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Abstract

Background: Chiari-like malformation (CM) is a complex malformation of the skull

and cranial cervical vertebrae that potentially results in pain and secondary syringo-

myelia (SM). Chiari-like malformation-associated pain (CM-P) can be challenging to

diagnose. We propose a machine learning approach to characterize morphological

changes in dogs that may or may not be apparent to human observers. This data-

driven approach can remove potential bias (or blindness) that may be produced by a

hypothesis-driven expert observer approach.

Hypothesis/Objectives: To understand neuromorphological change and to identify

image-based biomarkers in dogs with CM-P and symptomatic SM (SM-S) using a

novel machine learning approach, with the aim of increasing the understanding of

these disorders.

Animals: Thirty-two client-owned Cavalier King Charles Spaniels (CKCSs; 11 controls,

10 CM-P, 11 SM-S).

Methods: Retrospective study using T2-weighted midsagittal Digital Imaging and

Communications in Medicine (DICOM) anonymized images, which then were

mapped to images of an average clinically normal CKCS reference using Demons

image registration. Key deformation features were automatically selected from the

resulting deformation maps. A kernelized support vector machine was used for classi-

fying characteristic localized changes in morphology.

Results: Candidate biomarkers were identified with receiver operating characteristic

curves with area under the curve (AUC) of 0.78 (sensitivity 82%; specificity 69%) for

the CM-P biomarkers collectively and an AUC of 0.82 (sensitivity, 93%; specificity,

67%) for the SM-S biomarkers, collectively.

Abbreviations: AUC, area under the curve; CKCS, Cavalier King Charles Spaniel; CM, Chiari-like malformation; CM-N, control dogs: no SM no CM pain; 4 years of age and older; CM-P, pain

associated with Chiari-like malformation; CSF, cerebrospinal fluid; DICOM, Digital Imaging and Communications in Medicine; FPR, false-positive rate (also known as 1 − specificity); ICC,

intraclass correlation coefficient; MRI, magnetic resonance imaging; PCA, principal component analysis; ROC, receiver operating characteristic; SFFS, sequential floating forward selection;

SM, syringomyelia; SM-S, syringomyelia and associated clinical signs; SVM, support vector machine; TPR, true-positive rate (also known as sensitivity).
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Conclusions and clinical importance: Machine learning techniques can assist CM/SM

diagnosis and facilitate understanding of abnormal morphology location with the

potential to be applied to a variety of breeds and conformational diseases.

K E YWORD S

biomarker, brachycephaly, canine, Cavalier King Charles Spaniel, craniosynostosis, image

registration, machine learning, MRI, radiology and diagnostic imaging

1 | INTRODUCTION

Syringomyelia (SM) is characterized by the development of fluid-filled

cavities within the spinal cord. The pathogenesis of SM is debated,

but there is consensus that it is associated with obstruction of cere-

brospinal fluid (CSF) channels, especially when that obstruction is at

the craniocervical junction and foramen magnum. In dogs, SM most

commonly is associated with Chiari-like malformation (CM),1-4 a com-

plex developmental malformation of the skull and cranial cervical ver-

tebrae characterized by rostrocaudal bony insufficiency resulting in

conformational changes and overcrowding of the brain and cervical

spinal cord, particularly at the craniocervical junction.

Depending on the site and extent of spinal cord damage, SM may

result in behavioral signs of pain, phantom (fictive) scratching, scolio-

sis, weakness, and sensory deficits although some dogs may be

asymptomatic, especially if the syrinx is narrow and centrally located.5

Brachycephalic toy breeds are predisposed to CM and SM, especially

the Cavalier King Charles Spaniel (CKCS)1,4,6 in which there is a hered-

itary predisposition.1,4

Diagnosis of CM and SM requires magnetic resonance imaging

(MRI). Whereas identification of SM is straightforward, assessment of

CM is more difficult. Originally described in 2000 as a small-volume

caudal fossa with cerebellar herniation,7 numerous studies have now

shown that the condition is more complex.1,4,8-15 In addition to hypo-

plasia of the supra- and basioccipital bones, resulting in short cranial

base, decreased caudal fossa volume, and tendency for cerebellar her-

niation, the condition is associated with a compensatory increase in

the height of the cranial fossa with decreased occipital crest,1 rostral

displacement of the atlas and axis (atlanto-occipital overlapping),

medulla oblongata elevation with or without kinking, more acute

angulation of the axis bone to the cranial base (cervical flexure),

more acute angle at the spheno-occipital synchondrosis (sphenoid

flexure),1,2 a relatively large cerebellum,16-18 decreased volume of jug-

ular foramen and venous sinus, and dorsal compression of the spinal

cord by atlantoaxial bands.19,20 Indeed, most CKCS have the condi-

tion14,21 to some extent, but ascertaining severity and therefore risk

of clinical disease and of passing on that risk to offspring has proved

more problematic. Morphometric mapping can be used as a diagnostic

tool for qualifying pain associated with CM (CM-P). However, the pro-

cess is laborious and requires specialist training and practice and cur-

rently is confined to research groups investigating the pathogenesis

and for genetic studies.4

Traditional morphometric studies also have the potential disad-

vantage that they are hypothesis-driven (ie, the researcher proposes

the measurement to be tested based on prior knowledge or intuition).

Our proposed method is based on a purely data-driven approach. In

other words, we propose to let the data “speak” in an unbiased way.

This is facilitated by using machine learning methods to discover

underlying patterns in the image data, which may or may not be

immediately obvious, and that are not guided by human intervention

(other than by labelling the fundamental phenotype). Thus, our

aim was to identify potential imaging biomarkers of SM- and CM-

associated pain within the entire cranium.

2 | MATERIALS AND METHODS

The methodology was divided into 4 main sections, namely image

preprocessing, feature extraction, biomarker identification using machine

learning, and biomarker mapping (Figure 1). This pipeline was established

with the aim of identifying specific locations within the brain related to

CM-P and clinically relevant SM in dogs that are different in some way to

the features seen in control dogs.

The method starts by using an image registration step. Image reg-

istration is a process sometimes referred to as mapping, morphing, or

warping to align the subject in an image of interest onto another

image. Furthermore, performing this step accommodates differences

in head size that may occur as a consequence of sex, neuter status,

and age. In the methodology described here, we selected an average

control subject as our reference image and then registered dogs either

in our diseased group or in the control group onto this reference

image. The registration process produces a warp field or deformation

image, which illustrates the displacement of each pixel in our clinically

affected or control images when these are mapped or registered onto

our reference subject (Figure 2). We then use machine learning

methods to extract the key features, as discovered by the machine,

rather than a human, which characterizes the differences in the way

the images of dogs in our disease groups are deformed compared to

our control group. Learning how to best distinguish, or separate, the

2 classes of dogs (diseased, control) given the selected image features

is referred to as classification. The quality of this separation or classifi-

cation then is evaluated using receiver operating characteristic (ROC)

methods to estimate the sensitivity and specificity of the proposed

approach.
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We then can map these features back to the original images to

allow us to infer the key locations in the brain that are deformed in

diseased dogs compared with our control dogs, in order to identify

the locations of potential image-based biomarkers for the target

disease.

The investigation was carried out on a data set compiled from

midsagittal T2-weighted head and cranial cervical MRI obtained from

32 CKCS dogs, imaged using the same MRI machine. Demographical

data of the total cohort are (32; 21 male, 11 female) summarized as

follows:

1. CM-N (control): no SM, no CM-P; ≥4 years of age (n = 10);

2. CM-P: no SM with clinical and behavioral signs or both of pain

associated with CM-P22,23; ≥4 years of age (n = 11);

3. SM-S: clinically severe SM with syrinx transverse diameter ≥4 mm22

and clinical signs relating to the syrinx (eg, phantom scratching, scoli-

osis, paresis, proprioceptive deficits); all ages (n = 11).

The diagnosis of CM-P is suggested in predisposed breeds

presenting with multiple signs suggesting pain such as a history of

vocalization without obvious trigger, when shifting position, when

recumbent, and when being lifted under the sternum to a height; spi-

nal pain; head and ear rubbing or scratching; refusal or difficulty to

jump or use stairs; exercise intolerance or decreased activity; sleep

disruption; or behavioral change described as becoming more anxious,

aggressive, or withdrawn.22 These were considered in addition to the

following MRI changes: effacement of the cranial subarachnoid space

evidenced by decreased definition of the sulci filled with high signal

F IGURE 1 Schematic diagram
showing the key steps involved in the
proposed image analysis pipeline

F IGURE 2 A schematic diagram
showing the image registration
process between 2 T2-weighted
cranial MRI mid-sagittal slices: A, an
MR image of an arbitrary dog in the
dataset (query dog) prior to

registration; B, an MR image of the
reference image; C, the resultant
movement or warp field for the pixels
in the arbitrary image superimposed
in red and plotted at every 10 pixels
for clarity; D, the resultant query
image following registration to the
reference dog. This is based on the
hypothesis that the deformation field
or “pattern” that warps the query
image onto the reference image
illustrated in C can be used to
discriminate between dogs with
syringomyelia (SM), assumed to have
greater levels of distortion (ie, pulling
and twisting of the image) due to
greater internal differences in
morphology, compared to those in the
control group
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CSF, variable ventriculomegaly, brachycephaly with shortening of the

basicranium and prephenoid bone with decreased and more ventrally

orientated olfactory bulbs, rostral forebrain flattening, rostrotentorial

neuroparenchyma displaced dorsocaudally giving increased height to

the cranium and decreasing the functional caudotentorial space and

contributing to hindbrain herniation, and atlas closer to the skull with

flattened supraoccipital bone. The diagnosis, however, is dependent

on other causes of skin disease and ear disease and spinal pain being

excluded and the dogs responding to analgesia that did not include

corticosteroids and not having developed any other cause of pain or

neurological dysfunction over a minimum of an 18-month follow-up

period.

The value of ≥4 mm as a clinically relevant syrinx was decided on

the basis of a previous study that identified this measurement as the

cutoff for SM-specific clinical signs.22

2.1 | Image preprocessing

The process is initiated by identifying a control reference dog (ie, a

typical CKCS unaffected by CM-P and SM) by using all of the imaging

features of the control group extracted in previous studies.1,24 The

mean value for each feature was computed for all unaffected CKCS in

the control group. For each of these subjects, the deviation from the

mean value for each feature was calculated and the sum of these

deviations computed. The dog resulting in the smallest sum of devia-

tions was chosen as the dog with the most average-looking appear-

ance in the control group and was referred to as the reference dog.

The MR image of this average dog was used as a reference image

throughout the study pipeline. The next step was to carry out image

registration to align all of the images in the data set to the common

reference dog, so as to facilitate comparison of the 2 separate classes

on a pixel-by-pixel basis. Before registration, the MR images were

cropped to ensure that only the soft tissues associated with the head

were considered for analysis. The midline sagittal image was consid-

ered in each case, such that the study was carried out in

2-dimensional space. Although the basic topological shape of each

subject is similar, the use of different scanners may give rise to differ-

ences in pixel dimensions. Furthermore, the dogs were likely to have

been setup at slightly different orientations during image acquisition.

2.2 | Image registration

In order to spatially align each image into a single coordinate space, an

initial affine image registration step was used (affine registration

refers to a process that only applies translation, rotation, and shear to

an image to align it with another image). This provides an approximate

alignment, eliminates volumetric differences caused by use of differ-

ent scanners, and minimizes any effects caused by setup errors during

the MRI acquisition process.

After affine registration, the morphological differences between

each dog and the clinically unaffected reference dog were obtained

using an adaptation of the Demons nonrigid registration method.25,26

Such a nonrigid registration allows the machine to “squeeze and

squash” or “pull and twist” or both a target object to best align it

with the reference subject in the reference image. This produces a

deformed query image, which is spatially aligned to the reference

image, as well as a deformation matrix, or deformation field, that

describes the distortions or deformations produced by image registra-

tion when mapping and aligning 1 image to another. The deformation

matrix maps each pixel from a query image to a corresponding pixel

on the reference dog image. This process is repeated for all of the

subjects in the data set, enabling the cohort to be compared on a

pixel-by-pixel basis. This process is illustrated in Figure 2. Afterward,

an attempt is made to extract and select a set of features that charac-

terizes the distortions seen in the warp field images for the 2 groups

of dogs (control and diseased).

2.3 | Feature selection

Feature selection is a “long-listing” step that makes a first pass to

decrease the list of potential features that might be used to separate

the 2 cohorts. In this case, we used features associated with the

deformation field to identify the morphological differences between a

query dog and the reference dog. These deformation fields then can

be grouped or clustered into 2 distinct subject types: a control group

and a group with abnormal morphology. This was carried out using

different features extracted from the images. The features used were

the individual polar coordinates (ie, displacement and angle of dis-

placement) of each of the MR image pixels that represent the defor-

mation field, and the determinant of the Jacobian of the deformation

field.27

To overcome any residual misalignments during the image acquisi-

tion process or associated with the image registration process, the

deformation field was down sampled onto a coarser voxel grid before

the feature extraction step. Because the degree of any potential mis-

alignment was unknown, 3 different levels of downsampling were

applied to the deformation field images: resampling at 3 × 3 pixels,

3.75 × 3.75 pixels and 5 × 5 pixels. This produced a smoothing effect

on the deformation field, resulting in 3 downsampled data sets for

CM-P and 3 data sets for SM-S. These were subsequently analyzed to

understand the consistency of any features that might be found to

separate the 2 types of subject (control and abnormal) morphology

present.

2.4 | Polar coordinates

The movement or displacement of a given pixel in the query image

when registering to the reference image can be expressed in Cartesian

(x,y coordinates) or polar coordinates. We chose to use the polar coor-

dinate system, which represents the distortions or displacements of

individual pixels as the magnitude of the displacement and the direc-

tion of displacement for each pixel, as opposed to its component

deformation in the x- and y-directions.28 This allows analysis of the

magnitude or severity of deformations occurring within a specific area

of the image, as well as the direction of these deformations, as sepa-

rate entities.
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2.5 | Calculation of the Jacobian of deformations
determinant

It was also desired to analyze the severity of the deformations in spe-

cific parts of the brain. In order to do so, the Jacobian of deformations

was calculated. This technique is now commonly used in computa-

tional and imaging sciences. The Jacobian of deformations determi-

nant is a measure of the expansion or shrinkage of local groups of

voxels within an image region, wherein a matrix element value of

1 indicates no change for that voxel, a value <1 indicates shrinkage,

and a value >1 indicates expansion.27

2.6 | Data representation and noise reduction

Principal component analysis (PCA) was used to identify the most

salient components in the data, facilitating the removal of less impor-

tant components, such as noise or anomalies. Principal component

analysis identifies combinations of feature components from the data

that represent the major sources of variance and ranks these in order

of saliency.29 Thus, the most salient principal components that describe

95% of the variance of the data were retained using PCA, whereas

those from the remaining 5% were discarded as noise. These remaining

components then were mapped back to the original image space.

2.7 | Biomarker identification using machine learning

Initial identification of a broad set of potential candidate biomarkers

was carried out using a machine learning technique known as feature

selection. In the first experiment, we attempted to make an initial sep-

aration of dogs with CM-P from those that do not have a history of

behavior suggesting pain, wherein clinical examination by a veterinary

neurologist did not find any evidence of spinal or head pain and where

spinal MRI was reported as normal (CM-N). In a second experiment,

we attempted to distinguish between dogs that have clinically severe

SM (SM-S) and the controls (CM-N).

2.8 | Feature selection

The feature selection technique used in our study is known as sequen-

tial floating forward selection (SFFS)30,31 and has been described previ-

ously.32 This process is applied to the deformation field, which is

composed of a matrix that defines the distortion between the query

image and the reference image. Each element of the matrix contains

2 values: the first is the magnitude of displacement between the

corresponding pixels of the query image and reference image, and the

second is the direction of this displacement. These 2 separate values

are considered to represent separate features.

F IGURE 3 Schematic diagram of the sequential floating forward selection (SFFS) algorithm, which is split into 2 stages: the forward pass and
the backward pass. In the forward pass: A, a simple 3 × 3 example of a deformation field which consists of pixel locations which each contain a
displacement magnitude (mi) and a direction (di)—together these describe where a particular pixel is moved to during the image registration
process that maps the query image onto the reference image. In the methodology presented here the direction and the magnitude are considered
as separate features in the analysis; B, a single feature (either an “m” or a “d”) is randomly added to the feature subset or “longlist”; C, the feature
subset is used to attempt a “first cut” separation of the dogs into 2 groups; D, the score(s) of this trial subset is increased if the grouping was
successful (ie, produced better separation of the 2 groups), or decreased if unsuccessful. This forward pass is complete once all possible m's or d's
have been added to the feature subset. Then, in the backward pass, A, the process is reversed wherein a single feature is randomly selected and
removed from the subset; B, the feature subset is then used to separate dogs into 2 groups; C, the scores of feature removed from the subset is
increased if the grouping was worse without it, or decreased if grouping was better without it, and a new feature is removed. The backward pass
is complete when all the features are removed from the feature subset
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Figure 3 shows a schematic of the SFFS algorithm, for which an

example 3 × 3 sample of the deformation field is considered. The

SFFS algorithm starts with an empty candidate feature subset (or list

of features), and features are sequentially added to this subset. Ini-

tially, each feature has a score of 0. As each feature is added to the

subset of features, the subset is tested to check whether this step

was a useful step forward in classifying subjects into the 2 cohorts

(controls, diseased). This is achieved using a simple classification

method, known as k-means clustering.30,31,33 If a newly added feature

improves the k-means clustering, then the individual feature's score is

increased by 1. This initial process, known as forward pass, is repeated

until all possible features have been tested for inclusion. In the second

part of this algorithm, known as the backward pass, each feature is

sequentially removed from the SFFS feature subset, and the dogs are

reclassified into the 2 groups based on the features remaining in the

feature subset. If the results improve, then this feature's score is

decreased. On the other hand, if the classification results decrease,

then this indicates that this feature was successful at distinguishing

between the 2 groups and therefore its score is increased. The back-

ward pass is performed to eliminate any redundant features from the

optimal feature subset.

This process was repeated 250 times using different random

orderings of features to account for any potential effects of ordering

selection. Thus a set of candidate biomarkers was identified that con-

tained the top 5 scoring features using SFFS.

2.9 | Data classification

The final step in the methodology is classification, which attempts to

optimally separate, or classify, the 2 groups of dogs (control, diseased).

After the “long-listing” step of feature selection to identify the most

promising candidate features, we then used a state-of-the-art classifi-

cation algorithm to refine the way these features can be used to best

separate the 2 cohorts of dogs. In this case, a kernelized support vec-

tor machine34 (SVM) was used as the classification method of choice

because this approach has been shown to produce excellent results in

cases of limited data size and where a complex or nonlinear decision

may need to be made to separate 2 groups of subjects.32,34

In order to assess the quality of the separation or classification

method, ROC curves were calculated using the clinically defined labels

(CM-N vs CM-P; CM-N vs SM-S) to estimate the true-positive rate

(TPR, also known as sensitivity) and false-positive rate (FPR, also

known as 1 − specificity) for the top 5 features (collectively).

In order to understand the potential variation of the neuromor-

phological patternswithin the data, a process of cross-validationwas used.

As part of this process, the data are split into 2 groups, a training set in

which the SVM learns how best to separate control from SM/CM-

affected subjects, and a test set of previously unseen subjects from the

original data set (same breed) that are used to test the performance of the

classification process. In the first experiment (to analyze CM-P separation),

5 randomly selected subjects from the entire data set of 26 cases were

F IGURE 4 Image-based biomarkers
extracted from top 5 features at grid
resolutions of 3 × 3 (red), 3.75 × 3.75
(green) and 5 × 5 (cyan) respectively for
Chiari-like malformation (CM) pain
showing location on the reference
control dog

F IGURE 5 Graph showing receiver operating characteristic (ROC)
Leave-5-out cross-validation for the support vector machine (SVM)
using the best 5 features selected using sequential floating forward
selection (SFFS) to classify CM-N vs CM-P at different resampling
rates. Area under the curve (AUC) metrics are shown in the legend
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removed and considered as the test set. Thus, testing was undertaken on

a set of images that the machine had not seen before. The SVM then was

trained on the remaining 19 cases. The 5 test cases then were classified as

part of the assessment. This process was repeated with >1000 combina-

tions of training: test selections. The mean TPR and FPR were plotted for

each, and the area under the curve (AUC) was computed. The variance

also was recorded at each point to estimate the error. The same approach

was taken for the second experiment (to analyze SM separation), with

5 subjects of the entire 18 cases excluded from the training process.

2.10 | Biomarker mapping

The entire feature extraction and biomarker identification pipeline

(Figure 1) was applied directly to the image pixels and to their respec-

tive deformation fields, each resampled at 3 different resampling

rates. This resulted in 3 biomarker sets for the CM-N vs CM-P experi-

ment, and 3 biomarker sets for the CM-N vs SM-S experiment. Each

set of candidate biomarkers was mapped back to the reference image

in order to visually demonstrate their location.

3 | RESULTS

3.1 | CM-P analysis

The pipeline was first applied to an experimental data set consisting

of 2 classes: a control group with CM (CM-N) and a group diagnosed

with CM-P (CM-P). The set of features that best separated morpho-

logical pathologies from CM-N (as identified by the feature selection

algorithm and validated by the SVM classifier) was mapped back onto

the reference image identifying their anatomical locations. The 5 most

relevant features identified by the SFFS algorithm, at 3 different

resampling rates, are shown in Figure 4.

Figure 5 shows the corresponding ROC results for this experiment

examining CM-P separation, using the aforementioned “leave-5-out”

cross-validation approach. This approach refers to training the algo-

rithm on all subjects within the data set except 5 subjects that are

reserved for testing, and then changing the combinations of data

within the training and testing data sets.

3.2 | SM analysis

Using the same approach as explained above, the following results

were achieved for the data set consisting of 2 classes: CM-N and

SM-S. Figure 6 shows the top 5 features identified by the SFFS

algorithm for this data set, whereas Figure 7 shows the corresponding

ROC curves exhibiting the separability between the 2 groups using

these features.

4 | DISCUSSION

We used a novel machine learning approach to produce a data-driven

analysis for identifying characteristic patterns associated with CM-P

F IGURE 6 Biomarkers extracted from
top 5 features at grid resolutions of 3 × 3
(red), 3.75 × 3.75 (green) and 5 × 5 (cyan)
respectively for syringomyelia (SM)

F IGURE 7 Graph showing ROC Leave-5-out cross-validation for
the SVM using the best 5 features selected using SFFS to classify
CM-N vs SM-S at different resampling rates. AUC metrics are shown
in the legend. AUC, area under the curve; ROC, receiver operating
characteristic; SVM, support vector machine
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and SM-S in a midsagittal MRI slice. The advantage of this approach is

that subtle characteristics in the image data can be identified that

may not be immediately apparent on observation. The methodology

developed here used a combination of image registration to identify

neuromorphological differences associated with particular disease

states, and machine learning to understand the location of the most

important traits derived from the registration patterns, and identify

when pathology was present or not. Although the method could be

used in a variety of disorders, we have used CM-P and SM-S to illus-

trate the approach.

To allow for uncertainties and errors associated with variations in

setup during MRI examination, as well as localized errors in the regis-

tration process, the associated deformation fields were downsampled

to a coarser resolution, or grid, to smooth over minor inconsistencies.

Thus, the analysis was undertaken over several levels of down-

sampling. Nonetheless, we demonstrated that the locations of many

of the resulting key features (candidate biomarkers) were consistent,

suggesting that the impact of downsampling was minimal. The dis-

criminatory performance of these candidate biomarkers was assessed

by ROC analysis. Anatomical features of interest can be observed in

Figure 5 (CM-N; CM-P) and Figure 7 (CM-N; SM-S).

4.1 | CM-P analysis and clinical relevance

The AUC for the ROC curves that were plotted to validate CM-P fea-

tures is shown in Figure 6, with AUC values up to 0.78 and a mean

value of 0.74. These ROCs suggest an attainable operating point with

a sensitivity of 82% and a specificity of 69%.

In Figure 4, several clusters of features have been identified: the

markers plotted in red are located in the area of the rostral wall

(lamina terminalis) and floor of the third ventricle, optic chiasm and

corpus callosum; the markers plotted in green are located within the

caudal nasal cavity close to the dorsal cribriform plate, between the

soft palate and the tongue, on the tip of the odontoid process and in

the floor of the third ventricle; the markers plotted in cyan are located

in the sella turcica and the sphenoid bone complex (presphenoid and

basisphenoid).

A cluster in the region of presphenoid bone and the optic chiasm

immediately rostral to the sella turcica is clinically consistent. Early

closure of the basispheno-presphenoid synchondrosis and therefore a

shortened presphenoid bone has been associated with brachycephaly

and airorhynchy. Early fusion of the basisphenoid presphenoid syn-

chondrosis is a feature in mouse models of Crouzon syndrome, which

is a complex craniosynostosis syndrome that can be associated with

Chiari type I malformation and which has some similarities to CM in

dogs.35

Features of the corpus callosum and third ventricle may be related

to the ventriculomegaly that often is associated with CM.23 As the lat-

eral and third ventricles become dilated, the corpus callosum becomes

thinner and more dorsally elevated. Another group of features was

identified between the soft palate and the tongue. There are 2 possi-

ble explanations for a link between CM-P and a soft tissue structure

that is outside the nervous system. The first is brachycephaly or

airorhynchy as the shortening of the bones is not mirrored by a reduc-

tion in the cranial soft tissue structures. Thickening of the rostral and

lengthening of the caudal soft palate are typical anatomical abnormali-

ties associated with this condition especially in the CKCS.36 It has

been shown previously that CM-P is associated with brachycephaly

and soft palate changes may have a coincidental association. The sec-

ond explanation is that brachycephalic obstructive airway syndrome

(BOAS) secondary to conformational changes in the soft palate may

predispose CM-P. For example, increased expiratory effort because of

increased airway resistance (Valsalva) may alter CSF dynamics, venous

pressure or both. Whether CKCS with CM-P are more likely to suffer

BOAS or vice versa has not been established and represents a new

area of enquiry. There was also a single marker in the caudal nasal

cavity close to the cribriform plate. Finally, there was also a single bio-

marker at the tip of the odontoid process. It has been recognized pre-

viously that dogs with CM and SM may have craniocervical junction

abnormalities including rostral displacement of the axis and atlas with

increased odontoid angulation causing craniospinal junction deforma-

tion and medulla oblongata elevation.4,8

4.2 | SM analysis and clinical relevance

The features related to SM were consistent over the 3 different

resampling rates. Figure 6 shows that the main features related to SM

were found to be located in the same areas for all 3 different down-

sampled images: the markers plotted in red are located in in the pres-

phenoid bone in the optic canal region just cranial to the sella turcica

together with a single marker between the soft palate and tongue; the

markers plotted in green are located in the optic canal region just cra-

nial to the sella turcica in the presphenoid bone, on the hard palate

and between the soft palate and the tongue and at the tip of the

odontoid process; and the markers plotted in cyan are located just

cranial to the sella turcica in the presphenoid bone together with a

single marker between the soft palate and tongue.

From the comparison of the locations of the top scoring features

related to CM-P with those related to SM, it is evident that both con-

ditions are associated with a common feature of the presphenoid

bone. Other CM markers in the brain are dorsal to this region, and

there is also a marker common to CM and SM in the soft palate ven-

tral to this bone.

In the case of SM classification, for the ROCs produced by com-

bining the results of the top 5 features into the classifier, shown in

Figure 7, AUC values up to 0.82 with a mean value of 0.81 were

obtained. This suggests an operating point with a sensitivity of 93%

and a specificity of 67% is attainable.

4.3 | Limitations of study

The image registration process may be prone to errors because the

mid-sagittal slices of each MRI scan were not aligned because of dif-

ferences in orientation of the dog within the MRI scanner. Further-

more, the machine learning techniques used in our study were chosen

to suit a smaller data set, but a larger data set of dogs may allow the
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use of more sophisticated techniques and provide further insight into

CM-P and SM. Another limitation was the small number of normal

dogs and the fact that the reference average subject was used as nor-

mal for all comparisons. It is not known whether this subject would

reflect the average for the entire population.

4.4 | Future study and software availability

Future directions for research should aim at improving the registration

process in order to address the difference in the dog's orientation dur-

ing image acquisition so as to produce a more robust pipeline. The

clinical implications of our findings should be explored further to try

to understand the underlying mechanisms of CM associated pain and

SM. As part of a future study, it would be interesting to compare the

discriminability of the identified markers to that of traditional markers

of CM and SM, as well as to test the discriminability of these markers

on dogs from different pedigrees and origin.

The methodology described here was developed using in-house

software based on MATLAB—a specialist software development envi-

ronment for scientific research purposes. Because ours was a proof-

of-concept study, the associated software is not currently suitable for

routine use, but the techniques described here potentially could form

part of a commercial product after further development.

5 | CONCLUSION

We evaluated a fully automated pipeline for the identification of poten-

tial biomarkers in CKCS dogs with SM and CM associated pain, with the

aim of expanding the knowledge base of these disorders. From the

comparison of dogswith CM-Pwith the control group, themain regions

identified as diagnostically relevant candidate biomarkers for this con-

dition are the floor of the third ventricle and closely associated neural

tissue, and the region in sphenoid bone (presphenoid and basisphenoid)

around the sella turcica. There are also lesser areas of interest in caudal

nasal cavity close to the dorsal cribriform plate, between the soft palate

and the tongue, on the tip of the odontoid process.

The main regions identified as diagnostically relevant biomarkers

when comparing dogs with a specific diagnosis of SM to a control

group were the presphenoid bone and the region between the soft

palate and the tongue. Both experiments have yielded biomarkers in

the presphenoid bone and the area between the soft palate and the

tongue, which indicates both conditions being strongly related to

changes within this area. Further work is needed to explore the fur-

ther development of the image registration process, which in turn is

expected to improve the AUC values.

We were able to successfully discriminate between CM-P subjects

and those without, and for those with SM-S, and those without, using

a set of biomarkers discovered using machine learning. This work can

be used as a basis to build a clinical diagnostic test based on register-

ing these key locations in a query subject back to the equivalent land-

marks on a reference subject free of such pathology. Further analysis

could be done to investigate whether a link exists between disease

severity and the magnitude of the neuromorphological distortion indi-

cated by these biomarkers.
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