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Myelomeningocele (MMC) is a severe type of neural tube defect (NTD), in which the backbone and spinal canal do not close
completely during early embryonic development. This condition results in serious morbidity and increased mortality after birth.
Folic acid significantly reduces, and conversely, folate antagonist methotrexate (MTX) and valproic acid (VPA) increase the
occurrence of NTDs, including MMC. How these pharmacological agents exactly influence the early neurulation process is still
largely unclear. Here, we characterized human amniotic fluid-derived stem cells (AFSCs) from prenatally diagnosed MMC and
observed an effect of MTX and VPA administration on the early neural differentiation process. We found that MMC-derived
AFSCs highly expressed early neural and radial glial genes that were negatively affected by MTX and VPA exposure. In
conclusion, we setup a human cell model of MMC to study early neurogenesis and for drug screening purposes. We also
proposed the detection of early neural gene expression in AFSCs as an additional MMC diagnostic tool.

1. Introduction

Myelomeningocele (MMC) is the most common form of
neural tube defects (NTDs) with an average worldwide inci-
dence of 4 per 10,000 live births [1]. It is caused by defective
fusion of neural folds during day 25–28 of gestation, leading
to the protrusion of dysplastic meninges and spinal cord
from the spinal canal in a cyst-like sac (reviewed in [1]). Dur-
ing pregnancy, fetuses with MMC develop progressive motor
and sensory deficits and hindbrain herniation (Arnold-
Chiari Malformation II) and in some variable degrees of
ventriculomegaly. Depending on the level of the lesion, there
will be bowel and bladder dysfunctions. Some children may

have an intellectual deficit, in particular in case of compli-
cated hydrocephaly [1, 2].

The etiology of MMC is unclear, with both environ-
mental factors and genetic variations predisposing to the
condition [3, 4]. The use of folic acid (FA) supplementa-
tion during pregnancy reduces the risk of NTDs up to 70%
[5, 6], while prenatal exposure to folate antagonists, includ-
ing methotrexate (MTX) and valproic acid (VPA), increases
the risk of NTDs [7, 8]. Hence, daily FA intake of at least
400 micrograms is recommended to all women of reproduc-
tive age to prevent NTD from occurring [4, 5].

Folate coenzymes play an important role in several cru-
cial processes, including nucleotide biosynthesis, generation
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of methyl donors and cell proliferation [9–11]. Both MTX
and VPA are known to influence enzymes crucial for the
folate metabolic pathway [12, 13]. Yet, the exact mecha-
nisms through which MTX and VPA cause NTDs remain
unclear [5].

The embryonic neural plate and neural tube are formed
from neuroepithelial (NE) cells. These polarized cells actively
proliferate and express the earliest marker for neural plate
SOX2 and an intermediate filament protein NESTIN. Subse-
quently, immature neurons expressing neural βIII-tubulin
and radial glial (RG) cells expressing BLBP appear for further
neural tube organization [14–18]. FA stimulates the prolifer-
ation and differentiation of neural stem cells (NSCs), whereas
MTX and VPA impair cell proliferation of embryonic NSCs
and amniotic fluid-derived neural stem cells, respectively
[19, 20]. It is likely that undesirable effects of VPA and
MTX on the developing neural tube are due to the influence
of genes crucial for neural tube development, including Ki67,
SOX2, and NESTIN [7, 20]. Obviously, the assessment of
undesirable effects of drugs in pregnancy is limited for ethical
reasons, with limited options to enroll pregnant women in
clinical trials [20]. Thus, retrospective epidemiological stud-
ies or experimental animal models remain the main sources
for studying drug effects. Therefore, novel platforms, such
as human MMC cell models, are being developed to study
the disease characteristics and early neurulation process
and to reveal the effects of novel therapeutic drugs.

The amniotic fluid has been shown to contain a heteroge-
neous population of cells [21, 22] that may be used as an
invaluable source of patient-derived cells. In recent years,
there has been growing interest in amniotic fluid-derived
stem cells (AFSCs) due to their possible applications as clin-
ical therapeutic tools for disease modeling, drug screening,
and regenerative medicine. AFSCs are a subset of multipo-
tent fetal stem cells that retain the ability to differentiate
various cell types [21–24]. Previous studies have demon-
strated successful differentiation of AFSCs to neural-like cells
[25–28], and pharmacological agents, including VPA, have
been shown to affect their characteristics [20].

In this study, we isolated and characterized AFSCs from
fetuses prenatally diagnosed withMMC. Following induction
into early neural differentiation, we described the effects of
MTX and VPA on MMC-derived AFSCs compared to
healthy AFSCs. This study offers a novel cell-based model
to investigate human MMC characteristics and for diagnos-
tics and drug screening purposes.

2. Material and Methods

2.1. Amniotic Fluid Samples Collection. The Ethics Com-
mittee of the University Hospital Leuven and KU Leuven
approved the study (ML9167). Amniotic fluid samples
were collected from 7 patients presenting with a fetus with
MMC at 23–25 gestational weeks (term=40 weeks). Addi-
tionally, amniotic fluid samples were obtained at 19–21
gestational weeks from three patients with healthy fetuses.

2.2. Isolation and Culture of AFSCs. Isolation of the AFSCs
from amniotic fluid samples was performed by using

previously published protocols [29] with few adjustments.
Briefly, amniotic fluid was centrifuged for 10 minutes at
800 rpm; the cell pellet was resuspended in mesenchymal
basal medium, containing DMEM (Invitrogen), 20% Fetal
Bovine Serum (FBS, Invitrogen), 1% Pen/Strep (Thermo
Fisher Scientific), and 2mM L-glutamine (Thermo Fisher
Scientific). Cells were incubated at 37°C with 5% humidified
CO2. After 36 hours, cells were washed with Phosphate-
Buffered Saline (PBS, Invitrogen) to remove nonadherent
cells, and the culture medium was replaced by fibroblast
growth medium, containing KO-DMEM (Invitrogen),
2mM L-glutamine, 10% FBS and 1% Pen/Strep. The medium
was refreshed every three days. Cells were daily monitored by
light microscopy.When reaching 80–90% of confluence, cells
were detached by enzymatic treatment, using TrypLE
(Gibco) and expended.

2.3. Cell Viability Assays. Viability assays were performed on
AFSCs after each passage, exposed or not to VPA and MTX.
Briefly, 10μL of the cell pellet from each MMC and healthy
line was resuspended in 10μL of Trypan Blue (Life Technol-
ogies) and inserted in an automatic cell counter machine
(Invitrogen). The number of live/dead cells and viability were
evaluated.

2.4. Flow Cytometry Analysis. Amniotic fluid cells were har-
vested from culture and dissociated by EDTA Accutase
(Thermo Fisher Scientific) for 3 minutes at 37°C. Samples
were collected in staining buffer (Hanks’ Balanced Salt Solu-
tion, HBSS; Thermo Fisher Scientific) with CaCl2 andMgCl2
supplemented with 2% FBS, 10mM HEPES, and 10mM
NaN3 (both from Sigma-Aldrich; pH7.2). Cells were quanti-
fied and 100,000 cells from each line were stained for 30
minutes at room temperature (RT) with the following anti-
bodies: CD44 (0.25μg), CD117 (0.25μg), CD105 (1μg),
CD73 (0.125μg), and CD90 (1μg/mL, all from Thermo
Fisher Scientific, Bioscience). After incubation, cells were
washed with PBS, centrifuged for 5 minutes at 800 rpm,
and the cell pellet was resuspended in 200μL staining buffer.
Cells were analyzed and quantified by flow cytometry (BD
FACSCanto I or II with HTS; BD Biosciences) and FlowJo
Software (FlowJo LLC).

2.5. Quantitative Real-Time PCR. The GeneElute Mamma-
lian Total RNA Miniprep Kit (Sigma-Aldrich) was used for
RNA extraction, following the manufacturer’s protocol.
Reverse transcription was performed using 1μg of RNA by
SuperScriptTM III First-Strand Synthesis SuperMix Kit
(Invitrogen) and diluted in DEPC water. The oligonucleotide
primer sequences are listed in Supporting Information Table
S1 available online at https://doi.org/10.1155/2017/6101609
(all from IDT supplier). SYBR Green (Invitrogen) was used
to perform the RT-qPCR gene expression on real-time sys-
tem Realplex2 Master Cycler (Eppendorf) or on the ViiA7
Real-Time PCR system (Invitrogen).

2.6. Optimization of MTX and VPA Concentration for Cell
Culture Use. Concentrations of both pharmacological agents
were setup considering previous studies [20] and dose-
response experiments (Supporting Information Figures 1(a)

2 Stem Cells International

https://doi.org/10.1155/2017/6101609


and 1(b)). Increasing concentrations were tested for each
pharmacological agent, and cell viability assay analyses were
performed. 0.25μMMTX and 1mM VPA did not affect live/
dead viability assays and morphology of the cells. Thus, these
concentrations were chosen to perform experiments. Phar-
macological agents were added only during the first three
days of neural induction.

2.7. Neural Induction from MMC-AFSCs. For the enhance-
ment of neural induction properties, MMC-AFSCs and
healthy AFSCs were detached by enzymatic treatment, using
Accutase (Thermo Fisher Scientific). Cells were plated on
laminin-coated plates (Sigma-Aldrich) in a mesenchymal
basal medium as described above. The next day, medium
was changed to neuronal induction medium, containing
DMEM-F12 (Gibco), Neurobasal Medium (Gibco), N-2 Sup-
plement (Gibco), B-27 Supplement (Gibco), human insulin
solution (Sigma-Aldrich), L-glutamine, 0.1mM NEAA
(Thermo Fisher Scientific), 2-mercaptoethanol (Thermo
Fisher Scientific), basic fibroblast growth factor (bFGF,
20 ng/ml, Lonza), as well as the epithelial growth factor
(EGF, 20 ng/ml, Lonza). The medium was refreshed every
other day. Cells were cultured for 15 days before processing
for immunofluorescence analysis.

2.8. Immunofluorescence Staining. AFSCs were fixed with 4%
PFA for 10 minutes at RT. Permeabilization was performed
in Triton-X-100 at RT for 30 minutes. Cells were washed
twice and blocked in 10% donkey serum (Sigma-Aldrich)
for 30 minutes. Incubation with the following primary anti-
bodies SOX2 (1 : 200, Santa Cruz, sc-8628), NESTIN
(1 : 200, Covance, MMS-570P), βIII-tubulin (1 : 1000, Santa
Cruz, sc-21,705), BLBP (1 : 2000, Chemicon, AB9558),
PAX3 (1 : 1000, R&D Systems, MAB2457), and Ki67 (1 : 50,
Dako, M7240) was performed overnight at 4°C followed by
the secondary antibodies (1 : 500, Invitrogen) for 30 minute
at RT. Nuclei were counterstained with Hoechst (33,342,
Thermo Fisher Scientific; 1 : 3000) for 2-3 minutes, and
coverslips were mounted on slides with FluorSave (Merck).
Fluorescent imaging was obtained by using Eclipse Ti Micro-
scope (Nikon). Image-Pro Plus 6.0 software was used for
enumeration of SOX2, NESTIN, βIII-tubulin, BLBP, PAX3,
and Ki67 positive cells from MMC-AFSCs and healthy
AFSCs, exposed or not to MTX and VPA.

2.9. Statistical Analysis. Data were analyzed using GraphPad
Prism 6. All data were obtained from 4 independent experi-
ments and reported as mean± standard deviation (SD). In
particular, 7 MMC-AFSC lines and 3 healthy AFSC lines
have been used for RT-qPCR experiments, while for all other
experiments 4 MMC-AFSC lines and 3 healthy AFSC lines
have been used.

Differences between groups were examined for statisti-
cal significance using an unpaired Student’s t-test (when
two groups were compared) or ANOVA (when multiple
groups were compared). Significance was set at ∗P < 0 05,
∗∗P < 0 01, ∗∗∗P < 0 001, and ∗∗∗∗P < 0 0001.

3. Results

3.1. Morphology, Proliferation, and Characterization of
MMC-AFSCs. We first aimed at assessing the morphological
characteristics of AFSCs to address whether differences
between MMC-AFSCs and healthy AFSCs were present. No
morphological differences could be observed between the
two cell types (Figure 1(a)). We then sought whether
MMC-AFSCs and healthy AFSCs retained multipotent char-
acteristics. We checked for the expression of previously
described mesenchymal stem cell markers [21, 30] on
MMC-AFSCs and healthy AFSCs by flow cytometry. Analy-
sis revealed that MMC-AFSCs and healthy AFSCs similarly
expressed a set of specific mesenchymal stem cell surface
markers, including CD44, CD73, and CD90. Moreover, cells
expressed low levels of CD117 (also known as C-Kit) and
appeared to be almost negative for CD105 (Figures 1(b)
and 1(c)). Therefore, we concluded that MMC-AFSCs and
healthy AFSCs had similar morphology and retained multi-
potent stem cell characteristics.

3.2. Characterization of MMC-AFSCs by RT-qPCR. We
aimed to assess the expression levels of lineage-specific and
pluripotent stem cell markers in MMC-AFSCs and healthy
AFSCs. The RT-qPCR analysis showed that MMC-AFSCs
and healthy AFSCs presented similar low expression profiles
of pluripotency genes OCT4 and NANOG, the myogenic
transcription factor PAX7 and the early neural transcription
factor PAX6. Conversely, similar high expressions of the
mesoendodermal genes PDGFR?, GATA4, osteogenic tran-
scription factor RUNX2, and the chondrogenic genes SOX9
and COL2A1 was detected in both MMC-AFSCs and healthy
AFSCs (Figure 2(a)). Additionally, all AFSC lines presented
low expression of mesoendodermal genes MIXL1, GATA6,
SOX17, and FOXA1 and negative expression of mesoendo-
dermal and ectodermal genes, including BRACH, PDGFRa,
ACAN, OCN, MYOD, MYH3, RELN, POU4F2, and FOXG1
(Supporting information Figure 1(c)). Intriguingly, overex-
pression of early neural genes SOX2 and NESTIN, the radial
glial (RG) gene BLBP and the myogenic transcription factor
PAX3 (also known as a neural crest stem cell migration
marker) was observed in MMC-AFSCs (Figure 2(b)).

We concluded that MMC-AFSCs presented significantly
higher expression levels of neural and RG fate specification
genes compared to healthy AFSCs.

3.3. Neural Differentiation Potential of MMC-AFSCs. Because
of the overexpression of early neural markers in MMC-
AFSCs by RT-qPCR, we hypothesized that MMC-AFSCs
could have better in vitro neural differentiation commitment
compared to healthy AFSCs. Therefore, we induced differen-
tiation of MMC-AFSCs and healthy AFSCs towards early
neural lineage. Moreover, as the pharmacological agents
MTX and VPA are clinically correlated with MMC in fetuses,
we sought to explore their in vitro effect on early neural-
derived MMC-AFSCs and healthy AFSCs. To this end,
AFSCs were exposed to either MTX or VPA during the first
3 days of neural induction. At day 15, experiments were
stopped and immunofluorescence (IF) analyses were

3Stem Cells International



(a)

0‒103 103 104 105 0‒103 103 104 105

0‒103 103 104 105 0‒103 103 104 105

0‒103 103 104 105 0‒103 103 104 105

0‒103 103 104 105 0‒103 103 104 105

0‒103 103 104 105 0‒103 103 104 105 0‒103 103 104 105

0‒103 103 104 105

0‒103 103 104 105

0‒103 103 104 105

0‒103 103 104 105

CD44 CD44

0

50K

100K

150K

200K

250K

FS
H

0

50K

100K

150K

200K

250K

FS
H

50K

100K

150K

200K

250K

FS
H

0

0

50K

100K

150K

200K

250K

FS
H

50K

100K

150K

200K

250K

FS
H

FITC-A

0

50

100

150

200

C
ou

nt

CD73 CD73 PE-A

0

50

100

150

200

250

C
ou

nt

CD90 CD90 FITC-A

0

300

600

900

1,2K

C
ou

nt

CD117 (c-KIT) CD117 (c-KIT) APC-A

200

400

600

800

C
ou

nt

CD105 CD105 APC-A

500

1,0K

1,5K

C
ou

nt

0

0

(b)

0
20
40
60
80

100 74 % 78 %
NS

0
20
40
60
80

100
64 % 72 %

NS

0
10
20
30
40
50

26 %

16 %

NS

0
10
20
30
40
50

3.5 %
7.7 %

NS

0
2
4
6
8

10

0.7 %0.5 %

NS

CD
44

+ 
ce

lls
 (%

)
CD

73
+ 

ce
lls

 (%
)

CD
90

+ 
ce

lls
 (%

)
CD

11
7+

 ce
lls

 (%
)

CD
10

5+
 ce

lls
 (%

)

Healthy MMC

Healthy MMC

Healthy MMC

Healthy MMC

Healthy MMC

(c)

Figure 1: Morphological and fluorescence activated cell-sorting (FACS) analysis of MMC-AFSCs and healthy AFSCs. (a) Microscopy images
from MMC-AFSCs and healthy AFSCs before neural induction process. Scale bar = 100 μm. (b) Representative flow cytometry plots and
histograms from MMC-AFSCs and healthy AFSCs for the expression of mesenchymal markers CD44, CD73, CD90, CD117, and CD105.
(c) Cell surface expression of mesenchymal markers CD44, CD73, CD90, CD117, and CD105 determined in MMC-AFSC and healthy
AFSC populations by flow cytometry analysis, shown as percentage. N = 4 and values are indicated as mean± SD. NS, not significant.
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performed in order to evaluate the neural differentiation
potential of MMC-AFSCs and healthy AFSCs. At day 15 of
neural induction, MMC-AFSCs and healthy AFSCs were
double positive for early neural proteins SOX2 and NESTIN
(Figures 3(a) and 3(b)), with MMC-AFSCs presenting a sig-
nificantly higher amount of SOX2+ cells. Conversely, upon

MTX and VPA exposure, the amount of SOX2+ cells was dra-
matically reduced compared to untreated conditions in both
MMC-AFSCs and healthy AFSCs. Interestingly, MMC-
AFSCs appeared to be more sensitive to MTX and VPA
exposure as evidenced by the significantly reduced amount
of SOX2+ cells compared to healthy AFSCs (Figure 3(c)).
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Figure 2: Gene expression analysis of MMC-AFSCs and healthy AFSCs. (a) Expression profile of pluripotency genes OCT4, NANOG, early
neural gene PAX6, mesoendodermal genes PDGFRβ and GATA4, myogenic transcription factor PAX7, osteochondrogenic genes SOX9 and
RUNX2, and COL2A1 in MMC-AFSCs and healthy AFSCs by RT-qPCR analysis. Data were represented as relative fold expression,
normalized for the housekeeping gene GAPDH; NS, not significant. N = 4 and values are indicated as mean± SD. (b) Expression
profile of early neural and radial glial genes SOX2, NESTIN, BLBP, and PAX3 in MMC-AFSCs and healthy AFSCs by RT-qPCR
analysis. Data were represented as relative fold expression, normalized for the housekeeping gene GAPDH; N = 4 and values are indicated
as mean± SD. ∗∗P < 0 01 Healthy versus MMC (NESTIN and PAX3); ∗∗∗∗P < 0 0001 Healthy versus MMC (SOX2 and BLBP).
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Conversely, MMC-AFSCs and healthy-AFSCs uniformly
stained positive for NESTIN (Figures 3(a) and 3(b)). Follow-
ing quantification, the exposure to either pharmacological
agents resulted in a decreased amount of NESTIN+ cells, with
VPA exposure effect appearing to be more severe in MMC-
AFSCs (Figure 3(d)).

We next evaluated the immature neural differentiation
potential of MMC-AFSCs and checked the proliferation of
neural-derived MMC-AFSCs. To this end, we assessed the
subcellular localization of βIII-tubulin and Ki67. IF analysis
demonstrated that double positive βIII-tubulin and Ki67
cells were much higher in MMC-AFSCs compared to healthy
AFSCs (Figures 4(a) and 4(b)). Indeed, approximately 60% of

MMC-AFSCs stained positive for βII-tubulin, while they
were less than 5% in healthy AFSCs. The exposure to MTX
and VPA dramatically decreased the number of βIII-tubulin+

cells in MMC-AFSCs (Figure 4(c)). Additionally, analysis
revealed that MMC-AFSCs and healthy AFSCs were
highly proliferative at day 15 from neural induction
(Figures 4(a) and 4(b)). Conversely, a dramatic decrease
in the amount of Ki67+ cells was observed in all AFSC
lines following exposure to VPA and MTX (Figure 4(d)).

Further, IF analysis showed that MMC-AFSCs had more
BLBP+ cells compared to healthy AFSCs (Figures 5(a) and
5(b)). Following quantification of BLBP+ cells, it was con-
firmed that MMC-AFSCs presented significantly higher
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amount of BLBP+ cells compared to healthy AFSCs. Both
MTX and VPA severely reduced the amount of BLBP+ cells
at similar rates (Figure 5(c)).

Finally, IF staining for PAX3 also showed a higher
percentage of PAX3+ cells present in MMC-AFSCs com-
pared to healthy AFSCs. MTX exposure did not have any
effect on MMC-AFSCs and healthy AFSCs as both presented
similar amounts of PAX3+ cells compared to untreated con-
ditions. Conversely, VPA exposure negatively affected the
amount of PAX3+ cells only in MMC-AFSCs, with no signif-
icant changes in PAX3+ cells amount observed in healthy
AFSCs (Figures 5(a), 5(b), and 5(d)).

Therefore, MMC-AFSCs exhibited a higher percentage of
early neural and RG positive cells at day 15 from neural

induction compared to healthy AFSCs. In addition, the expo-
sure to MTX and VPA significantly decreased the number of
early neural and RG positive cells in MMC-AFSCs. Intrigu-
ingly, PAX3+ cells appeared to be resistant to MTX treatment
for all cell lines, and VPA affected only PAX3+ cell number in
MMC-AFSC derivatives.

4. Discussion

AFSCs have recently emerged as a novel tool for regenerative
medicine purposes. They can be obtained from fetuses with
minimal risk and can be used for in vitro drug screening pur-
poses [22, 31]. Indeed, the effects of several pharmacological
agents on fetal development are also observed in AFSCs used
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Figure 4: Proliferative and immature neural differentiation potential of MMC-AFSCs and healthy AFSCs. (a, b) IF analysis of MMC-AFSCs
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immature neural differentiation marker βIII-tubulin (red). Representative images of healthy AFSCs (clone number 1) and MMC-AFSCs
(clone number 5) were shown for all healthy and MMC lines. Nuclei were counterstained with Hoechst (blue). N = 4, scale bar = 100 μm.
(c) Enumeration of βIII-tubulin+ cells in neural-derived MMC-AFSCs and healthy AFSCs at day 15 of neural induction, exposed or not
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versus Healthy +MTX, Healthy versus Healthy +VPA, MMC versus MMC+MTX, and MMC versus MMC+VPA.

7Stem Cells International



as in vitro cell model. In fact, VPA treatment alters prolifer-
ation and inhibits neural gene expressions in AFSCs [20].
The use of VPA and MTX during pregnancy interferes with
normal neural tube formation by blocking dihydrofolate
reductase, methylenetetrahydrofolate reductase, and several
other key enzymes of the folate pathway [12]. Thus, the folate
pathway is critical for the regulation of the neurulation pro-
cess, which is also evidenced by the benefit of FA supplemen-
tation to avoid abnormal neural tube closure [13].

In this study, we used human AFSCs derived from 7
patients diagnosed with MMC to study the early neural
differentiation process and to evaluate the effects of MTX
and VPA exposure on neurulation event. Our results
revealed that human MMC-AFSCs showed similar growth,
proliferative potential, pluripotency gene expression, and

mesenchymal stem cell characteristics as healthy AFSCs.
Previous studies demonstrated that AFSCs derived from
MMC Sprague-Dawley rat model showed significantly
increased neural stem cell (NSC) markers, including
SOX2 and NESTIN [32, 33]. Moreover, in a recent study,
MMC-AFSCs isolated from a rat model were character-
ized, showing high expression of neural progenitor
markers SOX2 and NESTIN [34]. Similarly, in our study,
human MMC-AFSCs significantly overexpressed early
neural genes SOX2 and NESTIN and in addition PAX3
when compared to healthy AFSCs. The paired box tran-
scription factor PAX3 is expressed in neural crest stem
cells during vertebral development [35], having a crucial
role in neural tube closure as seen in Splotch mutant
mouse embryos exhibiting NTDs [36]. In our previous
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study, we demonstrated the overexpression of PAX3 gene in a
fetal lamb model of MMC [37]. Consistently, our results
showed that in humans MMC-AFSCs PAX3 gene was over-
expressed, and the number of PAX3+ cells was higher in
neural-derived MMC-AFSCs compared to that of the healthy
lines. It is possible that upon the failure of neural tube clo-
sure, PAX3 progenitors are getting activated in order to force
neural crest stem cell migration. Interestingly, MTX exposure
did not sort any effect on PAX3 expression in all samples, and
VPA exposure slightly affected only the amount of MMC-
derived PAX3+ cells.

RG cells guide neuronal migration processes and
maintain the shape of the cerebral cortex during develop-
ment. While the increase of the RG marker GFAP has
already been described in association with spinal cord
injury [38], we sought to analyze the levels of RG marker
BLBP in MMC-AFSCs. Intriguingly, BLBP was overex-
pressed in MMC-AFSCs where, at day 15 from neural
induction, the number of BLBP+ cells was higher com-
pared to healthy AFSCs. To our knowledge, this is the first
report that describes the overexpression of the BLBP gene
in human MMC-AFSCs. Intriguingly, our results showed
that VPA and MTX exposure negatively affected the
amount of SOX2+, NESTIN+, βIII-tubulin+, and BLBP+

cells in AFSC-derived neural progenitors. These data sug-
gested that MTX and VPA severely affected neural and
RG commitment. In addition, as expected [39, 40], both
drugs negatively impacted cell proliferation, as shown by
a decrease on the amount of Ki67+ cells.

In summary, MMC-AFSCs retained an enormous poten-
tial to differentiate toward early neural progenitors and could
be further considered for in vivo therapeutic and regenerative
applications. Moreover, although samples from more
patients would be required to confirm our findings, our
results suggested that validation of SOX2, NESTIN, PAX3,
and BLBP expression in amniotic fluid could be used as an
additional tool to confirm MMC diagnosis.
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