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Abstract: The isochore theory, which was proposed more than 40 years ago, depicts the mammalian
genome as a mosaic of long, homogeneous regions that are characterized by their guanine and cytosine
(GC) content. The human genome, for instance, was claimed to consist of five compositionally distinct
isochore families. The isochore theory, in all its reincarnations, has been repeatedly falsified in the
literature, yet isochore proponents have persistently resurrected it by either redefining isochores or
by proposing alternative means of testing the theory. Here, I deal with the latest attempt to salvage
this seemingly immortal zombie—a sequence segmentation method called isoSegmenter, which
was claimed to “identify” isochores while at the same time disregarding the main characteristic
attribute of isochores—compositional homogeneity. I used a series of controlled, randomly generated
simulated sequences as a benchmark to study the performance of isoSegmenter. The main advantage
of using simulated sequences is that, unlike real data, the exact start and stop point of any isochore or
homogeneous compositional domain is known. Based on three key performance metrics—sensitivity,
precision, and Jaccard similarity index—isoSegmenter was found to be vastly inferior to isoPlotter,
a segmentation algorithm with no user input. Moreover, isoSegmenter identified isochores where
none exist and failed to identify compositionally homogeneous sequences that were shorter than
100−200 kb. Will this zillionth refutation of “isochores” ensure a final and permanent entombment of
the isochore theory? This author is not holding his breath.

Keywords: isochores; GC content; segmentation algorithms; benchmark simulations; isoSegmener;
isoPlotter

1. Introduction

In the 1970s, several authors discovered that, by fractionating mammalian genomic
DNA and running it on either Cs2SO4−Ag+ or CsCl density gradients, a continuous
distribution of DNA buoyant densities was observed, e.g., [1,2]. This distribution was wider
and less symmetrical than that resulting from fractionating bacterial DNA. By using an
arbitrary process of recurrent subsampling, followed by an equally arbitrary discretization
of these continuous distribution curves, Cuny et al., proposed that genomic DNA is made
of very large DNA segments of homogeneous GC content, which were termed “isochores,”
and that these segments belong to a small number of isochore families characterized by
identical or similar GC contents [3]. For example, according to [3], most of the human
genome (93%) consists of four isochore families, whose GC contents are 36.7% GC (29% of
the genome), 38.5% GC (33% of the genome), 42.9% GC (22% of the genome), and 49.2%
GC (9% of the genome).

The isochore theory in all its reincarnations has been repeatedly falsified, e.g., [4–11].
Sadly, however, each refutation brought a new barrage of counter arguments by the propo-
nents of the isochore theory and, like a classical brain-eating zombie, the theory refused to
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die. In response to the many falsifications, proponents and supporters of the isochore theory
either redefined isochores, proposed alternative means of testing the theory, or both. For
example, the number of isochore families in the human genome grew from four to five, the
size of the isochores fluctuated widely, the GC contents of the isochore families periodically
increased or decreased, and the adjective “homogenous” became a more nebulous “fairly
homogenous.” Here, I deal with the latest iteration of the isochore theory, in particular,
with the newest sequence segmentation methods that were put forward to salvage this
zombie [12,13].

1.1. Isochores and the Human Genome Sequence

Many research papers published before genome sequencing became available used the
GC content at third-codon positions (GC3) in protein-coding genes as a proxy for genomic
GC content [14,15]. The main drawback of this method was that protein-coding regions
comprise only ~1% of the entire human genome [16]. Moreover, codon usage biases can
only be meaningfully assessed in four-fold degenerate sites (i.e., third-codon positions
in which all possible point mutations result in synonymous substitutions). These sites,
notwithstanding, constitute only ~17% of all coding regions. As could have been expected,
GC3 failed to predict genomic GC content [5].

Many analyses of the first-draft sequence of the human genome [6] cast serious doubt
on the existence of compositionally homogeneous isochores [8,9,11], while [6] concluded
that “isochores” do not merit the prefix “iso.” The publication of the cow genome [7] added
evidence against the validity of isochores.

1.2. Segmentation Algorithms

Cohen et al., analyzed the GC composition of the human genome [10] by using a
segmentation algorithm which partitioned each genomic sequence into segments using
a binary recursive method, as proposed by [17]. In the initial step of this procedure, a
chromosome is segmented into two subsequences at a point that maximizes the difference
in GC content between the adjacent subsequences. The process of segmentation was
repeated recursively on all the subsegments, and the process was continued until the
difference in GC content between two neighboring subsegments was no longer statistically
significant. By using three criteria for defining isochores (distinctiveness, homogeneity,
and a minimal length of 300 kb), Cohen et al., discovered that genomic segments that
warrant the label “isochore” cover only 41% of the human genome and are nonuniformly
scattered throughout the genome [10]. Moreover, only 4% of the homogeneous segments
in the human genome could be labeled as isochores, and almost all such segments were
GC-poor. Cohen et al., also found that a four-family model of putative isochores was the
most parsimonious multi-Gaussian model that could be fitted to the empirical genomic
sequence data [10], as opposed to the five-family isochore model [18]. These four Gaussians
had mean GC contents of 35%, 38%, 41%, and 48%, which did not resemble the values
previously found in the isochore literature. Finally, due to large overlaps between the
families, it was impossible to classify genomic segments into isochore families reliably,
according to compositional properties alone. These findings undermined the utility of the
isochore theory and seemed to indicate that the isochore theory had reached the limits of
its usefulness as a description of genomic compositional structures.

Cohen et al.’s [10] segmentation algorithm had one problem: it required user input.
Specifically, the segmentation algorithm halted the segmentation process when the Jensen–
Shannon divergence statistic [19], which measures the difference in GC content between
both sides of the segmentation point, fell below a manually inputted threshold. All manual
inputs are problematic as they can introduce experimenter bias, i.e., systematic errors that
are attributable to a researcher’s preconceived beliefs, expectations, or desired results. iso-
Plotter replaced the manual input of a predetermined threshold with a dynamic threshold
computed from the length and GC composition of the candidate subsequences, eliminating
any need for user input [20,21]. Using isoPlotter, Elhaik and Graur found that homoge-
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neous sequences longer than 300 kb covered less than 28% of total mammalian genomes
and constituted less than 2% of all identified compositionally homogeneous domains [4].

As an alternative to Cohen et al.’s [10] algorithm and to isoPlotter, which eliminated
all user input [20,21], Costantini et al. [12] suggested a new segmentation algorithm—later
revised as isoSegmenter by Cozzi et al. [13]. These two algorithms are essentially all user
input. Constantini et al.’s [12] method is as straightforward as it is deceitful. It is a perfect
example of preconceived results obtained through the manipulation of methodology. In
Costantini et al.’s [12] method, “chromosomal sequences of the finished human genome
assembly were partitioned into non-overlapping 100-kb windows, and their GC levels
were calculated.” This first step by itself assures that no homogenous segment shorter than
100,000 base pairs will be identified and that the internal compositional variation within
each segment will be completely ignored. One example of a non-isochore that would be
identified as an isochore by the algorithm in [12] is shown in Figure 1. In the next step,
the GC levels of adjacent 100 kb windows in each chromosome were scanned “for jumps
that were detectable on the basis of mean GC differences.” As a guideline, they focused
on “jumps of at least 1–2% GC between adjacent candidate segments, although in rare
cases smaller jumps were justified.” I note that the internal variation in GC content within
each segment was again ignored. Thus, in many cases, adjacent segments that differed
significantly in GC content were clustered together into large “isochores” and, conversely,
adjacent segments that differed insignificantly in GC content were deemed to belong to
different isochore families. Furthermore, as if these serious offences against the scientific
method were not enough, Costantini et al. [12] allowed for exceptions in deciding that two
adjacent isochores belonged to different isochore families through the vague statement that
“in rare cases smaller jumps [than 1% GC] were justified”.
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Figure 1. Identifying an “isochore” where none exists by the algorithms of Cozzi et al., and Costan-
tini et al. [12,13]. According to both algorithms, chromosomal sequences are first “partitioned into
non-overlapping 100-kb windows.” In the next step, the GC level is calculated as the mean GC content
within the “window.” Let us assume that the sequence above represents one such window, and that
the GC contents within its ten 10 kb nonoverlapping sub-windows vary, as shown. The variation will
be ignored by the algorithms and the entire 100 kb window will be deemed to be an “isochore” with
a mean GC content of 0.8, even though none of the sub-windows has such a GC content.

A “new-and-improved” algorithm by the isochore proponents, isoSegmenter, was put
forward by Cozzi et al. [13]. isoSegmenter goes a step further than [12] by making sure
that exactly five isochore families will be identified whether they exist or not. In contrast
to [12], in which the number of isochore families is not predetermined, isoSegmenter leaves
nothing to chance. isoSegmenter partitions the genome into non-overlapping 100 kb-length
windows and does not pay attention to the compositional variation within each segment.
Next, the GC content is computed for each window and, based on the GC content, the
window is assigned to one of five predetermined isochore families, as dictated by [18]: L1
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(<37% GC), L2 (37–41% GC), H1 (41–46% GC), H2 (46–53% GC), and H3 (>53% GC). Finally,
neighboring windows belonging to the same family are merged to form long, continuous
segments. IsoSegmenter is one of the most blatant examples of “garbage in, garbage out”
methodology. Thus, a window with a GC frequency of 52.999% is deemed to be an H2
isochore, while one with a GC frequency of 53.001% is said to be an H3 isochore. By
ignoring the variation within each 100 kb segment, and by throwing into the mixture five
colors—one for each isochore family, one can obtain a very decorative representation of
wishful genomic thinking, full of sound and fury, signifying nothing. In principle, there is
no need to test and compare isoSegmenter with isoPlotter, as isoSegmenter is clearly the
product of a self-delusional paradigm. However, the author of this paper believes in giving
each method an equal opportunity to fail.

2. Results

One-hundred simulations were generated for each category of equal-length and
variable-length domain sequences, for a total of 1100 equal-domain-length and 900 variable-
domain-length sequences. The simulated sequences generated were segmented using
isoPlotter and isoSegmenter, and the predictions of each algorithm were compared to the
ground truth and scored. A summary of the overall performance metrics of both algorithms
is shown in Table 1.

Table 1. Performance metrics of isoPlotter and isoSegmenter on the simulated sequence dataset.

Mean for
isoPlotter

Median for
isoPlottter

Mean for
isoSegmenter

Median for
isoSegmenter p-Value *

Sensitivity 0.5362 0.52 0.2714 0.025 p < 10−16

Precision 0.3122 0.2903 0.2854 0.0714 p < 10−16

Jaccard Index 0.26 0.2321 0.2394 0.0196 p < 10−16

* p-values were computed using a two-sample Wilcoxon rank sum test, under the null hypothesis of equal medians
for isoPlotter and isoSegmenter.

I note that the medians of all three performance metrics for isoSegmenter were much
closer to zero than to the mean, implying that all the performance metrics for isoSegmenter
were skewed upwards by high-performance outliers. The medians for isoPlotter, on the
other hand, were much closer to the mean, indicating more consistent performance. Because
of this skew in isoSegmenter, the Wilcoxon test was used instead of the standard two-mean
t-test. Overall, isoPlotter had a 10–20-fold higher median sensitivity, precision rate, and
Jaccard index compared to isoSegmenter, and the differences in these performance metrics
were all highly statistically significant.

Let us now examine how domain size influences the performance of isoPlotter and
isoSegmenter. With very large domain sizes (above 300 kb), isoSegmenter exhibited high
performance metrics (Figure 2). As the size of the domains decreased, however, all perfor-
mance metrics rapidly and precipitously declined to zero. In contrast, isoPlotter displayed
consistent performance levels across all sequences tested (Figure 3). For isoPlotter, sen-
sitivity remained between 50% and 60% across all types of equal and variable domain
sequences. However, isoPlotter’s precision rate and Jaccard index increased as the number
of domains increased (especially with equal-length domains), and both these indices were
higher among equal-length domains than in variable-length ones.
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variable-length domains (B).

To better understand the performance changes across domain lengths, the average
predicted domain lengths for both isoPlotter and isoSegmenter on the equal-length datasets
were plotted against the true domain sizes (Figure 4). Ideally, the predicted lengths would
exactly match the ground truth, leading all data points to lie on a 45◦ diagonal through the
origin. Deviations of data points away from this reference line reflected prediction inaccu-
racies. From this figure, it is apparent that the average prediction length of isoSegmenter
did not decrease below 200,000 base pairs (bp), even while segmenting sequences with
domain lengths as small as 10,000 bp. In contrast, isoPlotter tended to slightly oversegment
sequences into smaller domains, but its predictions were closer to the reference 45◦ diago-
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nal. Moreover, unlike isoSegmenter, isoPlotter’s average prediction lengths were correlated
with the true domain sizes.
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3. Discussion

In this study, I used a series of controlled, randomly generated simulated sequences
to conduct a benchmark comparison of isoPlotter and isoSegmenter, two compositional
segmentation algorithms that deliver highly contradictory predictions. The main advantage
of using simulated sequences is that, unlike real data, the exact start and stop point of the
isochore or homogeneous compositional domain is predetermined. This enables me to
directly compare the domain predictions of the two algorithms.

The performance of isoSegmenter against the benchmark sequences was dismal. In
comparison, isoPlotter exhibited a much higher performance because of its ability to deal
with a wider range of domain lengths. It did, however, exhibit a systematic tendency to
predict domain sizes that were slightly smaller than the ground truth.

Cozzi et al., criticized algorithms such as isoPlotter as having “no biological rele-
vance” [13]. However, the most important priority of any segmentation algorithm is to
make predictions that accurately reflect the underlying true genomic sequence. A segmen-
tation algorithm that superimposes unrepresentative, artificial boundaries onto a genomic
sequence with no grounds in the true compositional profile is one which truly lacks biologi-
cal relevance. isoSegmenter is an algorithmic exercise in obtaining the desired results at all
costs without taking into consideration the true genomic data.

These systematic failures of isoSegmenter raise questions regarding the validity of the
findings of [13], as well as the validity of multiple other papers that used isoSegmenter as a
key part of their computational analyses, e.g., [18,22–29].

Interestingly, this algorithm has an inbuilt self-delusionary routine that discovers
“isochores” in random sequences, in artificial sequences, and in literary masterpieces. For
example, isoSegmenter and its parent algorithm [12] were used to identify isochores in the
Drosophila genome [23], which according to the proponents of the isochore theory is not
supposed to have isochores.

As an exercise in satire, I translated Herman Melville’s 1851 novel Moby-Dick into
DNA by using the method in [30] and applied isoSegmenter to the resulting sequence.
Unsurprisingly, we found that this famous great whale of a novel is made of “isochores.”
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Will the isochore theory be finally put to rest? We are not optimistic; brain-eating
zombies are notoriously hard to kill.

4. Materials and Methods
4.1. Simulated Genomic Sequences

For my first analysis, I generated 1 Mb-long DNA sequences. Each sequence was
divided into equal-length segments. Several divisions were used: 1, 2, 4, 5, 10, 20, 25, 40,
50, 80, and 100. If, for example, a simulated sequence was divided into 10 domains, it was
composed of ten 100-kb equal-length domains. Each domain was randomly assigned to
one of the five isochore families (L1, L2, H1, H2, and H3) with GC contents of 22.8%, 33.2%,
22.7%, 11.2%, and 3.01% [31]. The precise GC sequence of each domain was randomly
selected from the GC content range of the assigned family. Adjacent domains were always
assigned to a different isochore family. Simulated sequences were converted into the FASTA
format using Biopython [32].

For the second analysis, a more realistic segmentation method was used. This segmen-
tation method partitioned the initial genomic sequence into domains of varying lengths
according to a power-law distribution with an exponent of α = −2.55, as stipulated in [10].
For this analysis, we generated simulated genomic sequences, each with a length of 5 Mb.
The number of partitions was 2, 4, 6, 8, 10, 20, 30, 40, and 100. Using the transformation
method described by [33], the lengths of each simulated domain were randomly sampled
from a power-law distribution with xmin = 10,000 bp and α = −2.55 using the inverse
cumulative distribution function. Afterwards, the domain lengths were normalized so that
their total sequence length was 5 Mb.

Examples of GC profiles for equal-length and variable-length simulated segments are
shown in Figure 5.
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4.2. Scoring of Predicted Domains

Both isoPlotter and isoSegmenter were run on each of the simulated sequences. Fol-
lowing Elhaik et al. (2010), a predicted domain was deemed a true positive (TP) if both
its boundaries matched the actual boundary positions of the domain within ± 5% of the
predicted domain size. A false positive (FP) was a predicted domain for which one or both
predicted boundaries did not match the ground truth boundaries. A false negative (FN)
domain was a ground-truth domain that was not successfully predicted by the algorithm
(Figure 6).
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Figure 6. An example of how domain predictions are scored. Green boundaries indicate correct
predictions. Domains marked with green letters indicate correctly predicted domains. Red boundaries
indicate incorrect predictions. Domains marked with red letters indicate incorrectly predicted
domains. A domain is only considered to be correctly predicted if both boundaries align with the
ground truth. In this example, the true positives (TP) are D and E; the false positives (FP) are G, H, I,
J, and K; and the false negatives (FN) are A, B, C, and F.

Three key performance metrics, i.e., sensitivity, positive predictive value (or preci-
sion rate), and the Jaccard index, were compared side by side on identical benchmark
simulations for isoPlotter and isoSegmenter as follows:

Sensitivity = TP/(TP + FN)

Precision = TP/(TP + FP)

Jaccard Index = TP/(TP + FP + FN)

where TP, FP, and FN stand for true positive, false positive, and false negative results, respectively.
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