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Tracking mutational semantics 
of SARS‑CoV‑2 genomes
Rohan Singh1, Sunil Nagpal1,2,3*, Nishal K. Pinna1 & Sharmila S. Mande1*

Natural language processing (NLP) algorithms process linguistic data in order to discover the 
associated word semantics and develop models that can describe or even predict the latent meanings 
of the data. The applications of NLP become multi‑fold while dealing with dynamic or temporally 
evolving datasets (e.g., historical literature). Biological datasets of genome‑sequences are interesting 
since they are sequential as well as dynamic. Here we describe how SARS‑CoV‑2 genomes and 
mutations thereof can be processed using fundamental algorithms in NLP to reveal the characteristics 
and evolution of the virus. We demonstrate applicability of NLP in not only probing the temporal 
mutational signatures through dynamic topic modelling, but also in tracing the mutation‑associations 
through tracing of semantic drift in genomic mutation records. Our approach also yields promising 
results in unfolding the mutational relevance to patient health status, thereby identifying putative 
signatures linked to known/highly speculated mutations of concern.

Understanding genome sequences, an ordered collection of nucleotide bases constituting the genome, requires 
deciphering the rules governing the structure or positioning of the bases in the genome sequence. Human 
language has inherently been sequential in nature and is driven by the need for adding context (semantics) to 
the communication. The science of studying the rules of the human language, its grammar, semantics and more 
comes under the purview of  linguistics1, and the use of Natural Language Processing (NLP) can automate this 
process by making computers explore, understand, learn, improve, generate, anticipate, and respond to this 
 language2. It does so by leveraging the fields of computer science, machine learning/ artificial intelligence and 
mathematics towards the common goal of understanding the language of ordered datasets. Given the structural 
similarities between genomic and linguistic data records, it is pertinent to ask if NLP can be utilized to decipher 
the hidden meanings even from ‘Genome sequence data’.

The more we explore the depths of the biological world, the greater organization we witness in the perceived 
complexity of biological  systems2. It is this ‘order’ or sequential nature of various biological data that has previ-
ously inspired the use of NLP in  genomics3,  metagenomics4,  proteomics5 and more. In fact, DNA, the basic 
hereditary unit of life, is a classic example of a sequential dataset. The use of NLP to explore the latent information 
of genomes is therefore a rational proposition. It becomes further interesting when the biological data is dynamic 
in nature, like the evolving or mutating genomes. Dynamically changing biological datasets offer the opportunity 
to establish a parallel with another realm of computational linguistics, namely, dynamic topic  modelling6 and 
diachronic analysis of  literature7,8 or language corpora. In other words, an interesting question can be posed as 
to whether we can treat genomes as documents (especially temporally changing documents) in order to explore 
and understand the continuously evolving molecular signatures (equivalent to linguistic themes) in the vast 
corpus of biological features like genes or mutations (equivalent to linguistic words).

Here, we highlight the applicability of NLP in capturing the temporal/diachronic trends in the evolution of 
genomic datasets. We demonstrate the same by perceiving SARS-CoV-2 genomes as documents and the associ-
ated mutations as the words of these documents. A large number of SARS-CoV-2 genome sequences are being 
deposited to public repositories like  GISAID9 through an unprecedented spirit of scientific collaboration across 
the world. The high volume of raw data is expected to balloon further as the pandemic progresses. Each newly 
sequenced genome is a potential mutant/variant of the original reference genome, i.e., Wuhan/WIV04/2019 
(EPI_ISL_402124). Understanding the diversity and evolution of these variants has been a subject of interest to a 
wide spectrum of  researchers10,11. Various reports aimed at identification of clades or classification system(s) for 
these genomes have in fact been outcomes of the afore-mentioned problem  statement11. Although conventional 
topic modelling has been utilized to obtain insights on COVID-19 from literature data, NLP can also be lever-
aged for understanding the signatures and diachronicity of SARS-CoV-2 mutational landscape. We demonstrate 
how the temporal word(mutation)-embeddings of SARS-CoV-2 nucleotide mutations can aid discovery of latent 
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signatures (refer Supplementary File 1: Concepts of word embeddings, Word2Vec and DTM models, and Fig. 1 
for graphical intuition of the same). The method enables the semantic characterization of the mutational land-
scape of SARS-CoV-2 and subsequent tracing of its progression with time. Such an approach could be helpful 
in the pathogenesis-tracking of COVID-19, especially when corroborated by leveraging the unsupervised clas-
sification of mutation vocabulary of the patient-status labelled SARS-CoV-2 genome corpora using scattertext12 
(an NLP approach applied for learning severity linked mutations). This methodology could also be extended to 
capture meaningful biological information for not only SARS-CoV-2, but other biological datasets as well. Sup-
plementary Table 1 provides a summary of the entire approach towards the design of this research study based 
on asking some pertinent questions through the perspective of natural language processing.

Establishing parallels between documents and genomics data. In order to apply NLP routines 
for genomic data, we need to first relate the NLP terminologies that can be utilized for obtaining insights from 
genome sequence dataset (Table 1). A genome string containing mutational information in the form of position-
specific nucleotide base-pair changes corresponding to an individual/organism is akin to a ’document’, and each 
mutation is analogous to a ’word’ in a document. The entire dataset derived from  GISAID9 can be considered 
equivalent to the ’corpus’, a complete set of documents. Unique nucleotide mutation set within the entire genome 
datasets can be considered equivalent to the vocabulary, which refers to the entire word set present in the corpus. 
Supplementary Fig. 1a displays the frequency of genome sample (i.e., document) and unique mutation counts 
observed in each time-slice (i.e., a month).

A nucleotide mutation signature is like a topic (comprised of several words) that carries a particular idea 
(mutations of concern). Technically, a topic is a probability distribution of its constitutive words, and as a result, 
documents with similar probabilities of such words are estimated to contain the topic(s) concerned. Like a 
document is composed of one or more topics, a genome sequence may contain more than one unique mutation 
signature, each having different probabilities. The inherent order in the occurrence/co-occurrence of genomic 
mutations is equivalent to the semantics/context of a document. A word’s meaning may differ with different 

Figure 1.  Graphical Summary of the entire NLP approach towards elucidating mutational signatures of 
genomic datasets (using SARS-CoV-2 genomes). Schematic representation of training procedure of both 
temporal natural language processing (NLP) approaches used in our study, i.e., Dynamic Topic Modeling 
(DTM) and Temporal Word Embeddings with a Compass (TWEC). Both techniques train on a collection of 
documents (corpus) that is split into respective time-slices. The panel description are as follows: (1) Splitting 
the corpus into respective time-slices: Documents (or genomes) at a particular time-slice, “tn”, is used to train 
DTM and TWEC models. (2) TWEC model training: Context embeddings are temporally fixed while the target 
embeddings are trained over each time-slice. (3) Words in each document/genome sample from time-slice t2 are 
iterated over sequentially. Window size (in blue) determines the span of neighbours for context consideration. 
(4) For each word present in time-slice t2, the embeddings are generated using Skipgram architecture of 
Word2vec. (5) Embedding matrix of the vocabulary (i.e., all words). (6) 2D projection of the embedding 
vectors generated for time-slice t2. (7) Dynamic Topic Modeling (DTM) training architecture. (8) Signature 
distributions are obtained for each time-slice and each document/sample.
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texts/sentences as they are surrounded by different words (within a range of its neighbouring words called 
‘window size’) and therefore influence semantics. Our study defined a ‘context’ as the genomic proximity of a 
mutation with other mutations, thereby establishing analogous relation between the conventional documents 
and genomes (Table 1).

Results
Discerning mutational signatures (topics) in the SARS‑CoV‑2 genomes (corpus). Six muta-
tional signatures were inferred from the optimised model generated using Dynamic Topic Modeling (DTM) 
(Fig. 2). The geographical distribution of these signatures and their mapping to various SARS-CoV-2 variants 
or GISAID clades are represented in Fig. 2a. It was observed that the inferred signatures from DTM display 
strong coherence with the known ‘Variants of concern’ (VoC) and a moderate predilection towards geography. 
These included Signature0 that mapped to Eta and Mu variants; Signature1 that mapped to the Delta variant; 
Signature3 (Alpha); Signature4 (Gamma, Lambda, Theta) and Signature5 (Beta). Signature2 did not map to any 
known VoC. The composite mutations for each of these signatures are represented in Fig. 2b. Notably, Signature3 
(Alpha) seemed to be topically dominant in majority of the genomes collected from European nations, and it is 
known that the Alpha variant had a widespread impact in European  cohorts12,13.

Similarly, other observed geographical associations indicated Signature2 to have certain prominence among 
Asian countries, and Signature4 to be proportionally higher among South American countries. Certain countries 

Table 1.  Analogy between NLP terms used for documents and genomes.

S.No Term NLP Definition Analogous Genomic Relation

1 Word/Term A single element of a document A nucleotide mutation

2 Document A sequence of words A genomic sample i.e., a list of nucleotide mutations from a sample

3 Corpus Entire collection of documents All genomes e.g., SARS-CoV-2 genomes from GISAID dataset (obtained till 
July 2021)

4 Topic A set of words that relate to a subject/theme. A document may comprise of 
one or more topics A signature (i.e., nucleotide mutation signature)

5 Context The particular setting or pattern in which the word occurs, usually influenc-
ing its meaning or effect The ordered genomic position of a nucleotide mutation

6 Vocabulary Entire collection of unique words within the corpus Unique nucleotide mutation set within the entire dataset

Figure 2.  Distribution of mutational signature in SARS-CoV-2 genomes across geography (a) Stacked 
proportions of signatures (topics) in corpus segregated by 3 categories: country, SARS-Cov-2 variant and 
GISAID clade. The frequency of each constituent within each category are shown at the top of each stacked 
bar. Within the country subpanel, each country is differentially coloured according to respective continents. 
(b) Aggregated proportions of word probabilities in each signature across all time-slices. Nucleotide mutations 
coloured in black (as Unknown) are UTRs. (c) Temporal probabilities for each signature.
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showed single signature prominence. These included Signature2 for Japan, Signature3 for Cambodia, Bulgaria, 
Signature1 for Singapore, Signature0 for Saudi Arabia and Signature4 for Brazil. Several Southeast Asian countries 
were affected by different SARS-CoV-2 strains, and our DTM model displayed nearly similar VoC proportions 
for Cambodia, Indonesia and Malaysia, in line with that reported by Chookajorn et al.  202114, using the GISAID 
dataset.

A temporal tracing of the inferred signatures is shown in Fig. 2c. The mean probabilities of different signatures 
for genomes corresponding to different time-slices are plotted with a confidence interval of 0.99 (highlights the 
shaded area around each line). While Signature2 showed the highest probability during 2020, Signature3 (Alpha) 
started to manifest towards the end of 2020. As described in the ‘Discussion’ section, these trends align well not 
only with geography specific observations reported elsewhere, but also with the phylogeny/clinical information 
linked variant classifications.

Furthermore, we probed the temporal progression of the top 20 most probable mutations within each sig-
nature (Supplementary Fig. 2). All these signatures comprised of mutations with very high initial probabilities 
that declined over time. Although two signatures, namely, Signature3 and Signature5, had no or very few abrupt 
losses among their topmost probable mutations, their corresponding mutation probabilities evened out over time. 
However, for the rest, new emergent mutations could be distinctly observed, which included Signatures 0,1 and 
2, with few older mutations fading out with time. Not all signatures were found to have every mutation unique to 
itself. Certain mutations like those of codon G28881A, G28882A, G28883C could be seen to encompass several 
signatures, albeit with declining probabilities. The biological inferences/implications of DTM (and other) results 
are attempted in the ‘Discussion’ section.

Temporal divergence of SARS‑CoV‑2 mutations. To get a general overview of the collective diver-
gence of SARS-CoV-2 mutations across time, we examined the embedding vectors (representing meaning of a 
word in dynamic/continuous vector space) in three time-slices with 6-month gaps in between them (Jul2020, 
Dec2020 and Jun2021). 2D Uniform Manifold Approximation and Projection (UMAP)15 of the embedding 
vectors corresponding to these time points were plotted for the top 1000 most frequent mutations in the cor-
pus. These mutations appeared to converge with other mutations that shared genomic proximity, i.e., those in 
neighbouring genomic loci or mutations belonging to the same protein (Fig. 3a). In Jul2020 (Fig. 3a), the word 
embeddings of most frequent mutations (top 1000) were seen to be quite indistinct. This was expected as most 
of these mutations either had none or smaller frequencies at the beginning of 2020 and started to manifest as 
the pandemic spread globally. By Dec2020 (Fig. 3a), the embeddings evolved enough to gain contextual segre-
gation which became more prominent by Jun2021 (Fig. 3a). For instance, from Dec2020 onwards, NSP (Non-
structured Protein) related mutations were observed to cluster distinctly when their embeddings were projected.

Semantic drift of individual mutations of concern (MoC). To closely examine how the semantics of 
a single mutation shifted temporally, four mutations of concern (MoC) found in the spike protein (as reported 
in outbreak.info16), namely A23063T/N501Y, C23604A/P681H, C23604G/P681R and T22917G/L452R, were 
selected.

The initial embedding vectors of A23063T/N501Y mutation during the Apr2020 to Jul2020 period, remained 
unchanged and hence clustered closely (Fig. 3b). The embedding vectors in the months of 2021 remained rela-
tively unchanged with high similarity of genomic context as seen by lower genomic loci variance (see Methods 
for description), shown in Fig. 3c, as compared to time period between Apr2020 to Jul2020, where the neigh-
bouring words (mutations) genomic loci variance were observed to be higher. Roughly half of the neighbouring 
mutations pertained to spike protein, which appeared post Nov2020. However, from Feb2021, its neighbouring 
mutations also constituted some from ORF protein. Given that the genomic loci variance has been quite low 
(Fig. 3c) since Jan2021 and some neighbouring mutations originated from the ORF protein for these months, 
it showcases that the word embeddings were able to capture the adjacency of ORF protein mutations to this 
spike protein mutation). Figure 3d displays the neighbouring word composition of A23063T/N501Y for each 
time-slice. This MoC also displayed many non-contextual neighbours (i.e., top 15 most semantically related 
mutations), which were found to be mostly non-spike mutations in those initial months (as seen in Fig. 3d). But 
in the months of Aug2020 and Oct2020, the embeddings changed in meaning (i.e., they experienced semantic 
drift), which stabilised in Dec2020 thereafter (Fig. 3b). It is also evident that with the progression of COVID 
pandemic, the neighbouring mutations comprised fewer mutations on NSP proteins, which are genomically 
distant to spike mutations. Supplementary Fig. 3 shows 2D projection of word embeddings of neighbouring 
mutations of A23063T/N501Y in Jun2021.

As with A23063T mutation, the embedding vector of C23604A/P681H mutation only gained momentum 
after Jul20 (Supplementary Fig. 4a), after which its context steadily drifted till Dec2020, post which the drift 
momentum as well as genomic loci variance (Supplementary Fig. 4d) ebbed and became stabilised from Mar2021 
onwards. Interestingly, its mutation neighbours from Feb2021 to Apr2021 (Supplementary Fig. 4b) lacked those 
occurring in spike protein but rather had mutations from majorly nucleocapsid and ORF protein and even 
envelope and membrane protein.

C23604G/P681R mutation and its counterpart mutation ‘C23604A’ shared a similar semantic transition 
(Supplementary Fig. 5a). Although, its semantics during initial periods remained unaltered till Jul2020, a small 
shift was observed in Aug2020, which again reverted to its previous quarter’s embedding cluster. The maximum 
drift in semantic change was observed in Nov2020 and Dec2020, post which embeddings were found to be sta-
bilised. The genomic loci variance dropped drastically from 2021 onwards (Supplementary Fig. 5d), reaching 
the lowest at Apr2021, post which neighbouring mutations comprised majorly from ORF and spike proteins 
(Supplementary Fig. 5b).
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T22917G/L452R mutation’s semantics made a sudden movement in Jun2020 but reverted close to the pre-
vious months’ embedding cluster (Supplementary Fig. 6a). Some drastic changes were seen in Sep2020, with 
neighbouring mutations being of non-spike origin, indicating non-contextual connotation (as seen by many 
cross markers surrounding it) (Supplementary Fig. 6b). Some shifts were also observed in Nov2020, wherein 
the neighbouring mutations were found to be related to spike protein. After Dec2020, the embeddings stabilised 

Figure 3.  Semantic drift of mutation A23063T/N501Y (Spike). (a) UMAP projection of word embeddings 
of 1000 most frequent mutations in the corpus (i.e., GISAID dataset) in 3 time-slices. Most mutations tend 
to disperse by their genomic position. (b) Tracking semantic drifts of mutation of concern A23063T/N501Y 
from Apr2020 to Jun2021, represented by the dotted line. Other points refer to the 15 most semantically 
related mutations in each time-slice. (c) Tracking temporal shifts in the standard deviation of genomic loci of 
neighbouring mutations to A23063T in each time-slice (d) Protein classification of semantically closest words 
(neighbour) to A23063T in each time-slice.
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in neighbourhood of mutations occurring mostly in spike protein, thereby displaying lower positional variance 
(Supplementary Fig. 6d).

In all the above-mentioned mutations of concern, one could notice that with the progression of COVID 
epidemic, the neighbouring mutations comprised fewer mutations on NSP proteins, which are genomically 
distant to spike mutations.

Identifying infection severity specific mutations. NLP can also be employed on labelled datasets to 
classify text corpora and to identify driving words/topics of such labelled  documents3,17. With the aim of iden-
tifying the severity specific mutations, a total of 12,182 non-severe (‘Asymptomatic’, ‘Mild’, ‘Moderate’) infec-
tion specific (labelled) genomes and 2,497 severe (‘Critical’, ’Severe’, ’Fatal’) infection causing genomes were 
employed for the classification of latent-mutation signatures using scattertext12. Figure 4 displays the scatterplot 
of frequency of ~ 2000 mutations within ‘Severe’ and ‘NotSevere’ categories. The highlighted mutations within 
the figure correspond to the top ten characteristic mutations, whose likelihood of occurrences were observed to 
be higher in one category (i.e. Severe) as compared to that in another category (i.e. NotSevere), as determined 
via F-scaled scores (see methods for more details). While most of the characteristic mutations in ‘NotSevere’ cat-
egory belonged to NSP related mutations, the top ten characteristic mutations in ‘Severe’ category were found on 
several proteins. Among these, three corresponded to mutations on spike protein (G25088T/V1176F, G22132T/
R190S, A22812C/K417T), one on nucleocapsid protein (C28512G/P80R), one on putatively non-genic mutation 
(G28262GAACA) and the remaining were found to be NSP linked mutations. Points in the top right corner in 
Fig. 4 represented the most frequent mutations (having high frequency) in both categories.

Temporal clustering of infection severity specific mutations. To illustrate differences in temporal 
contextual changes in mutations associated with a physiological label (i.e., Severe or NotSevere classification), 
ten characteristic mutations in both categories as well as top 30 most frequent mutations (as a neutral set) were 
selected for relative comparison. The mutations within the neutral set were observed to be relatively ubiquitous 
and non-characteristic to both infection severity categories and hence they were considered as non-markers. 
By semantically comparing to this neutral set, we intended to differentiate how the derived/putative character-
istic mutations converge/diverge away from a neutral pool of mutations. K-means clustering was performed to 
observe the formation of mutation grouping in different time-slices. Cluster tracking of the afore-mentioned 
mutations (Fig.  5) indicated varied numbers of clusters in three time-slices, namely, Dec2020, Feb2021 and 
May2021. Since a few mutations from the NotSevere category were observed to be absent in some of these time-

Figure 4.  Visualising infection severity association of mutations. The figure shows the distribution of SARS-
CoV-2 mutations in corpus along ’Severe’ or ’NotSevere’ frequency gradient in X and Y-axis, respectively. Points 
highlight mutations and are coloured according to binary classification based on F-scaled scores (see methods 
under Severity classification of Patient Health Status). Note that nucleotide mutations coloured in black (as 
Unknown) are on UTR.
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slices, their embeddings were ignored while plotting for the respective time-slices. Figure 5a–c depict chord 
diagrams highlighting mutations to the respective k-means cluster (refer Methods for further details). Sup-
plementary Fig. 7a–c show 2D UMAP dimension reduction plots of the embedding vectors for the three time 
periods of these selected mutations.

In Dec2020 (Fig. 5a and Supplementary Fig. 7a), the characteristic mutations of both patient health status 
categories (Severe and NotSevere) were observed to cluster into one group, and the majority of the most frequent 
mutations were found to be clubbed into another cluster. This indicated that the semantic differences were not 
very prominent between mutations of both patient health status categories. In contrast, segregation of mutations 
was observed into numerous clusters in Feb2021 (Fig. 5b and Supplementary Fig. 7b), wherein k-means clustering 
differentiated both Severe/NotSevere associated mutations into their respective clusters. However, for ‘NotSevere’ 
category mutations, the cluster set was not fully exclusive. Furthermore, the segregation of most frequent muta-
tions into their respective protein of origin were found especially for NSP, spike and nucleocapsid proteins. In 
May2021 (shown in Fig. 5c and Supplementary Fig. 7c), the trend was however found to be contrasting. Unlike 
the subclusters seen in the Feb2021 time-slice, fewer cluster numbers were observed. In this timepoint, the NSP 
mutations from NotSevere category had coalesced into a separate cluster that comprised of NSP mutations from 
the neutral set. Cluster 1 was solely comprised of severe-category mutations. These inferences suggest that the 
‘Severe’ and ‘NotSevere’ mutations are semantically different as well. The biological implications of the observa-
tions have been further described in the ‘Discussion’ section.

Figure 5.  Semantic clustering of Severe, NotSevere and most frequent mutations. Panels (a,b,c) show chord 
diagrams of k-means clustering of 50 mutations (10 ‘Severe’, 10 ‘NotSevere’ and 30 most frequent mutations) in 
time-slices Dec2020, Feb2021 and May2021, respectively. Note that nucleotide mutations coloured in black (as 
Unknown) are on UTRs.
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Productivity and Frequency of Mutations of Concern (MoC) and severity associated muta‑
tions. Figure 6 depicts the productivity (tendency to form multi-word associations) and frequency for the four 
mutations of concern (Fig. 6a), along with the top four most frequent mutations in the corpus being C3037T, 
A23403G, G28881A and G28882A (Fig. 6b).; top 4 characteristic mutations of ‘NotSevere’ patient health cat-
egory (Fig. 6c); and top 3 characteristic spike mutations of ‘Severe’ category (Fig. 6d). C3037T is a prevalent 
synonymous mutation providing no known evolutionary advantage for the virus. A23403G/D614G has been 
speculated to increase viral infectivity and reduce spike  shedding18. G28881A and G28882A are consecutive 
mutations that have previously been speculated to affect the molecular flexibility of N  protein18.

While frequency represents the occurrence of mutations (terms) with time, productivity highlights the asso-
ciability of the mutations (terms) to other mutations. Therefore, the productivity plot pattern of a term may be 
non-identical to its corresponding frequency plot, as a term might associate more/less to other terms irrespec-
tive of its own recurrence with time. A noticeable difference could be seen for ‘NotSevere’ mutations (Fig. 6c), 
wherein their frequencies were observed to drop drastically after their peak in summer 2020. Their productivity 
showed retention of peaks during late 2020, post which it dropped subsequently. These therefore belonged to 
‘declining terms’ wherein both frequency and productivity had reduced.

Contrastingly, the frequency and productivity of ‘severe’ mutations were seen to attain a peak in 2021 itself. 
Frequency overlap could be observed between the top four most frequent mutations, which indicated how 
prevalent these mutations were during the COVID pandemic and were also native to most geographies and/or 
lineages. Interestingly, the productivity of G28882A/R203K mutation became stagnant, which indicated that it 
created no new associations but solely paired with its codon partners (G28881A/R203K).

Comparison of the productivity and frequency of the mutations of concern (MoC) to their corresponding 
semantic drifts (Fig. 3b–d and Supplementary Fig. 4–6) indicated that the frequency pattern didn’t relate to how 

Figure 6.  Temporal Frequency and Productivity of selected 15 mutations. Red and blue lines indicate frequency 
and productivity (tendency to form multi-word associations) of mutations. (a) comprises four mutations of 
concern (MoC). (b) comprises of four most frequent mutations in the corpus. (c) and (d) panels comprise of 
mutations of the ’NotSevere’ and ’Severe’ categories, respectively. Note that nucleotide mutations coloured in 
black (as Unknown) are on UTRs.
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the semantics of the mutations changed. However, the productivity provided following additional hints to its 
semantic progression.

(1) A23063T/ Spike-N501Y: Just like in semantic drift, the productivity and frequency were found to be rela-
tively low/unchanged during the initial months, while the productivity was then seen to steadily increase 
post Aug2020, the frequency had a sharp rise in Jan2021 (Fig. 6a) and then substantially dropped after 
Apr2021. This sudden drop in frequency along with sustained rise in productivity may indicate that the 
fewer cases that were reported for SARS-CoV-2 infections that contained A23063T/ Spike-N501Y mutation 
still acquired new mutations for A23063T to associate with.

(2) C23604A/ Spike-P681H: Just like with other mutations of concern, this mutation’s productivity started 
around mid-2020 and kept a steady rise till productivity = 3 towards the end of the year, which approxi-
mately coincided with the drifting pattern displayed in semantic drift. But unlike A23063T, its productivity 
decreased from Nov2020 onwards to productivity = 2, just when its frequency started to pick up rapidly. 
This peculiar observation may be due to its consistency in finding the same set of partners to which it 
associates. Jan2021 was found to be the month when it increased sharply for unnormalized frequency.

(3) C23604G/ Spike-P681R: Its productivity pattern was found to be similar to its counterpart mutation, 
C23604A. However, its decline in productivity was not seen to be as sharp and sudden when compared 
with C23604A. Also, C23604G lagged in frequency rise, wherein it started to make a sharp increment after 
Jan2021.

(4) T22917G/ Spike-L452R: Here, the productivity pattern was observed to start much sooner than the rest 
of the mutations of concern. Despite low frequency during the time-slices of Mar2020 to Aug2020, it dis-
played a certain rise in productivity. A sudden collapse was observed in Sep2020, after which it garnered 
high productivity, which steadily rose to a value of four in Mar2021 and then steadily declined thereafter. 
Its frequency curve indicated a slight rise in Dec2020, but a much higher rise was after Mar2021.

Acceleration of A23063T with associated mutations. Acceleration compares the similarity between 
two terms (mutations in our case) and determines their level of convergence or divergence between two-time 
points. To exemplify the temporal drifts occurring between mutations belonging to the same signature set (i.e., a 
DTM topic), the accelerations of Signature3 mutations between two time-slices (Jan2021 to Jun2021) were plot-
ted (Fig. 7a). Interestingly, three mutations within this signature set were found to be semantic drift neighbours 
of A23063T/Spike-N501Y’ mutation (referred to as ‘SD neighbour’). These neighbours refer to mutations that 
were most recurrent as neighbouring mutations of A23063T from Oct2020 to Jun2021 (when productivity of 
A23063T started increasing rapidly).

Broadly, while the mutations of NSP protein (coloured in green) had diverged from mutations on other 
proteins, the mutations of nucleocapsid protein (coloured in yellow) displayed a certain level of positive accel-
eration with non-nucleocapsid mutations (Fig. 7a). Most of the mutations on the spike protein remained largely 
unchanged relative to each other. It was also observed that many mutations alongside their neighbours had zero 
acceleration (as shown by white patches) with respect to each other. This may highlight their strong affinity to 
remain clustered within that duration. These mutations included the consecutive (codon linked) mutations 
(G28881A/N-R203K, G28882A/N-R203K, G28883C/N-G204R), all of which did not diverge (i.e., zero accelera-
tion), which also supported the observation of productivity = 1 for G28882A/R203K (Fig. 6b). Literature evidence 
also indicated that these mutations were rarely described  separately18.

For demonstrating key mutations associated with one MoC, namely, A23063T/Spike-N501Y, we selected 
mutations of Lineage P.110 (Gamma VoC) and the neighbouring mutations derived from A23063T’s semantic 
drift and plotted their pairwise acceleration among themselves from Jan2021 to Jul2021 (Fig. 7b). Almost zero 
acceleration for neighbouring mutations (in orange bars) derived from the semantic drift of A23063T were 
observed. In other words, they did not accelerate or had diverged from a semantic point of view. However, a 
stronger level of acceleration (seen as red cells in the heatmap) were observed among mutations of Gamma 
variant (highlighted in grey). These could be prominently observed between several spike mutations, such as 
C21614T/L18F and G21974T/D138Y. C21614T/L18F notably had previously been reported for its impact on 
neutralizing some  antibodies19 and hence contributing to the immune escape of SARS-CoV-2 mutant. G21974T/
D138Y is found to be located on the N-terminal domain of S1 subunit of spike protein and has however not been 
observed to be reported extensively in the literature for the evidence of its significance. Interestingly, mutations 
T24506G/S982A, C23271A/A570D and G24914C/D1118H, which were found to be semantic drift neighbours 
of the MoC A23063T/Spike-N501Y (as shown in Fig. 7b) were also first detected in Alpha variant (B.1.1.7 UK 
variant), same as that of the  MoC20.

Figure 7c shows acceleration changes of ‘A23063T’ with the neighbouring mutations derived from A23063T’s 
semantic drift as well as mutations from the Lineage P.110. Acceleration at each time-slice indicated a change 
in the word (mutation) embedding in comparison to the previous time-slice/month. The top row in Fig. 7c 
highlights mutations whose sum of acceleration over the previous six months was the highest (from Jan2021 
to Jun2021). From these graphs, the time-slices where the mutation pair came closer or diverged semantically 
could be specifically identified. For example, while C23643T/A694V had accelerated positively in March and 
April 2021 and mutation C21614T/L18F had accelerated in Jan2021; mutation G23012A/E484K diverged largely 
in Dec2020. In contrast, the mutations with the lowest sum of accelerations (between Jan2021 to Jun2021) with 
MoC ‘A23063T’, were found initially to have a slightly diverging trend, but with time the trend approached zero 
acceleration (i.e., unchanging semantics).
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Discussion and conclusion
Dynamic topic modeling (DTM) approach employed in our study can potentially aid evolution informed viral 
classification. When associated with a parameter of a labelled dataset (such as disease severity and geography), 
it can assist in the identification of mutations and their temporal prominence as key drivers of epidemiological 
or biological events (Fig. 2). While static topic modeling is a resourceful unsupervised method for identifying 
signatures, it does not however provide diachronic insights into the frequency of any signatures. Hence, DTM 
provides additional depth by showcasing how a variant evolves and what mutations drive its evolution (Fig. 2).

The signatures, identified through an NLP approach like DTM, although may not necessarily have an appar-
ent phylogenetic relationship, they hold significance from an underlying linguistic/semantic point of view. In 
other words, here the collective mutation corpus and the context thereof directs the classification rather than 
genomic variants branching from phylogenetic clustering. Thus, the DTM methodology is a biology agnostic 
model which potentially has the capability of finding biological signatures. For instance, the Alpha variant, which 
was initially documented in the United Kingdom in Sep2020, became an epidemiological concern with rising 
cases across Europe by late  202012,13. The same has been captured quite effectively by the DTM model (Fig. 2a). 
Other geography-specific observations can be seen for the Gamma variant which was first documented in 
 Brazil21. Similarly, the Delta variant, which was reported in India (discernible proportion) and Singapore, was also 

Figure 7.  Semantic Acceleration of A23063T with associated mutations. (a) Heatmap of semantic accelerations 
between Jan2021 and Jun2021 among mutations identified from signature3 of the dynamic topic model. 
This signature consisted of mutation of concern A23063T. ’SD neighbour’ refers to mutations that were 
most recurrent as neighbouring mutations of A23063T from Oct2020 to Jun2021. (b) Heatmap of semantic 
accelerations between Jan2021 and Jun2021 among key mutations of Lineage P.115 and nine SD neighbours of 
A23063T. (c) Dynamic acceleration tracking of ten mutations from panel (b) against A23063T. The top row 
highlights five mutations with the highest sum of accelerations between Jan2021 to Jun2021. The bottom row 
highlights five mutations with the lowest sum of acceleration between Jan2021 to Jun2021.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15704  | https://doi.org/10.1038/s41598-022-20000-5

www.nature.com/scientificreports/

 captured21. Capturing such trends, in an unsupervised manner, without prior clinical information, hints towards 
the potential suitability of such NLP-related approaches in assisting the discovery/tracing of VoCs and MoCs.

Mutation peculiarity across signatures/variants can also be tracked and ascertained via linguistic approaches. 
In our study, use of TWEC model offered a neoteric approach to infer not just the mutation-mutation relation-
ship but also their evolution (Fig. 3 and Supplementary Figs. 4–6). To showcase its applicability, we focussed on 
semantic changes in mutations of concern (MoC) by considering them as words in a document. One prominent 
mutation of concern, namely A23063T/Spike-N501Y, has been purported to increase transmission by variants 
that harbour this  mutation22. The mutations on this site have been implicated in conferring dynamic stability 
to spike  protein23 It is predominantly higher in Alpha and Beta variants, both of which became major concern 
around  Dec202022,24. Figure 6 shows the frequency and productivity of a few key mutations analysed in our 
study. We could observe that the emergent high frequency of A23063T was clearly apparent from Dec2020 
onwards. However, the increment in productivity predated that of frequency, indicating that it prevailed prior 
to becoming a part of concerning variants, where its productivity peak emerged from Aug2020 onwards. Our 
observations from Fig. 3d indicated that before Aug2020, the neighbouring mutations were mostly of non-spike 
origin, possibly owing to the initialised random word (mutation) vectors due to smaller mutation vocabulary 
in early time-slices.

Another aspect in our study pertains to utilising labelled patient status annotation of a document’s (i.e., 
genome sample) affiliation to a binary category, ‘Severe’ and ‘Non-Severe’. With the help of F-scaled scores 
computed using the scattertext package, we were able to classify certain mutations that affiliate to these two 
classes. The top 10 mutations for each class are depicted in Fig. 4. Examples of delineated ‘Severe’ mutation 
were G25088T (corresponding to V1176F of spike protein) and T26149C (corresponding to S253P of ORF3 
protein), which have also been previously reported as mortality linked  mutations25. Two other spike mutations 
of the ‘Severe’ category, namely G22132T (R190S) and A22812C (K417T), have been reported earlier to be key 
members of Lineage P.110. Lysine417’s role in interaction with ACE2 receptor for infectivity obliquely substanti-
ates our severity association, although further investigation would be needed to justify this  linkage10,26. Hence, 
this category-linked linguistic method can potentially provide useful perspectives related to that class, which in 
our case related to disease severity and mutations, which can be corroborated further from a structural point of 
view. From viral evolution perspective, several mutations within SARS-CoV-2 appear to be positively  selected27 
. Some of the most prominent ones, A23403G/D614G, G28882A/N-R203K and G28883C/N-G204R, were also 
found to be high frequency nonsynonymous mutations (Fig. 6b) and appeared in multiple signatures of DTM 
model (Fig. 2b).

In the present study, we showcase NLP-driven, biologically unconventional methods for trailing the evolu-
tions of variants of concern and the associated mutations of concern. We believe that using genomic datasets 
from a linguistic perspective could supplement the ongoing efforts in understanding associations between the 
mutations of SARS-CoV-2 genomes and beyond. The NLP-methodologies undertaken, namely DTM and TWEC, 
can provide temporal insights from a regional or global perspective that may assist in variant identification, clas-
sification or even bring forth structural connections for therapeutic targeting.

Limitations
It is pertinent to note certain limitations and considerations associated with the application of temporal natural 
language processing concepts on genomic datasets. These are described below.

(a) Countering short form text for topic modeling
  It is well founded that topic modelling works best on large texts (or documents) and discovery of mean-

ingful themes (signatures) can be challenging when document size is too small. Given that mutational 
profiles observed in viral genomes are sparse, the document equivalents in genomes are inherently small 
as well. The latter however are not prone to conventional trimming for stop-word or topic general word 
(TGW) removal, thereby avoiding the aggravating challenges of short-text pre-processing. The challenges of 
short-text are further lowered in temporal approaches like DTM and TWEC, wherein time-slice and global 
corpus-based document pooling takes place. Nevertheless, the size of genomic documents (mutation profile 
in each genome) remains small, and caution must be exercised in reporting the observed topics (signatures) 
without due validations. In this study, given the small document size and huge pool of genome corpora, we 
faced computational challenges in converging on window size (for DTM, TWEC), optimal topic numbers 
and associated hyper-parameter tuning. These points need to be considered while attempting NLP rooted 
in topic modelling for mutation-profiles in genomes, especially in absence of computational resources.

(b) Time-slice selection for DTM and TWEC
  In the present study, temporal binning (or time-slices) of the documents (i.e., the genome samples) was 

taken at a monthly level. Given the fixed size of time-slice, the number of sequences captured in each win-
dow cannot be controlled. Therefore, considering that the sample size in each slice may be different and is 
confounded by number of sequence depositions over the course of the pandemic, learning of topics and 
drift occurs across heterogenous time-slices. This holds true for conventional temporal NLP on evolving 
pieces of literary documents as well. Based on data availability across different time frames, it is, however, 
possible to choose a narrower bin to get finer temporal resolution of the semantic shifts from the changes 
in the word embeddings. One must consider two aspects here, Firstly, a very small window with insuffi-
cient data can lead to spurious detection of drift. Secondly, a very large window with too many documents 
(genomes in this case) can lead to loss in tracking the putative drift. A right balance in choosing the time 
slice is therefore needed. In case of SARS-CoV-2 genome sequences, the availability of sequenced genomes 
was limited in early phase of 2020, followed by exponential rise in genome submissions by end of 2020. 
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While a weekly sampling strategy would not capture enough samples in the earlier phases, a quarterly or 
half yearly sampling was too large for later phases. Considering these points, we kept one-month window 
for the time-slices as well as for DTM and TWEC models to maintain comparable assessments.

(c) Biological interpretation of signatures, drift and scattertext
  The methodology adopted in this study for tracing topic (signature) evolution and mutational drift is 

agnostic of the underlying clinical confounders like co-morbidities, vaccination status, HLA type, gender, 
geography, etc. Consequently, caution must be exercised in associating signatures with clinical relevance. 
The identified signatures, in absence of experimental corroboration, should be treated as pieces of intel-
ligence that may complement the existing in-silico methods of target discovery. Post-hoc associations with 
clinically labelled genomes, as attempted in this study, are indeed possible for validating the signatures or 
relevance of observed drift. For e.g., as presented in Supplementary Fig 8, the intelligence generated by the 
NLP approach (particularly semantic drift) can aid targeted exploration of the structural context of the 
mutations of interest (viz. mutations drifting with respect to a mutation of concern).

(d) Considerations for clinically labelled data
  It is pertinent to highlight the limitations of the current study pertaining to utilising associated metadata 

(corresponding to patient health status) along with the genome sequences deposited by the clinicians and 
researchers at GISAID. Our choice of labelled data was rooted in the goal of a post-hoc analysis/validation 
of signatures. However, a very limited number of clinically labelled genomes were available on GISAID. 
Notably, out of nearly ~2.6 million genome sequences deposited at GISAID (accessed July 2021), only 
~77,000 genomes contained metadata specific to patient health status. Moreover, a majority of the labelled 
genomes had noisy annotations (with inconclusive severity indication). The disproportionate contribution 
of labelled genomes from different geographical regions across the world further suggested that the data 
size would be too small for considering analysing country/continent specific temporal analysis using NLP 
methods. To overcome this limitation, a pooled approach was adopted for global analysis of temporal topics 
and the mutational evolution/ drift. Nonetheless, given sufficient data availability, the proposed methodol-
ogy and analytical metrics presented this study can be executed (i) at a regional/VoC level that has good 
quality clinically labelled data, for gaining region-specific or variant-specific mutational landscape changes; 
(ii) for choosing any set of mutations (either biologically or statistically inferred), which could then be 
tracked diachronically to determine their associated mutational partners.

Methods
Data preparation. SARS-CoV-2 genomes along with associated metadata were downloaded from GISAID, 
which at the moment of collection (Jul2021) contained ~ 2.6 million samples. All the samples without patient 
health status were filtered out. Among these 77,283 filtered samples, those for which the collection date was 
complete were selected. This led to a total of 75,084 samples comprised of ~ 30,000 mutations.

To profile the mutations, we used a previously adopted  protocol28. Here, fasta files of individual genomes sam-
ples were downloaded and mapped with NCBI GenBank accession NC_045512 (GISAID ID EPI_ISL_402125/
coronavirus-2 isolate Wuhan-Hu-1) as the reference using  minimap229 (with default parameters other than ‘-cs 
-cx asm5’). Subsequently, paftools.js was used for identifying nucleotide variations (.vcf file) with respect to refer-
ence. Amino acid changes corresponding to the identified nucleotide variations were predicted using BCFtools/
csq  program30. All genome samples were binned into different time-slices, where each time-slice corresponded 
to months from Dec2019 to Jul2021, bringing to a total of 18 time-slices.

DTM training. DTM models were created with different ‘k’ values (no. of topics) from 4 to 15, while keeping 
the default values for the rest of the parameters. Unlike classical LDA, wherein the topic remains unchanged and 
choosing optimal ‘k’ value from coherence score is rather straightforward, the ‘k’ value for DTM implementa-
tion, was chosen based on how distinct each topic was in each time-slice. For this, a similarity metric was created 
that measured the difference in the top 20 most probable mutations between different topics at a given time-slice. 
This was measured using the Jaccard similarity metric. For a particular value of ‘k’, the Jaccard similarity between 
any two topics was summed across all time-slices and divided by the number of time-slices. This Paired Jaccard 
score was then summed for all pairs of topics possible for the value of ‘k’ and divided by the total no. of pairs.

k: total topics, i : one time point (month), no. of time-slices (T) = 18,  tn,  tm : any two different topics for same 
k; J: Jaccard Similarity.

The total topic number was set to 6 since its inter-topic similarity was low (Supplementary Fig. 9a) as well as 
fewer topics make it more interpretable for tracking in drift analysis.

DTM parameters. For DTM, each sample from the GISAID dataset (till the month of July 2021) was con-
sidered as a document (See Data preparation for further details). Nucleotide mutation lists from each GISAID 
genome sample were segregated according to their month of collection. These constituted the time-slices on 
which the DTM was performed with the optimal ‘k’ (no. of topics) = 6, lda_sequence_min_iter = 6, alpha = 0.01, 

P(n,m) =

∑T
i J(tin ,tim)

T

OverallJaccardscore =

∑

P

k(k − 1)/2
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rng_seed = 0. A python wrapper for Dynamic Topic Models (DTM) present in  gensim31 python package (ver-
sion 3.8) was used on top of compiled binaries of DTM from the original  paper6 to execute DTM on our corpus. 
Signature distribution (Fig. 2a) were subsequently calculated by computing the signature distribution (i.e., prob-
abilities of individual signature) for each document (i.e., genome sample) and grouping them into respective 
countries/variants and then calculating the overall proportion of signature probabilities for each. Aggregated 
probabilities of ‘most probable mutations’ in each signature (is shown in Fig. 2b) were computed by summing the 
probabilities in all time-slices, and only the top 20 mutations with the highest sum of probabilities were listed.

DRIFT skip‑gram training. To build the temporal  TWEC7 model and perform subsequent analysis, we 
modified and utilized the DRIFT  toolkit8. Hyperparameters of the Skip-gram architecture of a Word2Vec model 
like embedding size (i.e., vector dimensionality), word size (i.e., context window) and number of negative sam-
plings, affect the quality of the model. In order to narrow down towards an optimal set of hyperparameters, an 
approach similar to that incorporated by Dridi et al32 was followed. The approach was to find overlap in the clos-
est words to a target word with varying hyperparameters, yielding models that were trained on different training 
sets. The overlap (between models trained on two training sets) was measured via Jaccard similarity between the 
closest neighbouring words to a target word from each timeframe obtained from one training set vs the other. 
In our case, the top five nearest neighbours were chosen for stringent similarity testing, and the top 50 most 
frequent words were chosen as the set of target words for which the Jaccard similarity metric was computed.

Shi , Sh′i
 = top 5 closest words in training set1 and set2, J = Jaccard Similarity Score; T = No. of time-slices (18), 

W = Overall Jaccard score for one word,  Wk50 = Combined Jaccard score for top 50 most frequent words.
On this basis, the training parameters were obtained, specifically for Embedding Size, Window Size, and 

Negative Sampling (Supplementary Fig. 9b–d). Each pair of training sets whose overlap was measured via the 
‘Overall Jaccard score’ for a target word differed only by one hyperparameter value. The training parameters 
ranged from 50 to 400 for Embedding Size, 2–60 for Window Size, and 1–21 for Negative Sampling.

For embedding size, a window of 10 was first randomly fixed and different training parameters were utilized 
for tuning embedding size. For embedding size, the mean value of overall Jaccard score  (Wk50) increases rather 
sluggishly after embedding size of 100. Therefore, the embedding size was fixed at a value of 200 to lower the 
computational and time costs of training. Similarly, word size of 8 was chosen, as no significant change can be 
observed beyond that, and a smaller word size helps preserve the genomic context. A negative sampling of 14 was 
chosen as it showed a relative maximum to other values. Therefore, the final model selection had the parameters 
as Word Size = 8, Negative Sampling = 14, Embedding Size = 200.

Individual semantic drift. In this study, four mutations of concerns as reported by outbreak.info16 were 
considered. These were A23063T, C23604A, C23604G and T22917G; all belonging to spike protein. UMAP was 
used for dimension reduction of individual mutation’s embedding vectors for each time-slice. Additionally, 15 
closest similar mutations (as determined through cosine similarity) were chosen for each of those time-slices 
and were plotted as well. Distribution of neighbours (horizontal barplot) for each MoC was made by mapping 
which protein the neighbouring mutations (i.e., 15 closest semantically similar mutations) for each time-slice 
originate from and plotting them in Fig. 3d and Supplementary Figs. 4b, 5b, 6b.

Genomic loci variance. Genomic loci variance showcases the deviation in genomic positional distance 
of the neighbouring words to the target (MoC) for each time-slice (Fig. 3c and Supplementary Fig. 4d, 5d, 6d). 
It is calculated by first extracting the genomic loci position of each neighbouring mutation in a time-slice and 
computing the standard deviation of the absolute differences between the genomic position of MoC with its 
neighbouring mutations.

GP : genomic position,  PVt : positional variance of at a time-slice t.

Productivity. To understand the diachronic development of a term/word, Schuman et  al.33 described a 
method to model the life cycle of individual words with the help of a term’s frequency and productivity. ‘Term 
frequency’ signifies the frequency of occurrence of a given term in a given time-slice. In contrast, ‘Term produc-
tivity’ measures the ability of a single term to produce new, related multi-word terms. They have conceptualized 
term productivity by calculating the entropy of conditional probabilities of all n multi-word terms m that con-
tains single-word term t for each timepoint y. This is represented in the equation below:

W =

∑T
i J
(

Shi , Sh′i

)

T
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∑

W
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where f (m) denotes the absolute frequency of m.

Acceleration. To highlight the nature of similarity and the extent of convergence/divergence between two 
words across two time periods, the word-pair ‘acceleration’ was used. By finding the difference in the cosine 
similarity of the embedding vectors for a pair of words between two time-slices, the acceleration with which the 
corresponding word-pair was getting closer (or not) was computed. In other words, it was examined whether 
they are appearing more frequently in similar contexts or separating out of that context. This metric has been 
formalised by Dridi et al32 and is described below.

All distances between two words  wordi  (wi) and  wordj  (wj) were calculated by the cosine similarity between 
embedding vectors uwi and uwj.

Dynamic acceleration plot Fig. 7c shows changes in acceleration between two words at every time-slice. 
However, only ten neighbouring words/mutations were selected to display in the graphs, five of them being 
the most positively accelerating mutations and the other five being the lowest accelerating mutations. The most 
accelerating neighbour wordset and lowest accelerating wordset were chosen by calculating the sum of accelera-
tions in the past six months (i.e., Jan2021 to Jun2021) and choosing the top five and bottom five, respectively.

Severity classification of patient health status. We had previously manually annotated the patient 
health outcomes (reported in GISAID database) into ‘Asymptomatic, Mild, Severe, Fatal’  classes34. These classes 
were grouped into ‘NotSevere’ and ‘Severe’ categories to run binary classification using Scattertext package. Scat-
tertext package version 0.1.4 was used in python3 environment. It uses a criterion called ‘Scaled F-Score’ to 
find how associated words are with two categories. Terms associated to a category must have high category-
specific precision and category specific frequency (i.e., percentage of terms in the category that contain the 
term). F-score is thus the scaled harmonic mean of this precision and frequency. Scaled F-score ranges from 
− 1 to 1, wherein words closer to − 1 (red-coloured) or 1 (blue coloured) are more characteristic of category1 or 
category2, respectively. On the other hand, a word is plotted according to its frequency in both categories, i.e., 
its cartesian coordinates are its frequency (per 25,000) in category1 (i.e., the X-axis) and frequency (per 25,000) 
in category2 (i.e., the Y-axis). Points corresponding to terms were selectively labelled so that they didn’t overlap 
with other labels or points. The minimum words frequency for plotting was set to 5, resulting in 2271 words 
displayed in Fig. 4.

Tracking clusters. Many words collectively form a context, i.e., they are similar in meaning. But as each of 
the words drift, so do the semantic cluster they were part of. Therefore, one can track the transition of several 
words (i.e., mutations) as to whether they consolidate in their semantic context or disunite with time (Fig. 5). 
Here for each time-slice, mutations were clustered by first reducing the dimensions of their word embeddings 
using UMAP, then clustering them using faiss’s library for k-means clustering algorithm. The optimal number of 
clusters for each time-slice was determined using Silhouette Score module from the sklearn  package35. The result-
ing k-means cluster demarcation for a set of chosen mutations for a given month is represented using circlise 
package in R  language36.

Data availability
The datasets analysed during the current study are available in the GISAID repository (Global initiative on shar-
ing all influenza data hosted at https:// www. gisaid. org. The datasets are freely available from GISAID, access is 
however subject to free registration at https:// gisaid. org/ regis ter/ and subsequent login at https:// www. epicov. 
org/ epi3/ front end. Supplementary File 2 provides details of the data contributors for the data employed in this 
research as per the data access policy of GISAID.

Code availability
Supplementary Table 5 summarizes the links to the softwares which were utilized to generate the results described 
in this manuscript. Briefly, the integral core functionality of the algorithms used in the study were derived from 
the comprehensively documented and easy to follow  Drift8, scattertext37 and DTM (https:// radim rehur ek. com/ 
gensim_ 3.8. 3/ models/ wrapp ers/ dtmmo del. html) package. All the figures were generated by the authors using 
the data obtained from these software and plotted using matplotlib and seaborn packages.
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