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An accurate classification of human cancer, including its primary site, is important for better understanding of cancer and effective
therapeutic strategies development. The available big data of somatic mutations provides us a great opportunity to investigate cancer
classification using machine learning. Here, we explored the patterns of 1,760,846 somatic mutations identified from 230,255 cancer
patients along with gene function information using support vector machine. Specifically, we performed a multiclass classification
experiment over the 17 tumor sites using the gene symbol, somatic mutation, chromosome, and gene functional pathway as
predictors for 6,751 subjects. The performance of the baseline using only gene features is 0.57 in accuracy. It was improved to 0.62
when adding the information of mutation and chromosome. Among the predictable primary tumor sites, the prediction of five
primary sites (large intestine, liver, skin, pancreas, and lung) could achieve the performance with more than 0.70 in F-measure. The
model of the large intestine ranked the first with 0.87 in F-measure. The results demonstrate that the somatic mutation information
is useful for prediction of primary tumor sites with machine learning modeling. To our knowledge, this study is the first investigation

of the primary sites classification using machine learning and somatic mutation data.

1. Introduction

Cancer is a complex disease, which is driven by the combina-
tion of genetic, environmental, and lifestyle factors. Among
these factors, the combination of multiple genes driving
cancer development varies considerably among cancer types
and patients [1]. During the past decade, investigation of
mutations at both large-scale and specific loci has been
made in order to increase our knowledge of the molecular
heterogeneity in this complex disease. Notably, several large-
scale, network-based cancer genome projects have generated
multidimensional and genome-wide data. These projects
include The Cancer Genome Atlas (TCGA) [2], Wellcome
Trust Sanger Institute’s Cancer Genome Project [3], and
the International Cancer Genome Consortium (ICGC) [4].
These projects have dramatically advanced cancer research,
especially in its genetics and genomics [5]. A cancer somatic

mutation landscape, primarily focusing on nucleotide change
patterns (e.g., C->T) and mutation signatures in the can-
cer genomes, has been released to the community [6].
Among these achievements, some have been translated into
molecular diagnosis, better prognosis, and new targeted
therapies. For example, the germline mutations in BRCAI
and BRCA2 confer high risks to breast and ovarian cancers
[7]. Their genotyping is used to determine susceptibility
to breast and ovarian cancer [8-10]. To monitor the treat-
ment, the increased expression level of circulating tumor
marker, human epidermal growth factor receptor 2 (HER2),
is used to determine the treatment of a monoclonal antibody
trastuzumab in breast cancer [11-13]. However, cancer is
strongly heterogeneous, and the cancer classification is a
critical first step in the further investigation of the pathology
of cancer and the development of effective treatments.
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For cancer classification, the fundamental method is
mainly based on the cell of origin or their histological types
[14]. During the last two decades, molecular profiling has
been unveiled for classification of cancer types and subtypes,
as well as assessment of heterogeneity of cancer samples
[15]. For example, in breast cancer, recent studies that are
mainly based on microarray-based gene expression data
and unbiased hierarchical clustering have identified several
molecular subtypes: basal-like, ErbB2", normal breast-like,
luminal subtype A, and luminal subtype B [16, 17]. Further
gene expression profiling was found to be effective on
identifying even more specific subtypes in triple negative
breast cancer type [I18]. As massive amount of genomic,
transcriptomic, and proteomic data in cancer cells and
patients becomes available, an integrated model of cancer
classification was recently proposed to capture the known
attributes of cancer by integrating morphology, cancer stem
cells, proteomics, and genomics [19]. However, as other data
integration schemes, it presents a big challenge to develop an
effective and comprehensive method for cancer classification.

Recently, next-generation sequencing approaches have
been applied to cancer studies, including whole genome
sequencing, whole exome sequencing, targeted gene sequen-
cing, whole transcriptome sequencing, genome-wide mic-
roRNA sequencing, and epigenomics, providing the highest
resolution (base-pair resolution) of genetic and genomic
information in cancer. These datasets provide us an unprece-
dented opportunity on systematic and integrated investi-
gation of molecular mechanisms of cancer. For example,
Vogelstein et al. systematically analyzed the mutation land-
scapes in 96 cancer types reported from 127 publications,
providing deep insights into the cancer genomic architecture
[20]. Among these datasets, somatic mutation data in cancer
genomes has been accumulated dramatically, which makes it
possible to discover novel cancer genes and mutations [21-
23], draw mutational landscapes among multiple cancers [6,
24], and explore the molecular mechanisms of tumorigenesis
[25]. In this study, we hypothesized that features from the
massive amount of somatic mutations could act as effective
contributors for cancer site classification. Moreover, another
goal of the study is to search for the associations between
cancer sites and mutation features in a larger scale using
machine learning.

In this study, we proposed a novel cancer site clas-
sification framework by investigating somatic mutations
through machine learning approaches. The somatic mutation
information includes (1) patient information, (2) mutation-
associated genes, and (3) mutation-associated chromosomes.
We extracted these types of information from the database
COSMIC (Catalogue of Somatic Mutations In Cancer) [26].
We further integrated the mutation-associated gene func-
tion using gene pathways from the database KEGG (Kyoto
Encyclopedia of Genes and Genomes) [27]. Our evaluation
showed that the combination of the somatic mutation,
mutation-associated gene, and mutation-associated chromo-
some features achieved the best performance of cancer site
classification.
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2. Methods and Materials

2.1. Overview of Study Design. 'The main purpose of this study
is to test if the somatic mutation features and mutation-
related information are useful or have the power to predict
the primary cancer site since more than a million somatic
mutations in cancer genomes have been reported, collected,
and systematically analyzed. To address this important ques-
tion, we took advantage of the data in COSMIC, which is
the most comprehensive, annotation-based database for the
somatic mutations from numerous patients with cancer type
information. Figure 1 illustrates the study design.

2.2. Data Sources. The COSMIC database is established to
collect, store, and display somatic mutations and related
information extracted from the primary literature on human
cancers as well as those identified from cancer genome
projects [26]. The COSMIC data provides a consistent view of
histology and tissue ontology with the mutation information.
We downloaded the data from COSMIC website on April
18, 2014. The downloaded data contained 990,529 samples,
25,660 genes, 1,292,597 coding mutations, 1,528,225 noncod-
ing variations, and 11,330 references.

To normalize the gene names to the gene official symbols,
we took a two-step strategy. First, we utilized the mutation
positions from COSMIC data to map the gene regions using
the UCSC Genome Browser based on the GRCh37 genome
annotation [28]. Thus, we obtained three sets of gene names:
(1) gene names without position information in COSMIC;
(2) gene names with position information in COSMIC but
could not be matched to the UCSC Genome Browser; and (3)
gene names with the matched information (gene names and
locations) in the UCSC Genome Browser. Finally, we utilized
the Entrez Gene Table to match these gene names to their
corresponding official gene symbols [29].

To clean the data, we removed the records that do not
have the information about gene name, sample ID, primary
site, or mutation description. Additionally, we removed the
mutations that were involved in fusion genes because they do
not have a single-mutation position. Eventually, the filtered
dataset contained 230,255 patients, 22,111 unique genes, and
1,760,846 mutations.

KEGG pathway database manually collects and annotates
the molecular interactions and regulations among genes and
then draws pathway maps [27]. We downloaded the data on
May 21, 2014, from website (http://www.kegg.jp/kegg/). We
extracted the genes from their involved pathways. In total,
there are 285 human pathways and 6,503 genes involved in
22,573 pathway-gene relationships. Then, we matched the
mutation-associated genes into the pathways.

2.3. Datasets and Features. In this study, we mainly explored
the somatic mutations and their relative information for
cancer primary site classification. From the filtered data
obtained above, we extracted 7,251 patients who had at
least ten mutations. Patients with a very small number of
mutations would be more likely outliers in the dataset and fail
to provide sufficient information for a model to distinguish
the final label with other patients. These limitations increase
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FIGURE 1: Study design using somatic mutations to classify primary
tumor sites by machine learning model. In order to precisely
represent the mutations, we generated a feature gMutation by
binding mutations with their corresponding gene symbols.

the difficulty in training a good predictive model. On the
other hand, patients with a larger number of mutations more
likely have common features and thus induce better training
to find a more reliable pattern in the model. We chose ten as
the threshold because the filtered patients set of over seven
thousand is large enough for machine learning experiments
and the number of features generated for each patient based
on the threshold of ten does not discourage the modeling
process.

We further filtered out several minority classes of primary
tumor sites. Each of them has less than 60 patients in the
dataset, such as “Bone,” “Meninges,” and “Eye.” Thus, the final
set of 6,751 patients was chosen to be used in this study. These
patients were diagnosed to be one type of cancer among the
17 primary tumor sites. Table 1 shows the distribution of the
patients with the primary tumor sites.

From the COSMIC data, we collected mutations and
their corresponding mutated genes and chromosomes to
represent the genetic characteristics of each patient. As a
result, our process led to twelve unique types into four
categories (e.g., substitution, insertion, deletion, and com-
plex) and eight more specific descriptions (e.g., substitution-
nonsense, substitution-missense, substitution-coding silent,

3
TaBLE 1: Distribution of primary tumor sites.
Primary tumor site Number of  Percentage
patients (%)

Lung 970 14.43
Breast 967 14.39
Large intestine 654 9.73
Haematopoietic and lymphoid tissue 644 9.58
Kidney 491 7.31
Ovary 490 7.29
Liver 400 5.95
Central nervous system 377 5.61
Prostate 374 5.56
Endometrium 261 3.88
Pancreas 252 3.75
Autonomic ganglia 222 3.30
Skin 184 2.74
Oesophagus 174 2.59
Urinary tract 110 1.64
Upper aerodigestive tract 91 135
Stomach 60 0.89

substitution-intronic, insertion-in frame, insertion-frame-
shift, deletion-frameshift, and deletion-frameshift) according
to the mutation description in the COSMIC and our filtering
procedure. Table 2 includes their detailed descriptions. In our
dataset, these mutations could be mapped to 21,286 unique
genes in all patients.

Instead of directly using individual mutation description,
we bound them with their corresponding gene symbols
to precisely represent the mutations. It resulted in 79,865
unique combos of gene symbols and mutation descrip-
tions in the dataset, such as “CHDC2_Insertion-Frameshift,”
“SPEN_Complex,” and “SP1_Substitution-Missense.” In this
paper, we use “gMutation” to represent the feature set of
mutations associated with genes. In our study design, we
considered gene symbol and gMutation as two different
features. Gene symbol feature represents a larger range of
biological activity at the gene level while the gMutation
feature represents a more precise feature at the mutation
level located in a specific gene region. Despite the fact that
both features are not independent, they could represent
cancer patients at two different levels. Thus, we utilized them
together in the prediction modeling.

Since the human somatic mutation landscape is related to
chromosome [30], we further considered the Chromosome as
the third feature in our study. The human genome includes
22 autosomes (1-22), two sex chromosomes (X, Y), and one
mitochondrial genome (MT). Thus, there are a total of 25
features included in the Chromosome feature set.

Besides the mutation-related information, we further
integrated the KEGG dataset to provide the functional knowl-
edge of the genes involved in the patients’ mutations. There
are 285 unique pathways for the 21,286 genes.
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TABLE 2: Mutation description.

Mutation description

Definition

Substitution
Substitution-nonsense
Substitution-missense

Substitution-coding silent
Substitution-intronic
Insertion

Insertion-in frame

Insertion-frameshift
Deletion

Deletion-in frame

A mutation involving the substitution of a single nucleotide

A substitution mutation resulting in a termination codon, foreshortening the translated peptide

A substitution mutation resulting in an alternate codon, altering the amino acid at this position only
A synonymous substitution mutation which encodes the same amino acid as the wild type codon

A substitution mutation outside the coding domains; no interpretation is made as to its effect on splice
sites or nearby regulatory regions

An insertion of novel sequence into the gene

An insertion of nucleotides which does not affect the gene’s translation frame, leaving the downstream
peptide sequence intact

An insertion of novel sequence which alters the translation frame, changing the downstream peptide
sequence (often resulting in premature termination)

A deletion of a portion of the gene’s sequence
A deletion of nucleotides which does not affect the gene’s translation frame, leaving the downstream

peptide sequence intact

Deletion-frameshift

A deletion of nucleotides which alters the translation frame, changing the downstream peptide

sequence (often resulting in premature termination)

Complex

A compound mutation which may involve multiple insertions, deletions, and substitutions

Therefore, in this study, we defined four features: Gene,
gMutation, Chromosome, and Pathway. Furthermore, we
attempted to find the optimal combination of these four
feature sets for the best prediction performance using the
Gene feature as the baseline.

2.4. Machine Learning Experiments. In the data we collected,
each sample contains an array of features that are present
in one patient. We present all the collected features in
all patients as a feature vector in the machine learning
fashion. All features in the vector were represented by binary
values; namely, “1” represents present while “0” represents
not present. Then, we constructed a data matrix, in which
each row includes all the features for one patient while each
column includes one type of feature for all patients.

With respect to the classification method, we imple-
mented a one-versus-all multiclass classification schema to
identify the primary tumor site based on patients’ mutation-
associated features and the gene pathway feature. For each
primary tumor site, we trained a binary classifier that could
distinguish the class belonging to the site versus the one that
does not. Each classifier was a support vector machine (SVM)
with linear kernel implemented by LIBLINEAR [31]. Given
the 17 trained binary classifiers, we predicted the primary
tumor site for an undiagnosed patient to be a class from the
corresponding classifier with the highest confidence value,
which is the distance to the hyperplane from the trained
SVM. For the experimental parameter set in LIBLINEAR,
we used “Ll-regularized L2-loss support vector classifica-
tion” as the solver for the multiclass classification task. L1-
regularization was selected because the gene mutation based
feature set is large (>100,000 features among <7,000 samples)
and sparse (very few nonzero entries in the data matrix).

We performed the multiclass classification experiments
on the Gene feature (baseline) and six different combinations
of four feature sets in the fashion of 10-fold cross validation

(see Section 2.5). To avoid being overoptimistic on the mod-
eling, we did not optimize the parameter set of the linear SVM
model. That is, the parameter set (Ll-regularization, L2-loss
function, and cost = 10, among others) was fixed through
the entire 10-fold cross validation experiments. We chose
the combination of feature sets with the best performance
in accuracy for the generation of our best predictive model.
Then, we applied the best model to predict the primary tumor
site over 17 cancer candidates. The performance over each
primary tumor site was evaluated by precision, recall, and F-
measure.

2.5. Evaluation. We conducted experiments by 10-fold cross
validation. All patient samples were split into ten folds with
stratification so that the class distribution in each is much
similar to the one from the original dataset. We alternately
treated one fold as the test set and the other as the training
set. Then we did the predictive model training and testing
10 times. Eventually, each patient would have a diagnosis
of the primary tumor site by the predictive model. We
computed the accuracy as global metric to evaluate different
feature combinations. We also evaluated the performance of
prediction on each primary tumor site by precision, recall,
and F-measure:

Zy- TP(y;)
Accuracy = —2— ",
z)’i Pred(yi)
TP(y;
Precision( )’i) - ﬁé’;}),
1 (1)
TP()’:')
Recall(y;) = m,

2 = Precision(y;) * Recall(y;)

E- ) = ,
measure(y;) Precision(y;) + Recall(y;)
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TABLE 3: Micro- and macroaveraged accuracies of seven combinations of gene symbols with three other features.
Feature combination Number of features miAccuracy maAccuracy (mean) maAccuracy (SD)
Gene (baseline) 21,286 0.57 0.57 0.019
Gene + gMutation 101,151 0.58 0.58 0.019
Gene + Pathway 21,571 0.58 0.58 0.010
Gene + Chromosome 21,311 0.60 0.60 0.022
Gene + gMutation + Pathway 101,436 0.60 0.60 0.013
Gene + gMutation + Chromosome 101,176 0.62 0.62 0.021
Gene + gMutation + Chromosome + Pathway 101,461 0.60 0.60 0.015

Note: miAccuracy represents the microaverage accuracy; maAccuracy represents the macroaverage accuracy, which is reported in mean and standard deviation

(SD) over 10 accuracies from 10-fold cross validation.

where y; is one of the given primary tumor sites or classes;
TP(y;) is the number of true positives of the given class
y; predicted by the model; Pred(y;) is the number of the
predictions of the given class; True(y;) is the number of true
positives of the given class in the dataset.

We also used microaverage and macroaverage meth-
ods to report the accuracy. In the microaverage accuracy
(miAccuracy), TP(y;) in the numerator is the summation
of true positives of a given class over tenfold and the
denominator is equivalent to the number of total patients.
In the macroaverage accuracy (maAccuracy), we generated
the accuracy for each and reported the mean and standard
deviation (SD) over 10-fold results.

3. Results

Following the study design in Figure 1, we first rigorously
filtered the data at the mutation, patient, and tumor site
levels to reduce the data noises and improve the predictive
performance. Thus, among the 990,529 samples in the down-
loaded data, we only recruited 6,751 patients in our study.
To test if the higher-level functional knowledge is useful to
improve the performance, we integrated the gene pathway
information into the feature set. Then, we identified the best
feature combination by cross validation. Finally, based on the
best feature combination, we developed one best predictive
model set and applied it to predict the primary tumor sites.

3.1 Identification of the Best Feature Combination. We have
trained seven predictive models using different combinations
of feature sets. The specific features for each combination,
sizes of features, and the accuracies as their global scores
are shown in Table 3. We considered the predictive model
using Gene feature only as our baseline, which achieved
0.57 in accuracy. With one additional feature set (gMutation,
Chromosome, or Pathway), the model achieved slightly better
(0.58, 0.58, and 0.60, resp.). If we combined three types
of feature sets, the model reached the best performance
(0.62) when features Gene, gMutation, and Chromosome were
combined. However, when we added Pathway as the fourth
feature set, the accuracy dropped back to 0.60. We also tested
other combinations, but none of them had better achievement
than the best model (data not shown).

3.2. Prediction of Primary Tumor Site. Using the best model
set, we predicted the whole dataset using 10-fold cross
validation and evaluated the performance on every primary
tumor site by precision, recall, and F-measure. Table 4
shows the performance of the best predictive model set
using the combination of three features (Gene + gMutation +
Chromosome) over each tumor site.

The average precision and recall were 0.70 and 0.49,
respectively. This predictive model could achieve the preci-
sion of 0.75 or higher in 8 out of 17 primary tumor sites, recall
of 0.60 or higher for 8 out of 17, and F-measure of 0.60 or
higher for 9 out of 17.

4, Discussion

In this study, we performed a systematic exploration of
the somatic mutations and their related features for cancer
classification using a machine learning approach and the
most comprehensive somatic mutation dataset so far. The
study filtered the somatic mutation data from COSMIC,
identified the best feature combination, and predicted the
primary tumor sites using the machine learning methods.
Machine learning approaches have been applied to cancer
prognosis and prediction [32]. In our study, the performance
of primary tumor site prediction is strongly correlated with
its sample size (correlation coefficient = 0.58). Therefore,
increasing the sample size could be a major way to improve
the performance. However, for some specific sites, this is
not always true. For example, the primary tumor site “skin”
only contains 2.74% samples in the dataset and ranked the
13th over the 17 primary sites studied based on the sample
percentage in this study, but its model ranked 3rd in F-
measure (0.73). The primary site “Lung” has the largest
percentage of samples, but it was ranked 5th in F-measures.
To discover the underlying reason for this observation, we
further computed the coverage rate of the genes that occurred
in the true positives identified by the predictive model for
each primary tumor site. The coverage rate of a gene X in a
primary tumor site is the ratio between the counts of the true
positives where the gene X occurred and the total number of
true positives. The top four primary tumor sites in prediction
(large intestine, liver, skin, and pancreas) share the pattern of
“Top Heavy” in coverage rate distribution (with max coverage
rate over 50%), while “Lung” has distribution over genes



TABLE 4: Precision, recall, and F-measure for the best predictive

model using “Gene,” “gMutation,” and “Chromosome” on each
primary tumor site.

Primary tumor site Precision ~ Recall =~ F-measure
Large intestine 0.88 0.85 0.87
Liver 0.88 0.72 0.79
Skin 0.91 0.61 0.73
Pancreas 0.75 0.67 0.71
Lung 0.66 0.75 0.70
Endometrium 0.91 0.52 0.67
Kidney 0.72 0.62 0.66
gx}‘)’g&p&igz and 0.50 0.75 0.60
Breast 0.50 0.75 0.60
Central nervous system 0.63 0.51 0.56
Ovary 0.40 0.49 0.44
Prostate 0.46 0.35 0.40
Autonomic ganglia 0.45 0.28 0.34
Oesophagus 0.81 0.20 0.31
Urinary tract 0.83 0.09 0.16
Upper aerodigestive tract 1.00 0.05 0.10
Stomach 0.60 0.05 0.09

closer to uniform (max coverage rate of 16%). Therefore,
without as many as relatively strong associated genes, it is
harder to predict “Lung” than these top four primary sites,
although “Lung” has the most number of training samples.

For the bottom four primary sites with the smallest
sample size, the performance by the model tended to be
poorest. Specifically, “Oesophagus,” “Urinary tract,” “Upper
aerodigestive tract,” and “Stomach” had smallest numbers of
samples, and they were also ranked at the bottom according
to F-measure values. For those primary tumor sites with a
large number of samples but without excellent prediction
performance (e.g., “Lung, “Breast,; “Haematopoietic and
lymphoid tissue”), they had a much better recall (all 0.75) than
others, but poor precision (0.66, 0.50, and 0.50, resp.).

One important output of this study is the best feature
combination (Gene + gMutation + Chromosome) compared to
other combinations. Though the three features were directly
related to mutation feature, they reflected three features
at differently genetic architecture at three levels, namely,
DNA-sequence, DNA function, and DNA organization. This
observation indicated that, with more detailed information
on mutation, the best combination could contribute the
cancer class classification. The result illustrated that the
somatic mutation could be used to predict primary tumor
sites in the individual way or the integrative way.

To test if the high-level function-associated features could
improve the performance of cancer site classification, we
explored the KEGG pathway that mutation-associated genes
are involved in. However, in our study, there is no improve-
ment of performance by integrating the Pathway feature
into other features. One possible reason is that a gene can
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be involved in multiple pathways; this is especially true for
cancer genes, which have important function and regulation
in biological system and often involve in multiple signaling
pathways. If only one pathway had a high association with
one cancer type, the additional pathways could lead to the
noise for the prediction of such cancer type. Moreover, the
Pathway feature increased the dimensions of our feature
space rather than refined our predictors. Finally, pathway
size varies greatly, but this characteristic was not taken into
account in the pathway analysis in this study. We would
use a better way to represent the KEGG pathway feature
set. Instead of using binary (zero or one) representation, for
example, we could use quantitative value between zero and
one to represent the involvement of the mutated genes in the
pathway so that the pathways with higher number of mutated
genes involved would have higher weights as predictors.

Our prediction model utilized the Gene feature as the
baseline. Table 5 summarizes the genes that have been used in
the model. The number of genes used in the modeling varied
greatly, which might be one reason that the performance for
multiple primary sites is much different.

Among the 17 primary tumor sites, five primary tumor
sites achieved better performance, according to their F-
measure values (>0.70). They are “large intestine,” “liver,
“skin,” “pancreas,” and “lung” To illustrate the common and
specific genes in these five tumor sites, we selected the top
50 genes according to the counts of genes that occurred in
the true positive patients identified by the model for each
primary tumor site. Figure 2 shows the overlap among the
five sets of the genes in five primary sites. The number of
common genes among the five primary sites is different,
which might reflect their histological relationship among
them. For example, the “large intestine” has 25 common genes
to “skin,” 20 common genes to “pancreas,” 14 common genes
to “lung,” and 7 common genes to “liver” Notably, there are
only 2 (TTN and LRPIB) common genes among the five sets
of the genes. Searching the COSMIC (version 69) dataset, the
gene TTN has 3,403 mutations in the unique 1,881 samples.
However, only 17 mutations have been reported in more than
three samples. This gene is the longest human gene, and its
cancer risk remains unclear [33, 34]. The gene LRPIB, which
encodes one of the low density lipoproteins (LDL), is reported
as a novel candidate tumor suppressor gene [35]. It has 1,302
mutations in the unique 939 samples. Only two mutations
have been reported in more than three samples. Besides the
common genes, each primary site has its own mutation-
associated genes. It will be useful further to check them for
further understanding of their genetic architectures.

In this exploratory study, we demonstrated that the
somatic mutation information could be used for cancer clas-
sification. As the first attempt for prediction of cancer sites, we
have seen many opportunities to improve the performance
based on the genetic and genomic information in future
work. First, refinement of the features might improve the
performance of machine learning experiments in several
ways. (1) The first is identification and analysis of the
most frequently mutated genes across multiple primary sites.
(2) The second is reducing redundancy of feature sets by
automatic dimension reduction techniques. We can use two
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TABLE 5: Summary of genes and samples used in the primary tumor
site prediction.

. . Number of Number of true
Primary tumor site L.
genes positives
Large intestine 18,066 555
Liver 19,778 287
Skin 10,898 113
Pancreas 3,364 170
Lung 18,423 724
Endometrium 18,234 137
Kidney 10,601 302
Haematppgletlc and 14545 723
lymphoid tissue
Breast 6,327 486
Central nervous system 2,773 192
Ovary 8,169 238
Prostate 5,875 132
Autonomic ganglia 1,425 62
Oesophagus 6,200 34
Urinary tract 3,288 10
Upper aerodigestive tract 1,013 5
Stomach 86 3
Large intestine
15
Skin
Liver 4 7 7 .
0 ’
3 2 2 20
37 0 0
2
1
0 1 !
0 2
0 0 )/ 4
4 2
3 24
27
Lung Pancreas

FIGURE 2: Comparison among five sets of the top 50 genes used in
the machine learning modeling for five primary tumor sites (large
intestine, liver, lung, pancreas, and skin).

types of methods. One is the algorithms without the label
information, such as, principle component analysis [36],
latent Dirichlet allocation [37], and sufficient dimension
reduction [38]. Another is the algorithm using the label
information including HITON [39] and random forest. (3)
The third is normalization of Gene feature by the gene length.
For example, the gene TTN is the longest known coding gene

and thus might accrue mutations by chance that happened
in many tumor sites. (4) The fourth is integrating more
molecular features (e.g., methylation, gene expression, and
gene direct interacting relationship). And (5) considering
specific functional mutations or mutational features may
improve prediction power. For example, mutations of specific
nucleotide change (e.g., C->T in melanoma), or mutations
causing critical amino acid changes or protein structure
alterations, will likely be more informative. Second, adding
information from normal subjects in our modeling might
boost the performance. Adding the normal subjects as a
control group to the modeling process is more applicable
on a clinical perspective. Finally, applying multiple machine
learning algorithms to our task might be robust for evaluation
of prediction performance. Many other machine learning
methods for cancer classification have been reported. Det-
tling [40] combined bagging and boosting to precisely classify
cancerous malignancies at an early stage using microar-
ray data. Liu et al. [41] also utilized microarray data and
machine learning for cancer classification research. Their
proposed classifier Recursive Feature Addition with a gene
selection method Lagging Prediction Peephole Optimization
outperformed popular learning machines such as SVM,
Naive Bayes classifier, and random forest. Hofree et al. [42]
introduced a network-based stratification (NBS) algorithm
to stratify cancer into informative subtypes by grouping
patients together with mutations in similar network regions.
They have demonstrated that the identified subtypes are
predictive of many clinical outcomes such as patient survival,
response to therapy, or tumor histology. We are interested
in using the networks with subtype labels generated by NBS
to identify the primary tumor site. We plan to design and
evaluate better machine learning methods and explore deep
learning techniques [43] for better cancer classification with
the resource of big data.

5. Conclusion

In conclusion, our application of the machine learning
technique to somatic mutations could predict some primary
tumor sites, such as the large intestine, liver, skin, pancreas,
and lung. Since treatment of cancer does rely on not only the
known cancer site, but also the underlying molecular profiles
(e.g., cancer driver mutations) and cancer cells migrate to
multiple sites at metastasis stage, the prediction of cancer
sites based on mutation profiles may be helpful for the
enhancement of molecular therapeutics development. This
study represents the first large-scale prediction of primary
tumor site using comprehensive, publicly available somatic
mutations through a machine learning approach.
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