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Abstract

Motivation: Bioinformatic tools capable of annotating, rapidly and reproducibly, large, targeted lipidomic datasets
are limited. Specifically, few programs enable high-throughput peak assessment of liquid chromatography–electro-
spray ionization tandem mass spectrometry data acquired in either selected or multiple reaction monitoring modes.

Results: We present here Bayesian Annotations for Targeted Lipidomics, a Gaussian naı̈ve Bayes classifier for tar-
geted lipidomics that annotates peak identities according to eight features related to retention time, intensity, and
peak shape. Lipid identification is achieved by modeling distributions of these eight input features across biological
conditions and maximizing the joint posterior probabilities of all peak identities at a given transition. When applied
to sphingolipid and glycerophosphocholine selected reaction monitoring datasets, we demonstrate over 95% of all
peaks are rapidly and correctly identified.

Availability and implementation: BATL software is freely accessible online at https://complimet.ca/batl/ and is com-
patible with Safari, Firefox, Chrome and Edge.

Contact: miroslava.cuperlovic-culf@nrc-cnrc.gc.ca; tperkins@ohri.ca; sbennet@uottawa.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Targeted lipidomics employs high performance liquid chromatog-
raphy - electrospray ionization tandem mass spectrometry (LC-ESI-
MS/MS)]. Using selected and multiple reaction monitoring (SRM and
MRM) modes, pairs of precursor and product ions (transitions), are
monitored to quantify lipids of interest. Targeted transition lists are
constructed based on prior knowledge of lipid fragmentation path-
ways as reported in literature (e.g., Murphy and Axelsen, 2011),

obtained through exploration of MS/MS spectra for untargeted lipido-
mic analyses, and/or by performing other semi-targeted, unbiased
lipid approaches, such as prior assessment of a given matrix in precur-
sor ion scan mode (Sartain et al., 2011). Once precursor and product
ion pairs are identified, parking on a single product ion effectively
reduces interfering signals generated by isobaric lipids from other
classes, enabling SRM and MRM modes to excel at high-throughput
quantitation of both high- and low-abundance species (Bowden et al.,
2017). Conversely, high-resolution mass spectrometry-based targeted
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lipidomics is done by parallel reaction monitoring (PRM). This
method exploits instrument setups that combine a quadrupole, a high-
energy collisional dissociation (HCD) cell, and a high-resolution mass
analyzer, such as an Orbitrap or time-of-flight (ToF). The targeted
precursor ion is isolated by the quadrupole, fragmented by the HCD,
and product ions are simultaneously monitored and quantified by the
high-resolution mass analyzer (Gallien et al., 2014; Peterson et al.,
2012). Parallel monitoring of all product ions eliminates the needs for
a priori targeted transition lists. Because the precursor ion is selected
by the low-resolution quadrupole, this targeted approach remains sub-
ject to isobaric contamination and thus requires additional bioinfor-
matic tools to confirm peak identities. Together, these approaches
have been used to successfully map fluid and cell-specific lipidomes
(Quehenberger et al., 2010; Sartain et al., 2011; Slatter et al., 2016),
reveal lipidomic disruptions across biological conditions (Alecu and
Bennett, 2019; Wang et al., 2018) and predict changes in lipid metab-
olism associated with disease progression (Alshehry et al., 2016;
Blasco et al., 2017; Granger et al., 2019).

Despite the power of SRM, MRM and PRM approaches to
quantify lipid analytes, it remains challenging to annotate lipid iden-
tities rapidly and reproducibly across large numbers of MS chroma-
tograms, notably when collected from different organisms or
matrices using different mass spectrometry methodologies. While
the concept of targeting individual lipid species in SRM, MRM and
PRM modes appears straightforward, ensuring peaks are correctly
assigned is labor-intensive and not trivial, as exemplified in
Figure 1. Multiple isobars, isomers and isotopologues, sharing the
same product ion, can elute in close proximity to the targeted lipid.
Moreover, routine variations in chromatography can cause retention
time shifts that align isobars or isotopologues to the species of inter-
est in different MS runs ( Smith, 2015 ). When multiple peaks are
detected at a given transition, careful judgment is required to dis-
criminate between lipid targets. These problems are magnified when
researchers seek to match corresponding peaks and identify unique
lipid species (i) across lipidomes of different organisms or (ii) within
different matrices where peak features may change drastically.

Few programs have been developed to address the difficulties of
SRM, MRM and PRM peak identification. MRMPROBS is the most
well-recognized SRM/MRM peak identification program, using a
multivariate logistic regression classifier to assign annotations from a
library of lipid species (Tsugawa et al., 2013). The program computes
the posterior probability of a peak belonging to a lipid in the training
set conditioned on five peak features describing lipid retention time,
intensity, and shape. However, these features are reduced to only re-
tention time when classifying SRM peaks. Two further program
restrictions of MRMPROS lie in the fact that the number of lipid iden-
tities in the training set cannot exceed the number of transitions
acquired in the raw MS data and that the compound names in the
training set must match the lipid target names in the SRM or MRM
method. These restrictions become problematic when new lipid spe-
cies are discovered in different biological matrices or conditions and
users seek to match corresponding lipids across these datasets.
mProphet uses a conceptually similar linear discriminant analysis
method to identify peptides from SRM and MRM data but further
includes addition of decoy transitions that act as negative controls to
parameterize the null model and derive false discovery rates. These
additions improve identification confidence (Reiter et al., 2011).
However, identifying a sufficient number of decoy transitions univer-
sally applicable to all lipidomes has proven difficult. Vendor-specific
programs, such as MultiQuant (SCIEX), MassHunter (Agilent),
MassLynx (Waters) and LipidSearch (Thermo Fisher Scientific) are
peak-picking algorithms where users can specify retention time win-
dows and compute retention time ratios based on predetermined in-
ternal standards to assist in peak identification. MultiQuant,
MassHunter and MassLynx do not, however, assign peak identities.
LipidSearch (Thermo Fisher Scientific) assigns peak identity to the
closest matching retention time within a user-defined retention time
window to a proprietary internal library. Similarly, Lipidyzer, using
the Lipidomics Workflow Manager program (SCIEX), assigns lipid
identities from differential mobility spectrometry (DMS) data
acquired by direct infusion SRM mode (Ubhi et al., 2016).

Additionally, Lipidyzer was designed to analyze data acquired specif-
ically from SCIEX QTRAP 5500/5600 mass spectrometers with a
SelexION DMS cell. However, even when using these software pack-
ages, manual curation remains the most common peak identification
method when extracted ion chromatograms (XICs) do not match
exactly to reference samples (Bowden et al., 2018). Finally, academic
programs, such as METLIN-MRM (Domingo-Almenara et al., 2018),
use a similar approach to LipidSearch, first aligning XIC peaks by re-
tention time before assigning lipid identities to the closest peak within
the retention time window. While these approaches excel in identify-
ing compounds within the same condition in simple matrices, any of
the common scenarios described in Figure 1 can lead to peak
misidentification.

To address this problem, we applied a Bayesian annotation ap-
proach tailored to annotate targeted lipidomic datasets and present
the program Bayesian Annotations for Targeted Lipidomics (BATL),
which overcomes many of the limitations of the manual or template-
based curation approaches. BATL is an R package, implemented
through an online GUI at CompLiMet: Computational Lipidomics
and Metabolomics https://complimet.ca/batl/ . The input format is
based on results tables generated using MultiQuant (SCIEX) but is
applicable to any targeted lipidomics data collection mode from any
LC-ESI-MS/MS platform once the user formats their results tables to
match the format provided. The program models lipid-specific peak
features obtained from a user-curated training set using Gaussian
distributions and computes the joint posterior probability of all
peak identities in a given sample. BATL was developed using eight
specific features, describing peak retention, intensity, and shape. he
online version allows users to train on any combination of features.
We show here that our approach accurately identifies over 95% of
all sphingolipid and glycerophosphocholine peaks in SRM datasets
analyzed across matrices and disease conditions. Thus, BATL is a
useful tool for accurate, targeted lipid identification and, with online
access, is easily integrated into any lipidomic pipeline.

2 Materials and methods

2.1 Overview of program
The BATL workflow is presented in Figure 2. First, a training set
is constructed from user-labeled, targeted lipidomic datasets.
Second, BATL uses both the training set and the specified input
features to construct a naı̈ve Bayes statistical model. Third, the
model and associated metadata are exported and used by BATL to
annotate peaks in query SRM, MRM, or PRM datasets. If a peak
cannot be assigned to an identity present in the training set, an an-
notation of ‘unassigned’ is returned, enabling the user to assess
and validate a potentially novel peak at that transition. An option-
al BATL function is further included, which annotates isotopes in
all lipid categories as well as sphingolipid-specific artifacts (e.g.,
dehydrations, deglycosylations and dimers).

2.2 Naı̈ve Bayes model
Our approach to peak identification is based on maximizing the joint
posterior probability of all peak identities within each sample. Let P1,
P2,. . ., Pm be a list of peaks within a sample described by feature vec-
tors F1, F2,. . ., Fm. Each feature vector contains k features, where Fi ¼
fi1; fi2; . . . ; fikf g describes the ith peak. Each peak is detected at pre-

cursor ion mi and product ion pi under the same Q1 and Q3 mass ana-
lyzer tolerance d. Let I ¼ B1;B2; . . . ;Bnf g be the set of all lipid
identities, where the bth identity is detected at precursor ion nb and
product ion qb under the Q1 and Q3 mass analyzer tolerance d. Thus,
the possible lipid identities for each peak are those detected within the
machine tolerance of the lipid identity and peak transition.

f Pið Þ ¼ jBbj b � n; jmi � nbj � 2d; jpi � qbj � 2d
� �

: (1)

To denote the assigned identity for Pi, let I1, I2, . . ., Im take lipid
identities drawn from f (P1), f (P2), . . ., f (Pm). The posterior prob-
ability of some joint assignment of peak identities is
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Pr I1; I2; . . . ; ImjF1; F2; . . . ; Fmð Þ: (2)

This joint probability is expanded using Bayes’s Theorem as in
Equation (3).

Pr I1; I2; . . . ; ImjF1; F2; . . . ; Fmð ÞPrðI1; I2; . . . ; ImÞ
PrðF1;F2; . . . ; FmÞ

: (3)

To compute this joint probability, we make three assumptions:
(i) the prior probabilities of all lipid identities are independent; (ii)
the peak feature vectors are statistically independent, conditional on
the identities; and (iii) the individual features within each vector are
statistically independent, conditional on the peak identity. Thus,
Equation (3) is simplified to the following probability.

Qm
i¼1

Qk
j¼1 Pr fijjIi

� �
Pr Iið Þ

Pr F1; F2; . . . ; Fmð Þ : (4)

The denominator is a data-dependent constant and can be
ignored when comparing the probabilities of different joint assign-
ments. The log posterior probability of a joint assignment is thus
proportional to

Xm
i¼1

wib; (5)

where weight wib is the unnormalized, log posterior probability of
assigning peak i to lipid identity Bb.

wib ¼ log
Yk
j¼1

Pr fijjIi

� �
Pr Iið Þ: (6)

The joint assignment of lipid identities is determined by the clas-
sifier decision rule. To optimize BATL, we tested three classifier
rules. First, we assessed choosing lipid identities that maximize wib

following the maximum a posteriori (MAP) decision rule typical of
naı̈ve Bayes classifiers. We found that a disadvantage of this decision

rule was that lipid identities were assigned independently. Although
peaks detected in the same sample clearly corresponded to unique
lipid identities, the MAP decision rule could assign an identity more
than once per sample (see Section 3). To address this problem, we
evaluated a constrained MAP decision rule wherein lipid identities
were assigned by the ranked order of their log posteriors, such that
no lipid identity was assigned more than once per sample. We found
that this method was not guaranteed to maximize Equation (5) and
thus did not yield the optimal assignment of lipid identities (see
Section 3). Third, we resolved the shortcomings of MAP and con-
strained MAP with the maximum weighted bipartite matching
(MWBM) decision rule, which considers the simultaneous identifi-
cation of all peak identities within a sample under the naı̈ve Bayes
model.

For every sample transition, a bipartite graph was constructed
where the vertices represent peaks Pi and their possible lipid identi-
ties f(Pi) with corresponding edges weighted by wib. The optimal set
of matching peaks and lipid identities was then solved by MWBM,
thereby maximizing Equation (5) while ensuring a unique lipid iden-
tity was assigned to each peak detected per sample. Finally, under
certain conditions, the true identity of a peak would be absent from
set I, representing a novel lipid species detected in the sample of
interest. To account for this possibility, every peak was matched to
an ‘unassigned’ identity U in addition to f(Pi). The weights wiu were
found to be specific to each transition and estimated by cross valid-
ation (see Section 3).

2.3 Training the model
Let D ¼ D1;D2; . . . ;Dp

� �
denote the labeled training set containing

the instances Do ¼ ðFo;BoÞ for samples n¼1, . . ., N. Fo is the fea-
ture vector of length k, where Fo ¼ ðfo1; fo2; . . . ; fokÞ, and Bo is the
true lipid identity. Each lipid identity in the training set contains a
unique sample index because the same lipid can only be detected
once per sample. The prior probability of each lipid identity is com-
puted by maximum likelihood estimation

Fig. 1. Common challenges associated with SRM, MRM and PRM peak identification. (a) Ambiguity occurs when multiple lipid isomers, isobars, and isotopes are detected

within the same matrix at a given transition, yet technical variations in flow rate, composition of the mobile phase, temperature, pH, etc., cause their retention times to vary

across samples. Data represent XICs of the same matrix (murine plasma) in animals fed different diets. Note six peaks are observed in one sample at a given transition. Seven

peaks are observed in a different sample shifted by 1 min. Matching retention time would not align these shifted species. (b) Assigning lipid identities based on peak elution

order (picking the nth eluting peak) will also lead to misidentifications when comparing lipid species across matrices. Data represent XICs of plasma and brain (temporal cor-

tex) lipidomes from the same animal. Note both the retention time shift and the fundamentally different number of species within each matrix. Matching by either retention

time or peak elution order would confound identification. (c) Matching lipids based on peak intensity features is complicated by pathological changes detected in lipid metabol-

ism. Data represent XICs of the human plasma lipidome of patients with different neurodegenerative diseases. Note the marked change in abundances between conditions that

impacts on lipid identification. While algorithms exist to address each of these challenges, few are applicable to datasets wherein all differences manifest simultaneously. BATL

addresses these challenges

Bayesian annotations for targeted lipidomics 1595



Pr Boð Þ ¼
NBo

N
; (7)

where NBo is the number of lipid identities Bo in the training set.
The feature likelihoods are computed using either a normal or log-
normal distribution with parameters mo and r2 estimated using the
sample mean and variance from the training set. The choice of distri-
bution is assessed using a KS-test for normality and lognormality of
feature j for lipid identity Bo.

Pr fijjIi

� �
¼

logN fijjlIij
; rIij

� �
; if Nlog

j < Nj

N fijjlIij
; rIij

� �
; otherwise

:

8><
>:

(8)

Nj and Nj
log are the number of lipid identities failing the KS-test

for normality and lognormality, respectively, for feature j at a
P-value threshold of 0.05.

Lastly, the unassigned identity weights wiu are estimated per
transition by k-fold cross validation. Looping over the k�1 folds of
the training set, the naı̈ve Bayes model is trained and unnormalized
log posteriors are computed from the testing fold. Across all k itera-
tions, the weights wiu for each transition are set to the minimum
unnormalized posterior of a correct peak assignment.

2.4 Datasets
To train and test BATL, we curated and labeled sphingolipid and
glycerophosphocholine datasets composed of 1008 MS spectra gen-
erated at the India Taylor Neurolipidomics Research Platform,
University of Ottawa. To ensure all of the challenges in MRM,
SRM, and PRM identification outlined in Figure 1 were recapitu-
lated in these datasets, we used: (i) a population-based study of cir-
culating lipids in human plasma of cognitively normal controls, and
patients suffering from Alzheimer’s disease, mild cognitive impair-
ment, dementia with Lewy bodies, or Parkinson’s disease (n¼319
sphingolipid analyses; n¼319 glycerophosphocholine analyses), (ii)
a genotype and intervention comparison study of lipid metabolism
in the temporal cortex, hippocampus, and plasma of wild-type and
N5 TgCRND8 mice, a sexually dimorphic mouse model of
Alzheimer’s disease (Granger, 2016) (n¼121 sphingolipid analyses;
n¼180 glycerophosphocholine analyses), (iii) a technical replicate
study of two human plasma samples assessed in 33 sequential runs
separated by blanks (n¼33 sphingolipid analyses), and as sample
data provided online (iv) two datasets of human plasma of persons

positive or negative for SARS-CoV-2 (Galipeau, 2021) (n¼24 glyc-
erophosphocholine longitudinal analyses provided as two datasets)
and (v) a test dataset of human plasma of persons positive or nega-
tive for SARS-CoV-2(Galipeau, 2021) (n¼12
glycerophosphocholine analyses).

To identify all lipids unambiguously in Datasets 1–3, all molecu-
lar identities were confirmed by LC-SRM-information dependent ac-
quisition (IDA)-enhanced product ion (EPI) experiments of samples
pooled across all datasets in which the SRM was used as a survey
scan to identify target analytes and an IDA of an EPI spectra was
acquired in the linear ion trap and examined to confirm molecular
identities. For Datasets 4 and 5, each lipid identity was confirmed
by LC-IDA-EPI-ESI-MS/MS using SRM as the survey scan. These
structural analyses of EPI spectra were further validated by analyz-
ing each lipid (for which commercial standards existed) individually
as a standard. All lipids within the sphingolipid dataset were moni-
tored at the same product ion m/z of 264.3 detecting sphingolipids
with a d18:1 sphingoid base backbone (sphingosine). All lipids with-
in the glycerophosphocholine dataset were monitored at the same
product ion m/z of 184.1 detecting glycerophospholipids and sphin-
gomyelins with a phosphocholine headgroup. Samples from both
the sphingolipid and glycerophosphocholine datasets were equally
stratified by acquisition date into training sets for cross validation
and holdout sets for model validation. Complete LC-ESI-MS/MS
details are provided in Supplementary Material.

2.5 Performance metrics
Classifier performance was assessed using metrics of accuracy, iden-
tification rate, and unassignment rate. These metrics evaluated how
well BATL assigned lipid identities and the calibration of the un-
assigned identity weights. A correct peak assignment (true positive
or TP) was defined as occurring when the classifier assigned the
same identity established by IDA-EPI analysis. An incorrect peak as-
signment (false positive or FP) was defined when the classifier
assigned a different identity than the one determined by IDA-EPI
structural validation. An unassigned peak (U) refers to when the
classifier assigned no identity to the peak (unassigned). Any un-
assigned peaks were considered incorrectly unassigned when the
true identity of all peaks was present in the annotated training set.

Accuracy ¼ TP

TPþ FPþU
(9)

Fig. 2. Schematic of the BATL lipid identification workflow. BATL follows three steps: (i) users are asked to identify training datasets for which they have unambiguous know-

ledge of peak identities. (ii) These datasets are used to train BATL, constructing a naı̈ve Bayes statistical model based on the peak features users select. (iii) The model and asso-

ciated metadata are used by the BATL algorithm to annotate peaks in subsequent query SRM, MRM or PRM datasets
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Identification rate ¼ TP

TPþ FP
(10)

Unassignment rate ¼ U

TPþ FPþU
(11)

2.6 Availability and implementation
To facilitate use of BATL, we have developed a user friendly R/
Shiny (Chang et al., 2021) Web application that enables labeling of
MultiQuant SCIEX data utilizing user and BATL-labeled training
datasets. The application with user instruction pages is available at
https://complimet.ca/batl/. Users with result tables generated
through other acquisition packages can simply use the program by
downloading the sample data and formatting their training and test
datasets accordingly.

3 Results

BATL was trained on the sphingolipid and glycerophosphocholine
training sets with unassigned identity weights wiu learned by 10-fold
cross validation and a precursor/product ion tolerance of 0.5 m/z
units. Models were constructed from every subset of features pre-
sented in Table 1. These features described peak retention times,
intensities, and shapes calculated from the standard outputs of all
targeted lipidomic peak-picking software programs (e.g.,
MultiQuant, version 3.02, SCIEX). To train BATL, labeled vali-
dated datasets were used as training sets by adding an additional col-
umn ‘Lipid_identifier’. This identifier can be any standardized
character string used by a laboratory to annotate lipid identity. To
calculate BATL-specific peak features (Relative RT, Subtracted RT,
Relative Area, and Relative Height), an internal standard must be
specified by the user and can be identified in the GUI. This internal
standard must be present in all samples and all datasets (training
and test). For each model, lipid identities were assigned to peaks in
the cross validation or holdout sets using the MAP, constrained
MAP or MWBM decision rules. Two peak identification algorithms,
retention time mean and retention time window, were also devised
as benchmarks recapitulating manual curation performed on-the-fly
by users using MultiQuant to target desired peaks. The retention
time mean approach assigned peaks to the single lipid identity in the
training set with the closest mean retention time. The retention time
window approach computed a retention time range for each lipid
identity based on their minimum and maximum observed retention
times in the training set. Lipid identities were only assigned to peaks
whose retention times unambiguously fell within the window of a
single lipid species.

To identify the best decision rule, cross validation accuracies
were compared between BATL models trained using retention time
only but differing in decision rule. For comparison, the accuracies of
the two retention time window/mean matching algorithms were
included to benchmark the BATL models where Figure 3a shows
over 95% accuracies on the sphingolipid dataset using any method
except the retention time window approach. As peaks were only
assigned if they fell within the retention time window of a single
lipid identity, this method incurred a 10% unassignment rate on the
sphingolipid dataset, which was two orders of magnitude greater
than any of the BATL models (see Supplementary Fig. S1a–c).

Similar accuracies were observed across the naı̈ve mean ap-
proach and three BATL models, given the relatively low isobaric
complexity of the sphingolipid dataset. Only 56.3% of the peaks in
the validation sets matched between two and four lipid isobars at
the same transition in the training set (Supplementary Tables S1 and
S2). Thus, a large proportion of peaks were guaranteed to match to
their corresponding lipid identity. When single lipid targets were
detected at a transition, the MWBM decision rule assigned the same
peak identities as the MAP or constrained MAP decision rule.

The strengths of different BATL models emerged when classify-
ing the more complex glycerophosphocholine dataset in Figure 3b,
where 95.3% of all peaks in the validation datasets were present in

transitions that contained at least two and up to eight unique lipid
isomers (Supplementary Tables S3 and S4). The BATL model, using
the MWBM decision rule, achieved 88.7% accuracy and significant-
ly outperformed every other method (Supplementary Fig. S1d–f).
Performances were recapitulated when analyzing the holdout sets
(Supplementary Material S1), and similar increases in accuracy were
also observed when comparing decision rules of models trained
using other feature subsets (see Supplementary Figs S2 and S3).

To understand why the MWBM decision rule outperformed the
other methods, retention time likelihoods were assessed for the glyc-
erophosphocholine cross validation analyses. Figure 3c shows the
Gaussian likelihoods of five glycerophosphocholine isomers based
on the retention time feature. When peak retention times were close
together, both the naı̈ve mean approach and MAP decision rule
assigned multiple peaks to the same lipid identities. While the con-
strained MAP decision rule conceptually improved on the MAP de-
cision rule, accuracies were significantly worse on the
glycerophosphocholine dataset. Constrained MAP assigned lipid
identities by ranked order of posterior probability. These rankings
are denoted in Figure 3c by the ordinal numbers above the assign-
ment arrows. However, interestingly, the most correct peak assign-
ment was not necessarily the one with the greatest posterior
probability. As discussed in Figure 1, retention time shifts can cause
peak retention times in one sample to misalign to different peaks
present in another sample. A similar problem arises when computing
the likelihoods of peaks in samples experiencing retention time
shifts. Variations in retention time altered the posterior rankings,
increasing the likelihood of an incorrect-versus-correct peak-lipid as-
signment. Thus, once one lipid identity was incorrectly assigned to a
given peak, subsequent peaks with similar retention times were mis-
classified (or not assigned an identity). In contrast, the best perform-
ing MWBM decision rule resolved these two types of
misidentifications.

While retention time is the most common feature for peak identi-
fication, it is not the only lipid-specific peak feature or necessarily
the most discriminative one. Figure 3d and e shows cross validation
accuracies of selected BATL models using the MWBM decision rule
trained using different retention time, intensity and shape features.
Across both the less complex sphingolipid and more complex glycer-
ophosphocholine datasets, additional features describing peak inten-
sity and shape increased classification accuracies and identification
rates, while decreasing unassignment rates (Supplementary Fig. S4).
When comparing models trained on the best subset of N features,
the use of all eight features consistently resulted in the best identifi-
cation and unassignment rates on the holdout sets (Supplementary
Fig. S5). When adding statistically dependent features to the model,
diminishing performance returns were observed, although identifica-
tion and unassignment rates remained equal to or greater than less
complex models on the holdout sets. Of the three retention time

Table 1. Specified SRM peak features for naı̈ve Bayes model

Feature Description

Retention time (RT) Peak retention time

Relative RT (RRT) Peak divided by internal standard retention time

Subtracted RT (SRT) Peak subtracted by internal standard retention

time

Relative area (A) Peak divided by internal standard area

Relative height (H) Peak divided by internal standard height

Full width at half

max (FWHM)

Peak width at half maximum height

Asymmetry factor

(AF)

Quotient between centerline to back slope and

centerline to front slope at 10% max peak

height

Tailing factor (TF) Distance between the front and back slope of a

peak divided by twice the distance between

the centerline and front slope at 5% max

peak height
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features explored, models trained using subtracted retention time
performed equal to or significantly greater than those trained using
regular retention time. Notably, this method of accounting for varia-
tions in LC retention time has not been reported in literature.
Software programs, such as MultiQuant, can report both regular
and relative retention times if an internal standard is specified.
Although relative retention time is designed to correct against reten-
tion time shifts, this method of normalization was sometimes found
to induce retention time shifts when no systematic retention time
differences were observed across samples (i.e., only transient compo-
nent level variation was detected). A comparison of models trained
on each feature using the MWBM decision rule revealed equal to or
significantly worse identification rates between relative-versus-regu-
lar retention time (Supplementary Fig. S6). Overall, models trained
using retention time features significantly outperformed peak inten-
sity and shape features, which were the least discriminative, while
combinations of multiple features outperformed models focusing on
single feature characteristics.

To ensure BATL can be used across platforms, researchers are
required to develop their own curated training sets specific to their LC
methodologies. Limitations of BATL are that the annotations returned
by BATL depend on the accuracy of the identifications assigned in the
training set and on the size of the training dataset. Supplementary
Figure S7 shows the performance of BATL on the holdout sets when
trained on 10% increments of the sphingolipid or glycerophosphocho-
line training sets. Models were trained using the best single feature or
all eight features and every 10% increment corresponded to 22
sphingolipid or 24 glycerophosphocholine samples. Whether trained
on the less complex sphingolipid dataset or the more complex glycero-
phosphocholine dataset, identification rates decreased by <1% and
unassignment rates remained under 5% when training on 10% of
samples. These data demonstrate that only a small rigorously vali-
dated training set (i.e., 22–24 samples) is required to train the naı̈ve
Bayes model for accurate peak identification.

Benchmarking BATL against other state-of-the-art methods for
peak classification is challenging because BATL assigns lipid

identities to a list of curated SRM peaks provided by the user, as is
the nature of a targeted lipidomic approach, while vendor-specific
(e.g., LipidSearch, MultiQuant) and free programs (e.g., METLIN-
MRM) pick peaks automatedly and output the pre-assigned targeted
identities assuming peak-picking accuracy. As a result, for all pro-
grams except MRMPROBS, it is not possible to separate peak detec-
tion accuracy from peak identification accuracy. Indeed, this is one
of the problems BATL seeks to address. BATL was thus bench-
marked against MRMPROBS (Tsugawa et al., 2013). A notable
shortcoming of MRMPROBS, however, is that the number of lipids
in the training set cannot exceed the number of lipid targets in the
SRM method, meaning that MRMPROBS can only compare identi-
cal acquisition methods and cannot annotate a peak as ‘unassigned’
or indicate a new isobar has been selected not already present in the
training set. It was thus impossible to apply MRMPROBS to the
sphingolipid or glycerophosphocholine holdout sets as they con-
tained different numbers of isobars at a given transition in the train-
ing set. This problem was overcome by applying MRMPROBS to
multiple training sets containing all combinations of lipid isobars,
not exceeding the number of sample peaks. In practice, however,
MRMPROBS cannot be used to compare matrices wherein different
numbers of isobars are present and a user seeks to annotate which
lipids are corresponding between two tissues. To compare, BATL
and MRMPROBS, we used a technical replicate dataset, which
applied the exact same SRM method to monitor sphingolipid species
present in 33 replicate runs of two human plasma samples. Thus,
both training and testing sets contained the same number of lipids
de facto. For this analysis, 75% of the samples in the dataset were
used to train MRMPROBS and BATL. To construct the
MRMPROBS training set, the mean retention times of each lipid
were computed from the training set, the logistic regression prob-
ability threshold was set to 70% and the retention time deviation
parameter was empirically computed following the MRMPROBS
guidelines (Tsugawa et al., 2013). On the remaining 25% of the
technical replicate holdout set, 8.9% of all peaks were not detected
by MRMPROBS using a 15-s retention time window to account for

Fig. 3. Classifier performance on 10-fold cross validation sphingolipid and glycerophosphocholine datasets. The 95% confidence intervals are shown in panels (a, b, d and e).

In a and b),data represent mean accuracies of BATL models trained on retention time with each decision rule and retention time mean/window matching algorithms for (a)

sphingolipids or (b) glycerophosphocholines (***Q<0.001, t-test adjusted with the Benjamini–Hochberg method of all models against the MWBM decision rule). (c) Lipid as-

signment differences between MAP, constrained MAP, and MWBM decision rules during cross validation and trained using retention time. In the top panel, data represent the

Gaussian likelihoods of five glycerophosphocholine isomers based on the retention time feature. The rows of gray dots indicate the retention times of four peaks from the same

sample in the validation set. Each row indicates the outcome of the three decision rules. Arrows indicate the lipid assignments; checkmarks indicate correct assignments; and

Xs indicate incorrect assignments. The numbers for constrained MAP indicate the order of peak assignments. In d and e,data represent mean accuracies of the BATL models

using MWBM decision rule trained on several features and feature combinations for (d) sphingolipids or (e) glycerophosphocholines. The feature name codes are described in

Table 1
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peak detection differences between MRMPROBS and MultiQuant,
which was used to pick peaks in the longitudinal dataset. Excluding
the 8.9% undetected peaks, MRMPROBS achieved a 94.5% identi-
fication rate and 4.7% unassignment rate, while BATL, trained
using all eight features, achieved 100% identification rate and
0.02% unassignment rate.

4 Discussion

We present here a targeted lipidomics classifier BATL, which uses a
naı̈ve Bayes model and MWBM decision rule to simultaneously as-
sign lipid annotations to all SRM or MRM peaks in a sample. Using
sphingolipid and glycerophosphocholine SRM datasets, BATL was
validated on holdout sets with accuracies of 95% or greater when
trained using all eight features. As a simple probabilistic classifier,
identification and assignment rates remained stable when BATL was
trained on as few as 22–24 samples. Lastly, BATL was benchmarked
against a retention time window and mean matching approach,
comparable to many peak identification programs as well as to the
MRMPROBS software. BATL correctly identified more peaks than
either approach with lower unassignment rates and no limitations
regarding the number of lipids labeled in the training set nor number
of transitions present in the test sets.

In summary, we emphasize that BATL is trainable on any con-
tinuous feature and applicable to targeted lipidomics data from any
vendor or LC-ESI-MS/MS platform with proper data input format-
ting. Learning the posterior probability cutoffs is simple to compute
based on the naı̈ve Bayes assumption, taking <10 min to train each
model on the sphingolipid and glycerophosphocholine training sets
analyzed in this study using an Intel i5-8350U mobile processor. To
facilitate user experience, we provide BATL at https://complimet.ca/
batl/ wherein instructions and user prompts ensure a fluid training
and test pipeline. The sample datasets take <10 min to process on-
line with respect to building the BATL model. Larger training data-
sets of >100 samples can take up to 20 min to generate the BATL
statistical model and the model can be emailed to the user. Multiple
training datasets can be compressed as .zip files and uploaded as sin-
gle .zip file. Users are invited to use the sample biological data
wherein the minimum number of training datasets (n¼24) are pro-
vided as two files that can be .zip for upload and used to annotate
an n¼12 test dataset. While BATL was validated using SRM data,
the program is flexible to operate on other targeted lipidomics data
acquisition modes that output lists of peaks detected at precursor
and product ion pairs including MRM, neutral loss, precursor ion
scan, and product ion scan acquisition modes with the caveat that
file format must be identical to the sample datasets provided. As
BATL does not operate on raw MS data, users can continue using
their preferred software program to select their lipid targets and con-
veniently output peak text files into BATL for identification.
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