time differentiation to amasti-

gotes had occurred, were also similar. These results suggest that

CFAS null parasites are not significantly compromised in their

early survival after phagocytosis.

Parasite survival both extracellularly in the vector and

intracellularly in the host requires optimal plasma membrane

integrity and function. To investigate generic loss of membrane

function, we first chose to monitor membrane transporter activity,

focusing on transport of the amino acid proline (found abundantly

in the vector gut; [27]). CFAS null and CFAS complemented

promastigotes, plus wild type parasites at the same growth stage,

were incubated in the presence of radio-labelled L- proline and

uptake assayed over a 60 min time course, using established

methods (Figure 6B). Proline uptake was significantly higher in

wild type parasites as compared to the CFAS2/2 cell line, while

the CFAS complemented parasites (CLN-D12, the same line used

in all in vitro and in vivo experiments shown in this paper; Table 1)

showed some increase in uptake activity, although not significantly

more than the null mutant. These results are consistent with

compromised transporter function in the absence of CFAS activity

but the lack of robust complementation requires caution in this

interpretation.

As another approach to analysing membrane function and

molecular uptake in the CFAS mutants, we focused on endocytosis

via the flagellar pocket, the main route by which many

macromolecules enter kinetoplastid cells. CFAS null and comple-

mented promastigotes, together with wild type parasites, were

incubated in the presence of FITC- labelled concanavalin A

(ConA-FITC) for 30 min or 2 hr at 26uC, prior to fixation and

observation of the sub-cellular location of the fluorescent signal

using confocal microscopy. Signal location was scored as

Figure 2. Subcellular localization of CFAS-HA in L. infantum. (A) Confocal images of L. infantum promastigotes expressing CFAS-HA. Cells were
co-stained with anti-HA (red) and anti-BiP (green) and mounted with Vectorshield containing DAPI (blue, DNA). Higher magnification images of a co-
stained parasite are shown on the right of the Figure. (B) Confocal images of CFAS-HA expression in intra-macrophage amastigotes at 72 hr post-
infection. Macrophages infected with wild type (WT) L. infantum (left panel) and L. infantum expressing CFAS-HA (right panel). DAPI (blue),
macrophage and parasite DNA; anti-HA (green), CFAS-HA.
doi:10.1371/journal.pone.0051300.g002
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exclusively at the flagella pocket (FP) or in the early endosomes

(EE) after the 30 min or 2 hr incubation period respectively. No

significant differences in the distribution of signal within the

endocytic pathway were detected when comparing wild type and

CFAS mutant cell lines over time (Figure S3). Taken together with

the proline uptake data in Figure 6B, these analyses suggest that

membrane modification due to the presence of cyclopropanated

fatty acids has no effect on the endocytic pathway in L. infantum but

may play a more generic survival role in a nutrient-poor

environment by influencing transporter-mediated uptake.

We then tested whether the CFAS parasite lines could tolerate

growth as promastigotes in the presence of a sub-lethal dose of

hydrogen peroxide (300 mM). When compared to growth of the

same lines in the absence of the oxidising agent (Figure 6C),

growth of all the parasites lines was compromised at 24 hr of the

96 hr time course (Figure 6D). However, from 48 hr onwards, the

CFAS null parasites were significantly more tolerant to hydrogen

peroxide than the wild type or CFAS complemented parasites

(Figure 6D). Interestingly, a similar phenotype has been observed

in L. mexicana parasites null for cysteine proteinase C which, when

exposed to 1 mM hydrogen peroxide for 60 min (a dose that

induces cell death in these cells [28]), show better survival than

wild type cells. The explanation of these data is currently unclear.

In vivo Analysis of CFAS Null Parasites
The role of CFAS in Leishmania pathogenesis in vivo was

investigated using the same panel of wild type and CFAS mutant

parasites as those used in Figure 6 and described in Table 1.

Following intravenous (i.v.) infection, L. infantum CFAS 2/2

mutants were capable of establishing infection in the liver and

spleen of BALB/c mice, indicating that this gene is not essential

for initial parasite establishment in the mammalian host, in

agreement with the macrophage infection data (Figure 6).

However, the absence of CFAS in these mutants severely impaired

in vivo survival, with a significant reduction in parasite burden

observed in these organs (Figure 7). In the liver, the number of

Figure 3. Generation of CFAS mutant parasites and in vitro growth analysis. (A) Region of chromosome 8 containing the single L. infantum
CFAS locus and the constructs used for targeted gene deletion. (B) Representative Southern blot of L. infantum and L. major wild type (wt) and CFAS
mutant DNAs hybridised with a CFAS-specific probe (see A above and Materials and Methods). Two independent L. infantum CFAS null clones (1 and
2, 2/2) are shown; the single allele deletion prior to generation of null clone 2 (+/2) and a complemented add-back clone from that line (2/2/+,
CLN-C2, Table 1) are included. One of the clones of L. major transgenic for luciferase and CFAS (+CFAS, CLN-4, Table 1) is also shown. A labelled b-
tubulin specific DNA probe was used as a loading control. (C) In vitro growth of L. infantum cell lines. L. infantum wild type and CFAS null and
complemented lines (as analysed in (B)) were grown over 5 days in HOMEM/20% FCS at 26uC and parasites counted as described (Materials and
Methods). Mean values derived from triplicate culture populations for each cell line are plotted. (D) In vitro growth of L. major cell lines. L. major wild
type containing an integrated luciferase gene (L. major LUC) and the same line expressing CFAS (analysed in B) were grown over 7 days in either
M199/20% FCS (top) or HOMEM/20% FCS (bottom) and parasites counted as described in (C).
doi:10.1371/journal.pone.0051300.g003
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Table 1. C19D fatty acid content of wild type and CFAS mutant L. infantum and L. major promastigotes.

Cell line C19D fatty acid (nM/109 cells)

L. infantum +/+ 37.665

L. infantum DCFAS::HYG/DCFAS::PAC 0.060

L. infantum DCFAS::HYG/DCFAS::PAC [+pSSU NEO CFAS] CLN-C2 141.2617

L. Infantum DCFAS::HYG/DCFAS::PAC [+CFAS::NEO] CLN-D12 1568

L. Infantum DCFAS::HYG/DCFAS::PAC [+CFAS::NEO] CLN-E7 2860.6

L. Infantum DCFAS::HYG/DCFAS::PAC [+CFAS::NEO] CLN-A6 965

L. major-LUC +/+ 0.060

L. major-LUC [+pSSU NEO CFAS] CLN-1 320.0621

L. major-LUC [+pSSU NEO CFAS] CLN-2 212.0611

L. major-LUC [+pSSU NEO CFAS] CLN-3 444.0627

L. major-LUC [+pSSU NEO CFAS] CLN-4 212.0614

Derivatised fatty acid extracts from all parasites lines were analysed as described (Materials and Methods); data (mean 6 SD, n = 3) are shown from (i) one clone each of
wild type (+/+) L. major-LUC, +/+ L. infantum and CFAS null (DCFAS ::HYG/DCFAS ::PAC) L. infantum; (ii) four L. infantum CFAS null clones complemented by CFAS
expression from either the ribosomal ([+pSSU NEO CFAS]) or endogenous ([+CFAS::NEO]) locus. Data are also included for four clones of L. major-LUC expressing CFAS
from the ribosomal locus. All clone names, as used in the text, are in bold.
doi:10.1371/journal.pone.0051300.t001

Figure 4. Fatty acid analysis of wild type and CFAS mutant Leishmania by gas chromatography–mass spectrometry. (A) Total ion
chromatogram of derivatised fatty acid extracts from L. infantum wild type (Wt), CFAS null mutant (CFAS2/2) and CFAS complemented (2/2/+;
Table 1, CLN-C2) cell lines. A spectral peak with a retention time of ,45 min and corresponding to C19 cyclopropanated fatty acid (C19D) is present
in wild type and complemented parasites but absent from the CFAS2/2 null. (B) Total ion chromatogram of derivatised fatty acid extracts from L.
major wild type (Wt) and CFAS expressing (+CFAS; Table 1, CLN-4) parasites. The spectral peak corresponding to C19D, with a retention time of
,45 min, is absent in L. major wild type but present in extracts from L. major parasites expressing CFAS. The identity of C19D FAME was confirmed by
comparison with bacterial C17D and C19D FAME standards.
doi:10.1371/journal.pone.0051300.g004
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wild type L. infantum amastigotes increased 2.1 fold between days

14 and 28 post-infection (p.i.). By contrast, in addition to an

initially lower parasite burden at day 14 p.i. (p,0.00001), parasite

loads in CFAS null infected mice did not increase significantly

between day 14 and day 28 p.i. (0.9 fold increase; p = ns;

Figure 7A). In the spleen, parasite burden was lower than in the

liver, in keeping with the organ-specific control of L. infantum [29].

Nevertheless, mice infected with CFAS null parasites showed

significant reductions in parasite burden at day 14 p.i. (p,0.05)

compared to mice infected with wild type parasites (Figure 7B).

Thus the absence of CFAS resulted in significantly lower parasite

burdens in both liver and spleen, perhaps indicative of impaired

parasite capacity for replication or enhanced susceptibility to host

killing.

To test complementation of this infectivity phenotype, three of

the L. infantum CFAS-complemented cell lines were used for i.v.

infection (CLN-C2, CLN-D12, CLN-E7, Table 1). We present

here only the data generated with CLN-D12 (the clone used in the

experiments described in Figure 6) as all three clones gave very

similar results. Although CLN- D12 parasites produced ,50% of

the C19D fatty acid detected in wild type parasites (Table 1),

parasite survival post-infection with this complemented line was

severely affected, with significantly reduced burdens in both the

liver and spleen (Figure 7). Similar results were obtained using

CLN-E7, which produced ,75% of the wild type level of C19D
fatty acid, while CLN- C2, producing ,350% of the wild type

C19D fatty acid level, also showed significantly reduced parasite

burden in vivo (data not shown). In summary, all clones tested by

this analysis were compromised in their infectivity and none

complemented the wild type L. infantum phenotype in vivo, although

all grew as wild type promastigotes in culture (as in Figure 3).

Thus, whether the in vivo infectivity defect observed in the CFAS

nulls is the result of loss of CFAS activity remains inconclusive due

to this lack of robust complementation.

As an alternative approach to investigating the functional

significance of cyclopropanation in Leishmania species, transgenic

L. major parasites expressing CFAS (which they do not normally

produce) were generated and characterised (Table 1, Figure S2).

To facilitate non-invasive evaluation of parasite burden in vivo,

we generated these lines using a parental L. major strain

expressing luciferase (LUC). CFAS-expressing and wild type L.

major LUC lines had equivalent luciferase activity both in vitro

(data not shown) and after injection intradermally into BALB/c

mice, as monitored using biophotonic imaging. Following in vivo

infection, ectopic expression of CFAS resulted in a significant

attenuation of parasite virulence (Figure 8, Figure S4). Relative

to baseline infection levels (determined at 4h post injection),

tissue luminescence had significantly decreased by day 3 p.i.

(Figure 8A). This loss of bioluminescence signal may be due to

death of parasites and/or differential luciferase activity during

the differentiation from infective promastigotes to intracellular

amastigotes. The latter interpretation is supported by the

observation that L. major LUC amastigotes purified from chronic

lesions had a more than 10-fold decrease in luciferase activity

Figure 5. Sub-cellular localisation of cyclopropanated fatty acids in L. infantum. (A) Immunoblot analysis of sucrose gradient-separated sub-
cellular fractions of wild type L. infantum promastigotes. Fractions 16–24 are shown, probed with antibodies specific for BiP, Rab1 and gp63. (B) GC-
MS was used to determine the cyclopropanated fatty acid content of the fractions analysed in A, in comparison with wild type parasites. (C) Total ion
chromatogram of derivatised fatty acid extracts from fraction 23. The spectral peak corresponding to the C19 cyclopropanated fatty acid (C19D) has a
retention time of ,42 min in this analysis.
doi:10.1371/journal.pone.0051300.g005
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on a cell per cell basis compared to promastigotes (Figure S5).

It has been suggested that this may indicate decreased

transcription from the ribosomal locus during the amastigote

life cycle stage [30]. To adjust for this variation, we also

normalised our data by determining the fold increase at each

time point relative to the bioluminescence signal at day 3 p.i. As

shown in Figure 8B, L. major LUC parasites showed a sustained

increase in luminescence over the first two weeks of infection,

which resulted in a 67-fold increase in signal intensity measured

at day 14 p.i. In contrast, bioluminescence signal increased

around 5-fold after 14 days of infection with CFAS-expressing

L. major LUC and returned to baseline (day 3) levels by day

21 p.i. (Figure 8B). Attenuation of virulence due to CFAS

expression was also directly observed by scoring lesion severity

in terms of both lesion diameter (Figure 8C) and thickness

(Figure 8D). Of note, expression of CFAS in the L. major parent

line did not influence parasite tissue tropism. Parasite burden in

the liver was minimal, parasites were undetectable in the spleen

(data not shown) and there was no evidence of hepato-

splenomegaly in CFAS-expressing L.major parasites (Figure 9).

Discussion

Cyclopropanated fatty acids have been identified in a range of

organisms, including bacteria, parasitic protozoa, fungi and plants

[13,31,32]. However, the cyclopropane fatty acid synthetases

which catalyse the generation of cyclopropane rings have only

been extensively studied in the two bacterial species, E. coli and M.

tuberculosis. In E. coli, the CFAS reaction mechanism has been

studied in detail, using chemical modification and site-directed

mutagenesis to identify key residues for catalysis [26]. It has been

estimated that formation of one cyclopropanated ring requires 3

molecules of ATP, a high energy requirement suggesting that this

modification confers some unique advantage for survival to cells

that carry cyclopropanated lipids [13]. Indeed, studies in E. coli

have shown that increases in CFAS activity, leading to increased

cyclopropanated fatty acid content, are associated with changes in

environmental conditions such as exposure to high temperature,

low pH, high salt concentration and depressed oxygen tension

[33,34], further supporting the proposal that this modification

functions as a cellular survival mechanism. For example,

Helicobactor pylori, which colonizes the mammalian gut and is

associated with reduced gastric acidity, secretes large amounts of

Figure 6. Phenotypic analysis of L. infantum CFAS mutants in vitro. (A) Bone marrow-derived macrophages were infected with late stationery
phase wild type, CFAS null and complemented CLN-D12 L. infantum, at a macrophage to parasite ratio of 1:10. Numbers of infected and un-infected
macrophages were counted (at least 200 macrophages per cell line at each time point) and the percentage infectivity calculated. (B) Proline uptake
assay. The wild type, null and complemented L. infantum lines used in (A) were incubated with 3H-labelled L-proline and the internalized radiolabel
quantified by liquid scintillation counting. Assays were performed in triplicate for each cell line. The wild type, null and complemented L. infantum
used in (A) were cultured in M199 medium/20% FCS (C) or in the same medium supplemented with 300 mM hydrogen peroxide (D). Parasite growth
rate over 72 hr (C) or 96 hr (D) was monitored by counting parasite numbers at each time point. Statistical differences was determined using the
unpaired Student’s t-test with a value of P,0.05 considered significant. The same histogram shading, as shown in (A), is used in all panels of this
figure to designate the different parasite lines.
doi:10.1371/journal.pone.0051300.g006
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cyclopropanated fatty acid (cis 9, 10-methyleneoctadecanoic acid)

in contrast to other bacterial species that also colonize the

intestinal tract [35]. The cyclopropanated fatty acids produced by

the gastric colonizers have been shown to be active in inhibiting

the gastric H+/K+-ATPase proton pump, leading to reduced

acidity in the infected regions [36].

In Mycobacteria, cyclopropanation of mycolic acids is common

among the pathogenic species but rare in non-pathogenic species.

M. tuberculosis expresses a family of eight related enzymes sharing

sequence identity with E. coli CFAS [11]. Six of these catalyze the

transfer of a methyl group from SAM to the double bond of the

unsaturated mycolic acyl chains [37]. Mycobacterial cyclopropa-

nated fatty acid structure is more complex than that found in E.

coli: the mycolic acids are cyclopropanated at two positions, distal

and proximal with respect to the position of the functional head

group of the acyl chain. Furthermore, the cyclopropane ring can

be in the cis or trans position, with the enzymes showing stereo-

specificity in their activity. This structural diversity, coupled with

dynamic modifications that occur within the cell envelope, is

known to play an important role in the resistance of M. tuberculosis

to antibiotics, dehydration and low pH within the macrophage

phagolysosome [38]. In addition, cyclopropane modification of

trehalose dimycolates has been demonstrated to modulate host cell

immune activation during M. tuberculosis infection [12,39], with

specific cis-cyclopropanation shown to be essential for establish-

ment of chronic persistent infection in mice. Conversely, trans-

cyclopropanation causes suppression of M. tuberculosis-induced

inflammation and virulence [12,39]. These observations have

encouraged recent genetic and chemical biology analyses,

suggesting that mycolic acid methyltransferases are potential

targets for antibiotic development [40].

In the Kinetoplastida, early biochemical analysis detected

cyclopropanated fatty acids in some but not all species. This work

showed that most species of the genera Crithidia, Leptomonas,

Herpetomonas and Phytomonas contain these modified fatty acids but

failed to detect them in Trypanosoma, Blastocrithidia or Endotrypanum

species [41]. This pattern of distribution did not provide any

immediate clues to inform functional analysis at the time. More

recently, genomic sequencing in the genus Leishmania has identified

a single CFAS gene in L. infantum, L. braziliensis and L. mexicana

[5,7] that is missing in L. major, suggesting that CFAS function is

no longer required in this species.

Here, we present the first functional characterisation of CFAS

in pathogenic Leishmania species, focusing on L. infantum,

causative agent of VL. We have cloned L. infantum CFAS and

confirmed its presence as a single copy gene that is constitu-

tively expressed in both extracellular and intracellular parasite

stages, with higher levels of stable mRNA detected in

intracellular amastigotes (Figure 1). In extracellular promasti-

gotes, the CFAS protein, when expressed from a tagged

transgene, is only stable in early to mid logarithmic phase

and is rapidly degraded as cells enter late logarithmic and

Figure 7. Survival of L. infantum CFAS mutants following infection in vivo. Groups of 5 BALB/c mice were infected intravenously with 26107

L. infantum wild type (Wt), CFAS null (CFAS2/2) and CFAS complemented CLN-D12 parasites. Parasite numbers were determined in the liver (A) and
the spleen (B) at 14 and 28 days post-infection (as described in Materials and Methods).
doi:10.1371/journal.pone.0051300.g007
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Figure 8. CFAS expression attenuates L. major dermal infection in vivo. BALB/c mice were infected intradermally with 16106 L. major LUC
(closed squares) or L. major LUC+CFAS (CLN-4, open triangles) and parasites were visualised by bioluminescence imaging using an IVIS over the
course of the infection. Luciferase activity (photons/second) is expressed as (A) a percentage change over time and (B) as a fold increase from day 3
post-infection. Lesion progression was monitored by measurement of lesion diameter (C) and thickness (D) from week 4 onward. * p,0.05,
** p,0.01, *** p,0.001, by unpaired Student’s t-test (n = 5).
doi:10.1371/journal.pone.0051300.g008

Figure 9. The expression of CFAS does not enhance viscerotropism of L. major. BALB/c mice were infected with L. major LUC (black bars) or
L. major LUC+CFAS (white bars) and (A) hepatomegaly and splenomegaly and (B) parasite burdens were determined at Day 70 post-infection. Parasite
clones were those used in Figure 8. p = 0.07 by unpaired Student’s t-test (n = 5).
doi:10.1371/journal.pone.0051300.g009
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stationary phases of growth in culture. Conversely, tagged

CFAS protein can be detected in amastigotes following

macrophage infection (Figure 2). Using mutant parasites, we

show that L. infantum CFAS is functional in the cyclopropana-

tion of fatty acids in L. infantum, activity that is lost in parasites

null for the CFAS gene but restored following genetic

complementation (Figure 4). Heterologous expression analysis

also shows that L. infantum CFAS can catalyse cyclopropanation

in L. major parasites, generating the characteristic cyclopropa-

nated C19D fatty acid product. This observation suggests that

the C18:1 fatty acid substrate may be ubiquitous in Leishmania

species, while its modification by cyclopropanation is a species-

specific property. The accumulation of cyclopropanated product

in an as-yet-unidentified subcellular compartment in L. infantum

(Figure 5) may aid identification of the CFAS substrate in

promastigotes. One possible location is in association with a

mitochondrial-associated ER membrane complex (or MAM

complex) which is critical for lipid transport in mammalian cells

but has not yet been characterised in kinetoplastids [42]. Given

the localisation of the CFAS enzyme to the ER (Figure 2A), the

fraction of cyclopropanated fatty acids detected in this location

may represent newly synthesised product prior to trafficking to

the plasma membrane, possibly via a MAM-like complex.

The cellular location of the CFAS enzyme in bacteria has not

been conclusively demonstrated, although earlier studies in E. coli

suggested a cytosolic location with some peripheral attachment to

the inner membrane [43]. The question of where and how the

enzyme gains access to its fatty acid substrate has not been

resolved, however, and it is unknown whether the fatty acid or

lipids are modified in situ or during synthesis, prior to incorpora-

tion into membranes. The ER localisation of L. infantum CFAS

correlates with recent reports on fatty acid synthesis in the related

kinetoplastid species, Trypanosoma brucei, which describe an

unconventional mechanism of de novo fatty acid synthesis that

involves the use of ER-located microsomal elongases [44,45].

Studies of CFAS in the plant species, Sterculia foetida, also localize

CFAS to microsomal membranes [31]. Although most trypano-

somatids are devoid of CFAS, the subcellular location of the

Leishmania enzyme in the ER suggests that the fatty acid substrates

are probably cyclopropanated during or immediately after their

synthesis at this subcellular location.

Deletion of the L. infantum CFAS gene or its over-expression

in ‘‘add-back’’ lines did not affect parasite growth in vitro

(Figure 3). Similarly, heterologous over-expression of L. infantum

CFAS in L. major had only a minor impact on growth in vitro.

These observations suggest that fatty acid cyclopropanation is

not essential for propagation of promastigotes, although this

modification could be required for parasite transmission in sand

flies. Of relevance here, the observed decreased uptake of

proline in the CFAS nulls might influence viability in the

proline-rich gut of the vector (Figure 6). The other phenotypic

features of CFAS null promastigotes (resistance to oxidative

stress but phagocytosis equivalent to wild type parasites;

Figure 6) would support establishment of these cells in the

macrophage phagolysosome. More generically, while modifica-

tion by cyclopropanation has been proposed to alter membrane

fluidity, our attempts to assay the biophysical properties of

promastigote membranes using anisotropy showed no statisti-

cally significant differences between wild type, CFAS null and

complemented parasites.

In contrast to most of the work in vitro, a distinct phenotype

associated with loss of cyclopropanation in L. infantum

amastigotes was observed using a range of mutant clones in a

murine infection model (Figure 7). In vivo infectivity studies in

susceptible BALB/c mice indicated that CFAS loss severely

affected L. infantum virulence, as judged by liver and spleen

parasite loads, reflecting compromised parasite replication and

survival in both organs. However, complementation of this

phenotype by restoration of wild type levels of enzyme activity

could not be achieved. While the lack of a tightly-regulatable

promoter system to control gene expression in Leishmania has

held back generation of a complemented clone re-expressing

CFAS to wild type levels, the ‘‘add-back’’ lines tested produced

,50%, 75% and up to 350% of wild type cyclopropanated

product (CLN- D12, CLN- E7 and CLN-C2 respectively,

Table 1) with no restoration of phenotype. One interpretation

of these data is that irreversible changes in cell physiology occur

in CFAS null amastigotes that cannot be rescued by re-

expression, a hypothesis that requires further investigation.

As an alternative approach, we expressed CFAS in L. major

parasites, which normally lack cyclopropanated fatty acids, and

this significantly compromised their virulence in vivo, as indicated

by decreased lesion severity following dermal infection. The levels

of C19D produced by the CFAS-expressing L. major parasites

ranged from ,6–12 fold over-expression as compared to L.

infantum wild type levels, however, depending on the site of

insertion of the transgene into the parasite ribosomal locus and its

subsequent expression from the ribosomal promoter. It is therefore

possible that this reduced severity of lesion formation could be due

to C19D over-production, a phenotypic effect similar to that

observed in the L. infantum over-expressing mutants. More

significantly, there was no alteration in parasite burdens in liver

and spleen after long term infection with L. major expressing CFAS,

demonstrating that whatever the short-term influence of aberrant

cyclopropanation in this parasite species, the presence of modified

fatty acids does not influence parasite tropism in long-term

infection.

While the physiological role of cyclopropane modification has

not been fully defined in any species, the expression of CFAS in

many bacteria and the sporadic distribution of the gene in a few

phylogenetically unrelated eukaryotes [31,32,41] suggest that

different organisms use this modification to facilitate adaptation

to environmental conditions or undergo key developmental

processes requiring changes in membrane structure and function.

Cyclopropanation of fatty acids has been associated with drought

tolerance in plants [46], egg development in millipedes [47] and

fruiting body initiation in the fungus Coprinopsis cinerea [32], while

in bacteria, the modification has consistently been linked to acid

tolerance [13]. For intracellular pathogens, cyclopropanation may

play a role in survival in physiologically hostile and nutrient-poor

compartments within the host cell. This would be of particular

relevance to Leishmania species which, unlike those pathogens that

avoid mature phagolysosomes in macrophages, have the capacity

to survive and replicate in these acidic and nutrient-poor

compartments. For survival, the parasite has to tolerate macro-

phage antimicrobial effectors such as reactive nitrogen and oxygen

species, or find ways of subverting normal cellular mechanisms in

order to avoid killing. One mechanism could be via generation of

cyclopropanated fatty acids which can inhibit H+/K+-ATPases

[36] and facilitate modifications required for survival in acidic

environments [33,48]. Why only L. major of the Leishmania species

currently analysed has lost the CFAS gene and does not produce

this enzyme remains unknown but may suggest that biological

aspects of the intracellular survival of this species are uniquely

specialised.
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Materials and Methods

Leishmania Culture and Generation of Mutant Parasites
The two sequenced genome reference strains used were L. major

MHOM/IL/80/Friedlin and L. infantum clone JPCM5 MCAN/

ES/98/LLM-877 [5,6]. Promastigotes were cultured at 26uC in

modified Eagle’s medium (HOMEM; L. infantum) or 1 x M199

medium (L. major) supplemented with 10% heat-inactivated foetal

calf serum (FCS, Invitrogen) and penicillin-streptomycin (Invitro-

gen). Amastigotes were isolated from infected tissues as described

[51]. Transfected parasites were maintained in the following

antibiotics as required: hygromycin at 32 mg/ml, puromycin

(Calbiochem, La Jolla, CA) at 20 mg/ml, and neomycin (G418,

Geneticin; Life Technologies) at 20 mg/ml or 40 mg/ml when

grown in liquid medium. Growth phenotypes were analysed by

culturing cell lines in the absence of drug selection and counting

cell densities in triplicate at time intervals using a Coulter Counter

(Beckman Coulter).

L. infantum CFAS null mutants were generated by sequential

transfection with hygromycin (HYG) and puromycin (PUR)

knockout (KO) constructs, based on the pX63-HYG plasmid

vector [49], using DNA flanking sequences immediately upstream

(558 bp) and downstream (263 bp) of the CFAS open reading

frame (ORF) as targets for homologous recombination. These

fragments were amplified by PCR and cloned to flank the HYG

gene generating the first allele KO construct, pX63-HYG-CFAS-

KO. For deletion of the second allele, HYG was replaced by PUR,

generating the targeting construct pX63-PUR-CFAS-KO. The

following oligos were used for amplification and cloning (with

restriction sites underlined): CFAS-upstream-F, 59-GCaagcttatacg-

tacgcagaggcatcgg-39, CFAS-upstream-R, 59-ATgtcgac-

catgcttggccggagcaacg-39, CFAS-downstream-F, 59-

GTcccgggttgcatcggcgtggctgagc-39, CFAS-downstream-R, 59-CTa-

gatctagacgccgacgcaggcattc-39.

Constructs were digested with HindIII and BglII to release the

linear KO cassettes which were used for transfection of mid-log

phase L. infantum promastigotes as previously described [49].

To complement CFAS KO or ectopically express CFAS in L.

infantum and L. major parasites, constructs were made based on the

pSSU-int vector [50] carrying neomycin (NEO) resistance instead

of HYG. The CFAS ORF was amplified by PCR and cloned,

using XhoI/BamHI sites, into the modified pSSU-int vector,

generating pSSU-Neo-CFAS. For expression of C-terminal myc

or HA-tagged CFAS proteins, the reverse complement of the myc

(59-GGATCCttacaggtcttcttcagagatcagtttctgttc-39) or HA (59-

GGATCCttaggcatagtccgggacgtcgtaggggta-39) tag sequence (italics) in-

cluding the stop codon, were fused to a 18 nt CFAS reverse primer

(59-cggccggtacacgctgac-39) without the stop codon. The resulting

primer was used together with a CFAS forward primer (59-

CTCGAGatggaaaaccggccacacga-39) to amplify the CFAS ORF,

for subsequent cloning into the XhoI/BamHI sites of pSSU-int,

generating pSSU-CFAS-myc or pSSU-CFAS-HA. For L. major

transfection, pSSU-CFAS was digested with PacI and PmeI,

releasing a linear fragment for targeting into the ribosomal locus.

For L. infantum transfections, the 59SSU sequence was replaced

(following NdeI/XhoI digestion) with its orthologue amplified from

the L. infantum genome and the resulting construct (pSSU-Inf-

CFAS) linearised with NdeI and PmeI prior to transfection.

Complementary CFAS KO cell lines were also generated using

constructs that facilitate expression of an add-back CFAS gene

from the endogenous locus. These constructs were generated by

replacing the 59 and 39 SSU integration sequences in pSSU-Inf-

CFAS-HA vector with CFAS 59 and 39 untranslated region (UTR)

sequences respectively.

Isolation and Analysis of Nucleic Acids
Total Leishmania RNA was isolated using TRIZOL (Invitrogen,

according to the manufacturer’s instructions) and dissolved in

RNAse-free water. Leishmania genomic DNA was isolated using a

DNAeasy kit (Qiagen) as described [52]. Southern blot techniques

were used to analyse CFAS KO cell lines or integration of an

ectopic copy into the ribosomal locus for expression in either L.

infantum or L. major. For CFAS KO analysis, genomic DNA was

digested with Sal I and fragments size-separated by electrophoresis

using 0.8% agarose. For CFAS ectopic expression, integration into

the ribosomal locus was analysed by BamH I digestion of genomic

DNA, followed by fragment separation through 1% agarose in 0.5

x TBE, using a CHEF pulsed-field gel electrophoresis (PFGE)

system (Bio-Rad) set at 150 V, with initial and final switching

times of 10 sec each and a run time of 20 h at 25uC. Fragments

were blotted and hybridised with a 464 bp (nt 532–996) CFAS

specific DNA probe prepared using a Digoxigenin-labelling and

PCR DIG probe synthesis kit (Roche). Blots were prehybridised

for 4 hr in DIG Easy Hyb buffer (Roche), hybridized at 42uC
overnight in the same buffer containing 20 ng/ml of DIG-labelled

probe, washed twice in 2 6 SSC, 0.1% SDS at room temp for

5 min and then twice in 0.5 6 SSC, 0.1% SDS at 68uC for

15 min. Hybridisation was detected using anti-DIG antibody

conjugated to alkaline phosphatase and CDP-Star substrate

(Roche).

Expression Profile and Parasite Burden Analyses Using
Quantitative Real-Time PCR

For expression analysis, total parasite RNA was DNase-treated

(Ambion, according to the manufacturer’s instructions) prior to

reverse transcription into cDNA using an Omniscript RT kit

(Qiagen), Oligo dT (Promega), and RNase inhibitor (Promega)

according to the manufacturers’ instructions. RT-qPCR was

performed with an ABI Prism 7000 Sequence detection system

(Applied Biosystems) using SybrGreen and primers designed

according to Primer Express software and guidelines (Applied

Biosystems). Expression levels of target genes were quantified

relative to housekeeping gene elongation factor I-a (EFI-a;

LinJ17_V3.0090).

Parasite burdens in liver and spleen tissues, sampled in

duplicate, were assessed using RT-qPCR (as described in [51]).

DNA standards were created for each tissue sampled, by spiking

naı̈ve tissue with known numbers of L. infantum promastigotes and

analysing the extracted DNA as described. Total parasite burden

per organ was calculated by determining the total number of

parasites per weight (in grams) of tissue sampled and multiplying

by total organ mass.

Fluorescence Microscopy
Parasites were fixed in 4% paraformaldehyde for 15 min at

room temp, washed three times with PBS before depositing on to

polylysine–coated slides. Parasites were permeabilised for 10 min

in PBS containing 5% FCS and 0.1% Triton X-100, blocked for

15 min in PBS containing 5% FCS before staining with

monoclonal rat anti-HA antibody (F10, Roche Diagnostics) or

rabbit anti-BiP antibody (the gift of Jay Bangs). Alexa Fluor 546-

and 488- conjugated goat anti-rat or rabbit IgG were used as

secondary antibodies. Stained cells were mounted with Vector

Shield containing DAPI before viewing on a fluorescent or

confocal Zeiss LSM 510 meta microscope with a Plan-Apochro-

mat 63x/1.4 Oil differential interference contrast I objective lens.

Images were acquired using LSM 510 version 3.2 software (Carl

Zeiss, Jena, Germany) as described previously [53].
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Subcellular Fractionation and Immunoblotting
Parasites were washed twice in PBS pH 7.4, resuspended at

16108 cells ml21 in hypotonic buffer (1 mM potassium acetate,

1.5 mM magnesium acetate, 1 mM CaCl2, 10 mM Tris, 2 mM

EDTA, pH 7.2) containing protease inhibitors (complete mini

EDTA-free protease inhibitor cocktail, Roche Diagnostics) and

lysed by sonication on ice for 4615 sec bursts (40 watts). The

lysate was centrifuged at 1000 rpm for 2 min at 4uC to remove

non-lysed cells. The resulting supernatant was centrifuged at

83,689 g (45000 rpm, Beckman TLA-100.3 rotor) for 90 min at

4uC to separate membrane and cytosolic components [22]. For

sucrose gradient fractionation, cells were processed as described

[54]. Briefly, 16109 L. infantum promastigotes suspended in

hypotonic buffer (2 mM EGTA, 2 mM DTT, 2 mM leupeptin,

0.1 mM phenylmethylsulfonyl fluoride [PMSF]), were lysed by

expulsion (615) through a 27 gauge needle. The lysate was made

isotonic by addition of 46 assay buffer (50 mM HEPES-NaOH

pH 7.4, 0.25 M sucrose, 1 mM ATP, 1 mM EGTA, 2 mM DTT,

2 mM leupeptin, 0.1 mM PMSF) and centrifuged at 3000 g for

10 min. The supernatant was transferred to a clean tube and kept

at 4uC prior to gradient separation. Sucrose gradients were

prepared by layering 1060.8 ml fractions of 0.25–2 M sucrose (in

25 mM HEPES–NaOH, pH 7.4) over a 2.5 M sucrose cushion in

Ultraclear Centrifuge tubes (Beckman) and centrifugation at 218

000 g for 1 hr. Cell lysate supernatant was then layered on top of

the linear sucrose gradient and fractionated by centrifugation at

218 000 g for 6 hr at 4uC (Beckman L-60 Ultracentrifuge,

SW41Ti rotor). Fractions (0.5 ml) were collected from the bottom

of the tube and analysed by immunoblotting as described [55],

probing with either rat anti-HA (Roche), mouse anti-myc

(Invitrogen), rabbit anti-BiP, rabbit anti-HASPB [18], rabbit

anti-Rab1 or mouse anti-GP63 (the gift of Robert McMaster)

followed by ECL detection (Amersham Biosciences).

Identification and Quantification of Cyclopropane-
containing Fatty Acids

Parasite fatty acids were characterised and quantified by

derivatisation to their fatty acid methyl esters (FAME) followed

by gas chromatography-mass spectrometry analysis. Briefly, mid-

log phase Leishmania were collected by centrifugation, washed in

PBS and freeze-dried in glass tubes. Triplicate aliquots (equivalent

to 26108 cells) were transferred to 2 ml glass vessels, spiked with

an internal standard fatty acid C17:0 (20 ml of 1 mM) and dried

under nitrogen. Base hydrolysis to release fatty acids was

performed using 500 ml of concentrated ammonia and 50%

propan-1-ol (1:1), followed by incubation for 5 hr at 50uC. After

cooling, samples were evaporated to dryness with nitrogen and

dried twice more from 200 ml of methanol: water (1:1) to remove

all traces of ammonia. The protonated fatty acids were extracted

by partitioning between 500 ml of 20 mM HCl and 500 ml of

ether. The aqueous phase was re-extracted with fresh ether

(500 ml) and the combined ether phases were dried under nitrogen

in a glass tube. The fatty acids were converted to FAME, by

adding diazomethane (3620 ml aliquots) to the dried residue, while

on ice. After 30 min, samples were allowed to warm to room temp

and left to evaporate to dryness in a fume hood. The FAME

products were dissolved in 10–20 ml dichloromethane and 1–2 ml

analysed by GC-MS on Agilent Technologies (GC-6890N, MS

detector-5973) with a ZB-5 column (30 M 6 25 mm 6 25 mm,

Phenomenex), with a temp program of 70uC for 10 min followed

by a gradient to 220uC at 5uC/min and held at 220uC for a

further 15 min. Mass spectra were acquired from 50–500 amu.

The identity of FAMEs was carried out by comparison of the

retention time and fragmentation pattern with a bacterial FAME

standard that contained both C17D and C19D (Supelco).

In vitro Cellular Assays
Proline uptake was assayed following published procedures

[56,57], with minor adaptations. Mid log phase promastigotes

were washed twice in PBS, pH 7.4 at 4uC and resuspended at a

density of 16108 cells. ml21. After 10 min pre-incubation at

30uC, 20 ml of L-[2,3-3H]-proline in PBS (0.2 mCi/ml, Perkin-

Elmer) was added to 400 ml of cell suspension and uptake

measured over a 60 min time course at 30uC. Uptake was

terminated by centrifuging the parasites at 800 g for 5 min and

washing the pellet 3 x in cold PBS. Incorporated radioactivity in

the cell lysates was measured by liquid scintillation counting

(TopCount.NXTTM Microplate Scintillation and Luminescence

Counter; Packard Bioscience).

Bone marrow-derived macrophages (BMD) were isolated from

BALB/c mice bred in pathogen-free conditions at the Centre for

Immunology and Infection, University of York. All animal work was

conducted under UK Home Office Licence requirements and after

institutional ethical review. BMD were cultured at 37uC in

Complete DMEM (Dulbecco’s modified Eagle’s medium supple-

mented with 10% foetal bovine serum (FBS), 2 mM L-glutamine,

100 units/ml penicillin G and 100 ug/ml streptomycin). Macro-

phages were plated at a density of 56104 cells per well in a 24-well

plate containing glass cover-slips, allowed to adhere for 3 hr, then

washed 3 times with DMEM to remove any non-adherent cells.

Late stationery phase L. infantum (at 2.56106 cell/ml; each parasite

cell line analysed in triplicate) were added to each well and the plate

centrifuged at 1500 rpm for 10 min before incubation at 37uC for

3 hr. After incubation (time point zero), wells were washed twice to

remove unattached parasites, fresh Complete DMEM (500 ml)

added to each well and incubation continued at 37uC. Samples were

collected at 0, 24 or 48 hr by washing the wells 3 times with cold

PBS, fixing in 100% methanol for 5 min and staining with May-

Grünwald-Giemsa, prior to microscopy to identify internalized

parasites. Parasite infectivity was calculated by counting the number

of infected macrophages as a % of total macrophages, counting at

least 200 macrophages per cell line at each time point.

Tolerance to reactive oxygen species (ROS) was assessed by

culturing log phase parasites in HOMEM complete medium

supplemented with hydrogen peroxide (Sigma) at a final concen-

tration of 300 mM. Parasite numbers were determined at 24 hr

intervals, as described above.

Endocytosis assays were performed as described [58,59]. Briefly,

16107 cells were harvested and washed once with 1 ml of serum-

free medium. Cells were resuspended in 500 ml of serum-free

medium containing 1% fat-free BSA (Sigma) and incubated for

30 min at 26uC. Fluorescein isothiocyanate-labelled lectin con-

cavalin A (FITC-ConA; Invitrogen) was added to a final

concentration of 5 mg/ml and incubation continued for 30 min

or 2 hr. After incubation, cells were washed twice in PBS and fixed

with 4% paraformaldehyde at 4uC for 1 hr. The fix was washed

off twice with PBS before mounting for fluorescent microscopy

analysis as described above.

In vivo Infections
BALB/c mice (Charles River UK Ltd., Margate, UK) were

housed in pathogen-free conditions in individual micro-isolators at

the University of York. All animal work was conducted under UK

Home Office License, after institutional ethical review. To reduce

any impact of long term in vitro culture on parasite virulence, all

parasite lines used for infections were passaged in vivo and subject to

amastigote to promastigote conversion in in vitro liquid culture. All
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lines were used at comparable in vitro passage number (always less

than 5). L. infantum, L. infantum CFAS2/2 and L. infantum CFAS2/

2/+ CFAS metacyclic promastigotes were purified on a Percoll

gradient from late stationary phase in vitro cultures [60]. Infection-

competent metacyclic parasites were gauged by morphology and

expression of metacyclic specific HASPB protein (data not shown).

L. infantum infections were established by intravenous (i.v.) infection

with 26107 parasites and mice were killed at 14 and 28 days post

infection (n = 5 per group). Parasite burdens in liver and spleen

tissues were determined as described above.

L. major infections were established by intradermal infection into

the ear pinnae with 16106 metacyclic promastigotes purified on a

Ficoll gradient from late stationary phase in vitro cultures [61]. L.

major LUC or L. major LUC+CFAS inoculums showed equivalent

levels of luciferase activity in vitro (data not shown). Baseline levels

of luciferase activity were taken in vivo at 4 hr post infection.

Cutaneous lesions were assessed at various time points using

vernier callipers. Mice were sacrificed 10 weeks post infection and

tissue parasite burdens determined by qPCR as described above.

Bioluminescence Imaging with IVIS
Mice were anesthetised by isoflurane inhalation, and injected

intraperitoneally (i.p.) with D-luciferin at 150 mg/kg. Biolumines-

cence images were acquired at 20 min post-injection with a 5

minute exposure using an IVIS Imaging 100 system (Xenogen

Corp.). Analysis and acquisition were performed using Living Image

software, version 2.5 (Xenogen). In brief, luminescence (photons/

second) was determined in a manually defined region of interest

(ROI) over the ear pinnae. Background readings from a comparable

ROI over the contra-lateral ear pinnae were subtracted from each

measurement. For determination of luciferase activity in vitro, L

major LUC promastigotes were obtained from a low passage

stationary phase in vitro culture, and L major LUC amastigotes were

purified from a chronically infected BALB/c footpad. Luciferase

activity was measured on a luminometer using a Luciferase Assay

System kit (Promega) as per manufacturer’s instructions.

Supporting Information

Figure S1 CFAS amino acid sequence analysis. AlignX (Vector

NTI tool) was used to align Leishmania CFAS sequences with those

from other species. A structurally conserved S-adenosyl-L-

methionine (SAM) binding domain is underlined while other

highly conserved residues are highlighted. Sequence accession

number of the sequences used: XP_001463394 (Leishmania

infantum); XP_001562118 (Leishmania braziliensis); NP_334895

(Mycobacterium tuberculosis-1); NP_215159 (Mycobacterium tuberculosis-

2); AAC44617 (Mycobacterium tuberculosis-3); NP_215157 (Mycobac-

terium tuberculosis-4); NP_207214 (Helicobacter pylori); NP_416178

(Escherichia coli); AAL73238 (Coprinopsis cinerea); AAM33848 (Sterculia

foetida); NP_188990 (Arabidopsis thaliana).

(TIF)

Figure S2 Analysis of CFAS transgene integrations into the

ribosomal locus of L. major. (A) Map of the ribosomal integration

vector construct (pSSU-NEO-CFAS) and the corresponding

region of L. major chromosome 27 with repeated integration sites

(SSU) distributed across the locus. The position of the ribosomal

promoter (R) is indicated. (B) Southern blot analysis of genomic

DNA extracted from wild type (wt) and transgenic L. major mutants

expressing CFAS (CLN-2, CLN-3, Table 1). DNA was digested

with BamH I, separated by pulsed field gel electrophoresis through

1% agarose, blotted and probed with the CFAS-specific probe

shown in Figure 3A.

(TIF)

Figure S3 Endocytosis assay. The wild type, null and comple-

mented L. infantum lines used in Figure 6A were incubated with

FITC-labeled Con A and uptake stopped after 30 min or 2 hr by

fixation with 4% paraformaldehyde. Analysing 100 parasites from

each line, the number of parasites with Con A signal at the flagella

pocket (FP) or in the early endosomal (EE) regions was counted

and the percentage of the total calculated for each cell line at the

time points shown. The lower images show examples of Con A-

FITC signal at the FP and EE regions respectively, as indicated by

open and filled arrows respectively.

(TIF)

Figure S4 The presence of CFAS gene attenuates L. major

dermal infection in vivo. BALB/c mice were infected intradermally

with 16106 L. major LUC or L. major LUC+CFAS and parasites

were visualised by bioluminescence imaging, using an IVIS over

the course of the infection. Scale bar on left of images shows

luminescence activity (photons/second/cm2/sr).

(TIF)

Figure S5 Luciferase activity is downregulated in amastigotes.

The luciferase activities of equivalent numbers of L. major LUC

promastigotes (black bars) and amastigotes (open bars) were

compared using an in vitro luminescence assay. **** p,104 by

unpaired Student’s t-test (n = 3).

(TIF)
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