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Computer-aided designing of 
immunosuppressive peptides based 
on IL-10 inducing potential
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In the past, numerous methods have been developed to predict MHC class II binders or T-helper  
epitopes for designing the epitope-based vaccines against pathogens. In contrast, limited attempts 
have been made to develop methods for predicting T-helper epitopes/peptides that can induce a  
specific type of cytokine. This paper describes a method, developed for predicting interleukin-10 (IL-10)  
inducing peptides, a cytokine responsible for suppressing the immune system. All models were trained 
and tested on experimentally validated 394 IL-10 inducing and 848 non-inducing peptides. It was 
observed that certain types of residues and motifs are more frequent in IL-10 inducing peptides than 
in non-inducing peptides. Based on this analysis, we developed composition-based models using 
various machine-learning techniques. Random Forest-based model achieved the maximum Matthews’s 
Correlation Coefficient (MCC) value of 0.59 with an accuracy of 81.24% developed using dipeptide 
composition. In order to facilitate the community, we developed a web server “IL-10pred”, standalone 
packages and a mobile app for designing IL-10 inducing peptides (http://crdd.osdd.net/raghava/IL-
10pred/).

The tolerance mechanism of the immune system is well regulated and under surveillance. Yet, a prolonged or 
excessive immune response leads to auto-immunity that could be overcome by immunosuppression mediated by 
anti-inflammatory cytokines like IL-101,2, IL-373, IL-333,4, IL-43, IL-133, IL-355,6, TGF-β 3,7. One of the well-known 
cytokines responsible for immunosuppression is IL-101, which plays a critical role in preventing inflammatory 
responses, alleviating autoimmune pathologies2 and in prolonging graft survival8,9. Fiorentino et al.10 observed 
that the T helper 2 (Th2) cell clones inhibit interferon-γ  (IFN-γ ) synthesis in T helper 1 (Th1) cell clones by releas-
ing a cytokine later named as Interleukin-10 (IL-10)10. Initially, IL-10 was considered as a Th2-type cytokine10 but 
several studies conducted during the last two decades, concluded that IL-10 is a broadly expressed cytokine11–16.

Almost all the cells of the immune system express IL-10 including macrophages17, dendritic cells (DCs)3, 
neutrophils3, B cells18,19, T cells and mast cells20. Activation of the T-cell receptor and the signal transducer and 
activator (STAT) of transcription pathway causes the differentiation of native CD4+ T cells into Th cells15. Under 
certain conditions and presence of other cytokines, Th110,21–23, Th210, Th324, Th925 and Th1726 express IL-1016,27,28. 
ERK pathway also plays an important role in regulating the production of IL-10 in dendritic cells and mac-
rophages23. CD8+  T-cells also express IL-10 upon T-cell receptor (TCR) activation and interaction with activated 
plasmacytoid dendritic cells29. Auto-antigens, TLR-415, TLR-930 and vitamin D331 can stimulate B-cells to produce 
IL-1015,18. Similarly, damaged skin or TLR-4 activation induces the expression of IL-10 in mast cells15,32 (Fig. 1). 
This cytokine IL-10 inhibits CD28 signaling pathway and arrests the T-cells in the anergy1. It also regulates anti-
body isotypes, inhibits dendritic cell maturation and reduces the release of inflammatory cytokines by the mast 
cells1,7 (Fig. 2).

In the last three decades, a number of methods have been developed for predicting T-cell epitopes33. These 
methods can be broadly classified into two categories; direct and indirect methods. The indirect methods (e.g., 
Pclevage34, NetChop35, Propred36, ProPred137, TAPPred38) predict only one component of the pathway of T-cell 
recognition; for example, ProPred-I predicts MHC class-1 binders rather than T-cell epitopes. CTLPred is an 
example of the methods that directly predict Cytotoxic T-lymphocyte (CTL) epitope rather than MHC binders39. 
These methods directly or indirectly predict T-cell epitopes but they do not provide information on the release 
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of cytokines. Recently our group has taken the initiative to develop cytokine-specific prediction methods (e.g., 
IFNepitope40, IL4Pred41). To the best of author’s knowledge, there is no method for the prediction of IL-10 induc-
ing epitopes. This study is an attempt to develop computational models for predicting peptides that can induce 
cytokine IL-10 production.

Results
In this study, we used 394 MHC class-II binders, which have the ability to induce cytokine IL-10, as positive 
instances. On the other hand, we used 848 MHC class-II binders, which do not have the ability to induce cytokine 
IL-10, as negative examples. Thus, our dataset consisted of 394 IL-10 inducing and 848 non-inducing peptides 
or epitopes. We performed all the analysis on this dataset to understand the preference of residues and motifs in 
IL-10 inducing peptides. It was observed that all the peptides contained at least 8 residues. The maximum length 

Figure 1. Role of different types of immune cells in production of interleukin-10. 

Figure 2. A schematic diagram of immunosuppressive mechanism of Interleukin-10. It mainly involves 
dendritic cells (DC), major histocompatibility complex (MHC), phosphatidylinositol 3-kinase (PI3-K) and 
immunoglobulin.
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of the peptides was observed to be 42 in the positive set and 27 in the negative set. Based on the analysis, we devel-
oped prediction models wherein all models were trained and tested on this dataset.

Positional Conservation Analysis. In order to understand the preference of specific residues at certain 
positions, we generated a two-sample logo (TSL) for the positive and negative peptides (Fig. 3). In a TSL, the 
height of the amino acid symbol is indicative of its relative abundance. The number of terminal residues was 
selected on the basis of the minimum peptide length in the dataset and is not associated with any biological 
function. It has been observed that R is highly preferred at position 2nd, 4th, 5th, 6th, 7th, 11th, 13th, and 16th in IL-10 
inducing peptides. Similarly, L is more dominant at position 3rd, 4th, 5th, 7th and 10th in IL-10 inducing peptides. 
On the other hand, the residue A was found to be predominant in non-IL-10 inducing peptides at 1st, 4th, 5th, 9th 
and 12th position.

Compositional Analysis. The Amino Acid Composition (AAC) was computed for IL-10 inducing and 
non-inducing peptides; the average composition is shown in the bar plot (Fig. 4). As shown in Fig. 4, certain res-
idues (like A, G and P) have a higher average composition in non-inducing or negative peptides than in positive 
peptides. In contrast, the residues L and R are more abundant in IL-10 inducing peptides.

Motif based analysis. In the present work, we used MERCI program42 for searching motifs occurring exclu-
sively in IL-10 inducing peptides but not found in non-inducing peptides. Similarly, we searched motifs exclu-
sively found in IL-10 non-inducing peptides. As shown in Table 1, the motifs found in IL-10 inducing peptides 
are rich in R, K and L while the exclusive motifs found in non-inducing peptides are dominated by residues A, G 
and P. Notably, the residue V is prevalent in the exclusive motifs of both the negative as well as the positive sets.

Support Vector Machine-based models. We developed prediction models using Support Vector 
Machine (SVM) for discriminating IL-10 inducing and non-inducing sequences. Various sequence-based fea-
tures of the peptides were used as input for developing SVM-based prediction models. Amongst the amino acid 
composition (AAC) models, we obtained the highest accuracy of 72.30% with Matthews’s correlation coefficient 
(MCC) value 0.41 (Table 2). The performance of our prediction model improved significantly using the dipeptide 
composition (DPC) as input feature instead of the AAC. As shown in Table 2, SVM model achieves maximum 
accuracy 78.42% with MCC value 0.55 using dipeptide composition. In addition, we developed models using 
terminal composition of peptides43. Since the minimum length of the peptides in our dataset is 8, we extracted 8 
residues from N-terminus and developed the model called NT8 using AAC and DPC; these models achieved the 
maximum accuracy values of 63.45% and 66.75% respectively as shown in Table 2. Further, the models developed 
using the binary profiles of amino acids in the peptides, attained the accuracy of 67.15% with MCC of 0.31 for 
NT8. In the case of the CT8 models (involving the input features of terminal 8 residues of the C-terminus of the 
peptides), the AAC and DPC features obtained the accuracies 63.85% and 65.22% respectively. The binary model 
for the CT8 showed an accuracy of 62.88%. Additionally, we concatenated 8 residue sequences each at the N and 
C terminals to develop the NT8CT8 model, where a slight increase in the performance was observed as compared 
to models developed separately for NT8 or CT8 terminal input features. The maximum MCC value obtained here 
was 0.54 with DPC input vector.

In this study, various models were also developed using split composition44, where the peptide sequence is 
split into two equal parts. The compositions of the two parts are used as the input features for developing mod-
els. These models achieved the accuracy values of 73.67% and 72.71% for split-AAC and split-DPC respectively. 
In order to reduce the noise in models, we removed less significant or insignificant features. The CfSubSetEval 

Figure 3. Visualization of residues conserved in IL-10 inducing and non-inducing peptides using two-
sample logo. 
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algorithm of WEKA was used for selecting important features from AAC and DPC, with16 and 57 features 
respectively being selected by the algorithm, as enlisted in Table S1. These selected features were further used for 

Figure 4. Bar graph shows average amino acid composition of IL-10 inducing and non-inducing peptides. 

IL-10 inducing peptide IL-10 Non-inducing peptides

Motif
# of 

sequences
Coverage of 

positive dataset
# of unique 
Sequences Motif

# of 
sequences

Coverage of 
negative dataset

# of unique 
Sequences

R-D-H 12 12 12 A-T-A-A-T 32 32 32

L-A-E-Y 11 23 11 V-W-Q 26 58 26

I-F-L-V 10 33 10 PG-P-G 25 83 25

G-A-Q-G-K 10 43 10 K-P-G-D 22 104 21

H-F-T 10 52 9 KDV 21 124 20

E-V-C-G 10 61 9 A-G-A-T-A 27 143 19

R-L-K-V-A 10 69 8 V-GP 25 163 20

PLL 9 78 9 EA-A-T 24 181 18

I-K-R-K 9 87 9 A-VA-V 23 199 18

E-R-V-V 9 95 8 VP-K 23 217 18

Table 1.  Exclusive motifs found in IL-10 inducing and non-inducing peptides; motifs searched using 
MERCI program.

Features Threshold Sensitivity Specificity Accuracy MCC

Whole peptide length

 AAC − 0.5 70.05 73.35 72.30 0.41

 DPC − 0.3 79.95 77.71 78.42 0.55

 split-AAC − 0.6 70.05 75.35 73.67 0.43

 split-DPC − 0.4 67.77 75.00 72.71 0.41

NT8

 AAC 0.3 63.20 63.56 63.45 0.25

 DPC − 0.4 67.01 66.63 66.75 0.32

 Binary − 0.2 64.72 68.28 67.15 0.31

CT8

 AAC − 0.2 62.69 64.39 63.85 0.25

 DPC − 0.4 67.77 64.03 65.22 0.30

 Binary − 0.3 63.20 62.74 62.88 0.24

NT8CT8

 AAC − 0.5 70.05 69.46 69.65 0.37

 DPC − 0.3 77.92 78.42 78.26 0.54

 Binary − 0.4 68.27 64.03 65.38 0.30

Table 2.  The performance of SVM based models developed using different peptide features.
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developing SVM-based models. The models developed on the selected features performed less than the models 
based on all features taken together (Table S2).

Models using WEKA classifiers. We have also used the WEKA suite, which is a collection of various 
machine-learning algorithms. Out of many algorithms available in WEKA, we have employed four classifiers 
IBK, SMO, J48 and Random Forest. IBK (a K-nearest neighbors classifier) based model using AAC achieved the 
maximum accuracy 73.51% with MCC 0.44. Sequential minimal optimization (SMO) reached the maximum 
accuracy of 74.40%, 78.66% and MCC of 0.37, 0.49 using AAC and DPC respectively. J48 is a tree-based machine 
learning classifier in the WEKA package that attained the accuracy values of 68.28% and 67.15% for AAC and 
DPC respectively. Notably, the models based on Random Forest achieved the maximum accuracy value of 80.11% 
with MCC 0.58 for AAC. In the case of DPC, a Random Forest-based model achieved an accuracy of 81.24% with 
MCC value of 0.59 (Table 3).

We also developed models based on IBK, SMO and J48 classifier using split-AAC and achieved the maximum 
accuracy of ~71%. In the case of split-DPC, the performances achieved using these classifiers were comparable to 
split-AAC. Models based on Random Forest performed better than other classifiers and attained the maximum 
MCC 0.50 using split-AAC (Table S3). We also developed Random Forest-based models using 16 selected features 
from AAC and achieved the maximum MCC of 0.55 (Table 4). Similarly, we developed models based on WEKA 
classifiers using selected features from DPC.

External Validation. The external validation technique is one of the most rigorous techniques commonly 
used to evaluate the realistic performance of a model. In this technique, the performance of a model is evaluated 
on a dataset not used for its training or testing; this dataset is called independent or validation dataset. In order to 
evaluate the performance of our models we extracted 66 IL-10-inducing peptides, recently added in IEDB. These 
peptides are not available in our original dataset used for building models. The best SVM model correctly pre-
dicted 45 out of 66 peptides newly included by IEDB as IL-10-inducing MHC-II binding peptides. The Random 
Forest model with the best performance found in our study correctly predicted 55 out of these 66 peptides. This 
demonstrates that our models are rigorous and their performance is reasonably good on the independent dataset.

Classification of IL-10-inducing and MHC II non-binding peptides. The prediction models described 
above are suitable to classify IL-10 inducing and non-inducing peptides in MHC II binding peptides. This means 
the user cannot use these models to predict IL-10 inducing peptides if MHC II binding status of the query peptide 
is not known, as we have not used MHC II non-binders in our dataset. Thus it is possible that our model may 
predict a MHC II non-binder as IL-10 inducing peptide. In order to overcome this problem, we also developed 

Classifier Threshold Sensitivity Specificity Accuracy MCC Parameters

Amino Acid Composition (AAC)

 IBK 0.3 71.83 74.29 73.51 0.44 -K 6

 SMO 0.5 44.42 88.33 74.40 0.37 -C 5 –G 0.001

 J48 0.2 66.50 69.10 68.28 0.34 -C 0.4 -M 9

 Random forest 0.3 80.46 79.95 80.11 0.58 -I 300

Dipeptide Composition (DPC)

 IBK 0.2 76.40 76.18 76.25 0.50 -K 3

 SMO 0.5 56.35 89.03 78.66 0.49 -C 5 –G 0.001

 J48 0.1 67.26 67.10 67.15 0.32 -C 0.4 -M 2

 Random forest 0.3 79.70 81.96 81.24 0.59 -I 600

Table 3.  The performance of models based on different classifiers developed using amino acid and 
dipeptide composition; classifiers implemented using WEKA.

Classifier Threshold Sensitivity Specificity Accuracy MCC Parameters

16 selected features from amino acid composition

 IBK 0.3 70.30 70.99 70.77 0.39 -K 6

 SMO 0.5 37.60 88.92 72.46 0.31 -C 5 –G 0.001

 J48 0.2 66.50 69.10 68.28 0.34 -C 0.3 -M 9

 Random forest 0.3 79.95 78.42 78.90 0.55 -I 700

57 selected features from dipeptide composition

 IBK 0.2 72.84 71.58 71.98 0.42 -K 1

 SMO 0.5 46.70 87.38 74.48 0.37 -C 5 –G 0.01

 J48 0.3 72.84 70.52 71.26 0.41 -C 0.4 -M 2

 Random forest 0.3 77.66 77.00 77.21 0.52 -I 200

Table 4.  The performance of models based on WEKA classifiers developed using with selected features 
obtain from amino acid and dipeptides composition.
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models using the alternate dataset to discriminate IL-10 inducing and MHC II non-binders. We tested two 
of the machine learning methods – SVM and Random Forest that showed the best results on the dataset of 
IL-10-inducing MHC II binders and IL-10 non-inducing MHC II binders. We used 80% of the data for training 
and testing our models using five-fold cross validation technique. The remaining 20% data called independent 
dataset was used for external validation of our models. Our best SVM model achieved an accuracy of 76.44% with 
the MCC of 0.54, when evaluated using five-fold cross-validation. We also tested the performance of this model 
on the independent dataset and achieved an accuracy of 75.93% with MCC of 0.54. The Random Forest-based 
method showed a similar performance with 76.33% accuracy and 0.53 MCC, when tested using five-fold cross 
validation. The performance of the above model on the independent dataset was 77.31% accuracy and 0.58 MCC.

Service to the scientific community. One of the major goals of our group is to provide service to the com-
munity based on research carried out in our group. Thus, we developed a user-friendly webserver that integrates 
models developed in this study. The web-interface developed for the users predicts a query peptide to be IL-10 
inducer or non-inducer based on the prediction models developed on the dataset containing IL-10-inducing 
MHC II binding peptides as positives and IL-10 non-inducing MHC II binders as negatives. However, such 
a model can falsely predict an MHC II non-binder to be an IL-10-inducing peptide. Thus, we developed sep-
arate prediction models that distinguish IL-10-inducing MHC II binders from MHC II non-binders. The 
web-interface designates a query peptide to be IL-10-inducing only if it is predicted to be positive by both of the 
above-mentioned models.

The web interface of the server has three main modules; i) Predict, ii) Design and iii) Protein Scan. The 
‘Predict’ tool allows a user to identify IL-10 inducing peptides in a given library of peptides. The ‘Design’ module 
facilitates the user to generate all possible analogs of the query peptide and identify the best analogs for inducing 
cytokine IL-10. The ‘Protein Scan’ module was developed for scanning IL-10 inducing regions in a query protein. 
Our web server has been designed using a responsive HTML template for adjusting to the browsing device. Thus, 
our webserver is compatible with a wide range of devices including the desktops, tablets and smartphones.

In addition to the webserver, we also developed a standalone version of IL-10pred using wxPython. Keeping 
in view the exponential growth of usage of smart phone users in last decade, we also developed an Android-based 
mobile app using the Kivy package. The workflow of the IL-10 mobile app has been summarized in the Fig. 5. All 
these applications are accessible at the URL http://crdd.osdd.net/raghava/IL-10pred/.

Discussion
Immunosuppression is a systemic response that may be desired in some cases like asthma therapy and inap-
propriate in some other conditions like cancer. Peptide-based immunotherapy has been shown to be capable of 
capitalizing on both of these flip sides by removal or introduction of IL-10 inducing epitopes in the antigen. In 
an attempt to develop a therapy for asthma treatment, the IL-10 inducing epitopes were shown to suppress the 
immune response evoked by other epitopes of the same antigen45. On the other hand, removal of IL-10 induc-
ing T cell epitopes from the insulin-like growth factor-binding protein 2 (IGFBP2) vaccine conferred potent 
anti-tumor activity46. With an increased understanding of IL-10 inducing epitopes, their inclusion or exclusion 
becomes an important consideration in a vaccine design.

Figure 5. Flow chart shows processing of data in android based mobile app, developed for predicting IL-10 
inducing peptides. 
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In the present study, we have made a systematic attempt to understand the nature of IL-10 inducing peptides 
and to develop models for predicting IL-10 inducing peptides. This is the first in silico study on IL-10 peptides 
though there is limited information available in the literature. In order to perform this type of study, one needs 
to have a dataset of inducing and non-inducing peptides. Thus, we examined the experimentally validated MHC 
class-II binders in IEDB database47 and extracted IL-10 inducing and non-inducing MHC class-II binders. The 
dataset of experimentally validated IL-10 inducing and non-inducing peptides is the backbone of this study. We 
analyzed these peptides to understand compositional and positional preferences of residues in IL-10 inducing 
peptides using Two-Sample Logo and compositional analysis. As shown in the Results section, certain types of 
residues are more abundant in IL-10 inducing peptides. In addition, positional preferences of certain types of 
residues were also observed in the IL-10 inducing peptides. This indicates that IL-10 inducing and non-inducing 
peptides differ in terms of residue composition. Thus composition can be used to discriminate these two types 
of peptides.

We tried a wide range of classifiers to build models for predicting IL-10 inducing peptides. Further, we 
also used a wide range of features particularly compositional features for discriminating IL-10 inducing and 
non-inducing peptides. As anticipated, models based on compositional features particularly based on DPC, 
classify IL-10 inducing and non-inducing peptides with high performance. Initially, SVM-based models were 
developed using different sequence features and achieved reasonably good performances. We also tried popular 
classifiers available in the software package WEKA and achieved moderate performances using different classi-
fiers. Our Random Forest-based model developed using DPC attained the highest performance among all the 
classifiers used in the present study (Fig. 6).

Conclusion
In a scenario where direct use of IL-10 as a therapeutic model has revealed toxic effects, peptide-based epitopes 
that induce IL-10 provide a promising alternative. It has been shown in previous studies that blocking the IL-10 
receptor using antibodies could enhance the efficiency of subunit vaccines, for example, in the case of mycobac-
teria48,49. Thus, blocking the IL-10 induced immunosuppression could be an important aspect of subunit vaccine 
design. Although numerous methods are available for in silico prediction of T cell epitopes33, computational 
methods are not available for predicting IL-10 inducing epitopes. The present work is an attempt to provide a 
platform for addressing this important aspect. In order to facilitate the scientific community in developing better 
methods for prediction of IL-10 inducing peptides, we have provided our datasets used in the present study.

Methods
Building Dataset. One of the major challenges for this type of work is to create an authentic dataset con-
taining experimentally validated IL-10 inducing and non-inducing peptides. In this study, the dataset is derived 
from the IEDB database47, which is the largest repository of immune epitopes. The MHC class II binders that were 
reported to trigger IL-10 release were extracted from the IEDB. We extracted experimentally validated MHC class 
II binders that elicit cytokine IL-10; these peptides were assigned as IL-10 inducing peptides. We also extracted 
MHC class II binders reported not to trigger IL-10 release from IEDB. We assigned these MHC class II binding 
peptides as non-inducing peptides. In order to remove redundancy, we removed identical peptides from both, 
IL-10 inducing and non-inducing peptides. Our final dataset called the main dataset consists of 394 IL-10 induc-
ing and 848 non-inducing peptide sequences enlisted in Table S4, with unique positive and negative sequences.

In addition to the main dataset, we also created another dataset called the alternate dataset (sequences 
provided in Table S5). This dataset contains different negative instances than in the main dataset. This dataset 

Figure 6. ROC plot shows performance of dipeptide composition based models developed using different 
machine learning techniques; Random Forest (RFor) based model achieves maximum AUC 0.88. 
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contains MHC II non-binders as negative instances instead of MHC II binders. The alternate dataset contains 
461 IL-10-inducing MHC II binders as positive instances. In order to create a dataset of negative instances, we 
extracted 621 MHC II non-binders from the MHCBN database50. In summary, our alternate dataset consists of 
461 IL-10 inducing peptides and 621 MHC II non-binders. We built this dataset to classify IL-10 inducers and 
MHC II non-binders.

Computation of the Residue Composition. In the past, compositional features of the peptide sequences 
have been used successfully for developing methods for predicting the function of peptides43,51. Thus in this study 
also models have been developed using different types of composition that includes amino acid and dipeptide 
composition. The composition features (AAC and DPC) were calculated using the in-house Perl scripts based on 
the following equations 1 and 2.

= ×DPC i D i
N

( ) ( ) 100 (1)

= ×DPC i D i
N

( ) ( ) 100 (2)

In the above equations, AAC(i) is the percent amino acid or residue composition of the residue type i. R(i) is the 
number of residues type i and N is the total number of residues in a peptide sequence. DPC(i) is the percent of 
dipeptide composition for residue type i. D(i) is the number of dipeptides of type i and N is the total number of 
dipeptides in a peptide sequence.

Binary Profile. It is another important feature for representing peptide sequences. In the case of binary pro-
file, each of the 20 types of natural amino acid is represented as binary vectors of dimension twenty (e.g. Ala by 1,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; Cys by 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). The sequence length in the positive 
and the negative datasets is variable, but the input vector for applying the machine learning techniques should be 
of fixed length. Since the minimum length of the sequences is 8 for both the positive and the negative sequences, 
substrings of length 8 were taken from the N-terminus as well as C-terminus of each sequence and concatenated 
to have derived sequences of fixed length (16) for each of original sequences. Such derived sequences were used 
to generate the binary profile.

Two-sample logo. The sequences derived for obtaining the binary profile were also used for generating a 
Two-Sample logo (TSL)52 using the web tool available at http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgi, since 
this tool also requires a fixed length input sequence criterion. Since the minimum length of the peptides in the 
dataset was 8 amino acids, the TSL consists of 8 residue positions from each of the N and C termini leading to a 
profile of 16 residue positions.

Machine-learning Techniques. The Support Vector Machine (SVM)-based prediction models were devel-
oped using the package SVMlight 53. The radial basis function kernel was mainly used in this study; different param-
eters were optimized to get the best performance on the training dataset. In addition, some commonly used 
classifiers were also used for developing prediction models. These classifiers (e.g., Random Forest, IBK, SMO and 
J48) were implemented using the WEKA package54.

Feature Selection. In this study, we also used the WEKA54 package for selecting important features from 
different compositional features. We used CFSubSetEval algorithm with default parameters for the selection of 
significantly relevant features. These selected features were examined to understand nature of IL-10 inducing 
peptides as well as for developing the prediction models (Table S3).

Cross-validation. In order to train, test and evaluate our models, we used the five-fold cross validation tech-
nique. This is a standard technique, commonly used in this type of studies; details are available in the previous 
studies51. In summary, the whole dataset is divided into five equal parts, with all five sets having an equal number 
of positive and negative instances. The four sets are used for training, while the remaining set is used for testing. 
This process is iterated five times so that each set is used for testing.

Evaluation parameters. Model evaluation is an important step to estimate the efficiency of the model. We 
have used well-established evaluation parameters that include sensitivity, specificity, accuracy and MCC.

=
+

×Sensitivity TP
TP FN

100
(3)

=
+

×Specificity TN
TN FP

100
(4)

=
+

+ + +
×Accuracy TP TN

(TP FP TN FN)
100

(5)

http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgi
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=
× − ×

+ + + +
MCC TP TN FP FN

TP FP TP FN TN FP TN FN
( ) ( )

( )( )( )( ) (6)

TP = True Positive, FP = False Positive, TN = True Negative, FN = False Negative.
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