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A comprehensive study 
on classification of COVID‑19 
on computed tomography 
with pretrained convolutional 
neural networks
Tuan D. Pham 

The use of imaging data has been reported to be useful for rapid diagnosis of COVID-19. Although 
computed tomography (CT) scans show a variety of signs caused by the viral infection, given a large 
amount of images, these visual features are difficult and can take a long time to be recognized by 
radiologists. Artificial intelligence methods for automated classification of COVID-19 on CT scans 
have been found to be very promising. However, current investigation of pretrained convolutional 
neural networks (CNNs) for COVID-19 diagnosis using CT data is limited. This study presents an 
investigation on 16 pretrained CNNs for classification of COVID-19 using a large public database of CT 
scans collected from COVID-19 patients and non-COVID-19 subjects. The results show that, using only 
6 epochs for training, the CNNs achieved very high performance on the classification task. Among the 
16 CNNs, DenseNet-201, which is the deepest net, is the best in terms of accuracy, balance between 
sensitivity and specificity, F

1
 score, and area under curve. Furthermore, the implementation of 

transfer learning with the direct input of whole image slices and without the use of data augmentation 
provided better classification rates than the use of data augmentation. Such a finding alleviates the 
task of data augmentation and manual extraction of regions of interest on CT images, which are 
adopted by current implementation of deep-learning models for COVID-19 classification.

Image findings have been increasingly recognized as a useful tool for rapid diagnosis of COVID-191. The use 
of chest computed tomography (CT) to detect COVID-19 symptoms has been reported to have high sensitivity 
and can predate positive tests carried out in a laboratory2–7. Latest articles on image analysis of COVID-19 can 
be further found at the European Radiology webaite8. Because of the potential utilization of CT data, hospitals 
overloaded with admissions of patients are using CT imaging to diagnose COVID-19 infection and to decide 
the order of treatment of infected patients. In fact, chest CT has an important role in urgent clinical assessment 
and decision making for treatment of COVID-19 patients who suffer from severe and worsening respiratory 
symptoms. In other words, CT scans can be used to assess the severity of the infected lungs as well as progress of 
the disease, which tremendously help medical doctors in curbing the virus. It has been suggest that examinations 
and reports of CT findings can be used as a basis for improving the quality of care for COVID-19 patents9.

While CT imaging is useful for the diagnosis of COVID-19, manual reading of the scans is time-consuming 
and subject to human error. Therefore, the need for advanced artificial intelligence (AI)-based automated image 
analysis has the potential to analyze CT scans in the assessment of COVID-19. AI-based image analysis methods 
can provide accurate and rapid diagnosis of the disease to cope with the demand for a large number of patients10. 
For example, a manual assessment of a CT scan can take up to 15 minutes, while AI-based image analysis requires 
only a few seconds. Furthermore, AI can be useful in improving clinical workflow efficiency11.

A recent baseline study on AI for automated classification of COVID-19 using the largest publicly available 
CT dataset was reported in12, which will be described subsequently as the database used in this study. This 
work used the pretrained DenseNet for the classification task. These authors adopted transfer learning and data 
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augmentation for training the pretrained deep-learning model with new image data. The rationale is that transfer 
learning can relieve the need for acquiring a large amount of training data by reusing a developed model as the 
starting point for training a new model with a different task. The data augmentation was performed by using 
a large dataset of chest X-ray images. The rationale for image data augmentation is to increase the size of the 
training dataset with plausible examples in order to improve the performance and ability of the deep-learning 
model to generalize the power of classification by getting familiar with samples of high variance.

Another recent work reported on the use of ten pretrained CNNs for classifying CT scans of COVID-19 and 
non-COVID-19 subjects13. These authors reported that ResNet-101 and Xception provided the best classification 
results on training and testing a CT dataset consisting 106 COVID-19 patients and 86 non-COVID-19 subjects. 
The CNNs were trained and tested with regions of interest extracted from the CT scans that were defined by a 
radiologist.

Other previous works on the classification of COVID-19 on CT scans were reported in14–16. A 3D deep-
learning network was developed for the detection of COVID-19 from 4356 3D chest CT scans obtained from 
3322 patients14. The network extracted both 2D local and 3D global features from the CT scans. This network, 
called COVNet, was built on the pretrained RestNet50. In15, the pretrained Inception was modified to detect 
COVID-19 using extracted regions of interest on CT scans obtained from 180 cases of COVID-19 and 79 cases of 
SARs-COV-2. In16, a total of 618 CT scans were used, consisting of 219 CT scans from 110 COVID-19 patients, 
224 CT scans from 224 patients with Influenza-A viral pneumonia, and 175 CT scans from healthy people. 
Pulmonary regions of interest were extracted from the CT scans, and pretrained ResNet-18 was used for image 
feature extraction. Finally, the Noisy-or Bayesian function was used to classify the image regions into three types: 
COVID-19, Influenza-A-viral-pneumonia, and irrelevant-to-infection.

However, it should be noted that the CT datasets used in the studies reported in13–16 are not publicly available. 
In this study, a comprehensive investigation on 16 pretrained CNNs for classification of COVID-19 using a 
publicly available CT database is presented. These pretrained CNNs reflect a variety of computational complexity 
and accuracy based on the training and testing of the ImageNet database17. Findings of this investigation 
would facilitate the timely deployment of AI-assisted tools to hospitals and clinics in terms of ease of both data 
preparation and software implementation for fighting against the pandemic.

Methods
COVID‑19 CT database.  The COVID-19 CT database used in this study is publicly available18, and its 
details are described in12. The database consists of 349 CT images containing clinical findings of COVID-19 
from 216 patients, and 397 CT images obtained from non-COVID-19 subjects. These CT images were collected 
from COVID19-related papers published in medRxiv, bioRxiv, NEJM, JAMA, Lancet, and others. Figure 1 shows 

Figure 1.   CT images: Rows 1 and 2: COVID-19, Rows 3 and 4: non-COVID-19 (aspect ratios of some images 
were rescaled to fit the figure frame).
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CT images of COVID-19 and non-COVID-19. The usefulness of this dataset has been confirmed by a senior 
radiologist of Tongji Hospital, Wuhan, China. The radiologist has performed diagnosis and treatment of a large 
number of COVID-19 patients during the virus outbreak between January and April 202018.

Implementation of pretrained CNNs.  Sixteen pretrained CNNs were investigated in this study for 
the classification of whole CT images to differentiate COVID-19 from non-COVID-19. These networks are: 
(1) SqueezeNet, (2) GoogLeNet, (3) Inception-v3, (4) DenseNet-201, (5) MobileNet-v2, (6) ResNet-18, (7) 
ResNet-50, (8) ResNet-101, (9) Xception, (10) Inception-ResNet-v2, (11) ShuffleNet, (12) NasNet-Mobile, (13) 
NasNet-Large, (14) AlexNet, (15) VGG-16, and (16) VGG-19. These pretrained networks were trained on more 
than a million images from the ImageNet database17. The pretrained networks can classify images into 1000 
object categories, such as keyboard, mouse, pencil, and many animals. As a result, these networks have learned 
rich features representing a wide range of images. The properties of these networks are described in Table 1. 
To enable the reproduction of the results reported in this study, configurations for the transfer learning are 
described as follows.

First, the layer graph from the pretrained network was extracted. If the network was a SeriesNetwork object, 
such as AlexNet, VGG-16, or VGG-19, then the list of layers was converted to a layer graph. In most pretrained 
networks, the last layer with learnable weights is a fully connected layer. This fully connected layer was replaced 
with a new fully connected layer with the number of outputs equal to the number of classes in the new data set, 
which is 2, in this study. In some pretrained networks, such as SqueezeNet, the last learnable layer is a 1-by-1 
convolutional layer instead. In this case, the convolutional layer was replaced with a new convolutional layer 
with the number of filters equal to the number of classes.

For the option of data augmentation in this study, random reflection, translation, and scaling were carried 
out. Random reflection was done in the top-bottom direction, where each image was reflected vertically with 
probability = 0.5. The range of horizontal translation applied to the input image = [− 30, 30], where the translation 
distance was measured in pixels. The horizontal translation distance was selected randomly from a continuous 
uniform distribution within the specified range. Similarly, the interval of vertical translation applied to the input 
image in pixels = [− 30, 30]. The vertical translation distance was selected randomly from a continuous uniform 
distribution within the specified interval. The range of horizontal scaling was applied to the input image, where 
the horizontal scale factor was selected randomly from a continuous uniform distribution within the specified 
interval = [0.9, 1.1]. Similarly, the range of vertical scaling was applied to the input image, where the vertical scale 
factor was selected randomly from a continuous uniform distribution within the specified interval = [0.9, 1.1].

The original whole CT images were converted into RGB images and resized to fit into the input image size of 
each pretrained CNN. For the training options, the stochastic gradient descent with momentum optimizer was 
used, where the momentum value = 0.9000; gradient threshold method = L2 norm; minimum batch size = 10; 
maximum number of epochs = 6; initial learning rate = 0.0003; the learning rate remained constant throughout 
training; the training data were shuffled before each training epoch, and the validation data were shuffled before 
each network validation; and factor for L2 regularization (weight decay) = 0.0001.

Statistical measures of classification performance.  Five statistical measures used for evaluating the 
two-class classification performance of the pretrained CNNs are accuracy, sensitivity, specificity, F1 score, and 
the area under the receiver operating characteristic (ROC) curve (AUC).

Table 1.   Properties of 16 pre-trained CNNs. *indicates NASNet-Mobile and NasNetLarge networks do not 
consist of a linear sequence of modules.

CNN Depth Size (MB) Parameters (millions) Input image size

AlexNet 8 227 61.0 227 × 227

GoogLeNet 22 27 7.0 224 × 224

SqueezeNet 18 4.6 1.24 227 × 227

ShuffleNet 50 6.3 1.4 224 × 224

ResNet-18 18 44 11.7 224 × 224

ResNet-50 50 96 25.6 224 × 224

ResNet-101 101 167 44.6 224 × 224

Xception 71 85 22.9 299 × 299

Inception-v3 48 89 23.9 299 × 299

Inception-ResNet-v2 164 209 55.9 299 × 299

VGG-16 16 515 138 224 × 224

VGG-19 19 535 144 224 × 224

DenseNet-201 201 77 20.0 224 × 224

MobileNet-v2 53 13 3.5 224 × 224

NasNet-Mobile * 20 5.3 224 × 224

NasNet-Large * 360 88.9 331 × 331
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Let the sensitivity (SEN) be the percentage of COVID-19 patients who are correctly identified as having the 
infection, and expressed as

where TP is called true positive, denoting the number of COVID-19 patients who are correctly identified as 
having the infection, FN false negative, denoting the number of COVID-19 patients who are misclassified as 
having no infection of COVID-19, and P the total number of COVID-19 patients.

Let the specificity (SPE) be the percentage of non-COVID-19 subjects who are correctly classified as having 
no infection of COVID-19:

where TN is called true negative and denotes the number of non-COVID-19 subjects who are correctly identified 
as having no infection of COVID-19, FP false positive, denoting the number of non-COVID-19 subjects who 
are misclassified as having the infection, and N the total number of non-COVID-19 subjects.

The percent accuracy (ACC​) of the classification is defined as

The F1 score is defined as the balance between precision (TP divided by TP and FP) and sensitivity:

The ROC is a probability curve created by plotting the TP rate against the FP rate at various threshold settings, 
and the AUC represents the measure of performance of a classifier. The AUC value is within the range between 
0.5 and 1, where the value = 0.5 represents the performance of a random classifier and the value = 1 indicates a 
perfect one. Thus, the higher the AUC is, the better the classifier performs. The AUC was calculated using the 
trapezoidal integration to estimate the area under the ROC curve.

Results
To compare the results with those obtained from previous reports, the dataset was randomly split into 80% for 
training and 20% for testing. The data splitting was repeated 5 times to obtain the average and standard deviation 
for each CNN. The whole CT images were used as the data input, which were resized to fit the input image size 
of each pretrained CNN, in both training and testing phases. The network training was performed for with and 
without data augmentation. Tables 2 and 3 show the classification results obtained from the 16 CNNs with and 
without data augmentation, respectively.

For the case of training the networks without data augmentation, DenseNet-201, MobileNet-v2, ShuffleNet, 
and ResNet-18 provide the average accuracy > 95%, while DenseNet-201 achieves the highest average accuracy 
(96.20%). GoogLeNet, ShuffleNet, ResNet-18, ResNet-50, ResNet-101, Inception-v3, DenseNet-201, and 
MobileNet-v2 result in the average sensitivity > 95%, while ResNet-18 has the highest average sensitivity (98.99%). 
ShuffleNet, DenseNet-201, and MobileNet-v2 provide the average specificity > 95%, while DenseNet-201 gives 

(1)SEN =

TP

P
× 100 =

TP

TP + FN
× 100,

(2)SPE =

TN

N
× 100 =

TN

TN + FP
× 100,

(3)ACC =

TP + TN

P + N
× 100.

(4)F1 =
2TP

2TP + FP + FN
.

Table 2.   Classification results with data augmentation.

CNN model Accuracy (%) Sensitivity (%) Specificity (%) F1 score AUC​

AlexNet 74.50 ± 4.40 70.46 ± 6.37 79.05 ± 8.61 0.75 ± 0.04 0.83 ± 0.04

GoogLeNet 78.97 ± 3.70 75.95 ± 13.69 82.38 ± 10.53 0.79 ± 0.06 0.91 ± 0.04

SqueezeNet 78.52 ± 7.56 91.56 ± 7.63 63.81 ± 23.79 0.82 ± 0.04 0.90 ± 0.01

ShuffleNet 86.13 ± 10.16 83.54 ± 19.89 89.05 ± 5.77 0.86 ± 0.12 0.93 ± 0.06

ResNet-18 90.16 ± 2.36 89.45 ± 7.31 90.95 ± 9.29 0.91 ± 0.02 0.96 ± 0.05

ResNet-50 92.62 ± 4.19 91.14 ± 3.35 94.29 ± 5.15 0.93 ± 0.04 0.98 ± 0.01

ResNet-101 89.71 ± 10.05 82.28 ± 20.09 98.10 ± 2.18 0.89 ± 0.12 0.97 ± 0.03

Xception 85.68 ± 6.76 90.72 ± 4.79 80.00 ± 19.64 0.87 ± 0.05 0.94 ± 0.04

Inception-v3 91.28 ± 8.25 90.30 ± 5.12 92.38 ± 11.98 0.92 ± 0.08 0.97 ± 0.02

Inception-ResNet-v2 86.35 ± 5.71 88.19 ± 6.37 84.29 ± 14.50 0.87 ± 0.05 0.95 ± 0.05

VGG-16 78.52 ± 10.02 74.68 ± 30.14 82.86 ± 15.91 0.76 ± 0.17 0.91 ± 0.04

VGG-19 83.22 ± 5.85 90.72 ± 3.19 74.76 ± 12.96 0.85 ± 0.04 0.90 ± 0.05

DenseNet-201 91.72 ± 6.52 88.61 ± 8.86 95.24 ± 4.36 0.92 ± 0.07 0.97 ± 0.03

MobileNet-v2 87.25 ± 10.46 95.78 ± 2.64 77.62 ± 21.63 0.89 ± 0.08 0.95 ± 0.04

NasNet-Mobile 83.45 ± 7.36 84.81 ± 2.19 81.90 ± 17.46 0.85 ± 0.05 0.94 ± 0.04

NasNet-Large 85.23 ± 8.25 79.32 ± 16.28 91.90 ± 5.77 0.84 ± 0.10 0.93 ± 0.05
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the highest average specificity (96.67%). ShuffleNet, ResNet-18, DenseNet-201, and MobileNet-v2 result in the 
highest average F1 score = 0.96. The top three CNNs that achieve sensitivity > 95%, specificity > 95%, and F1 score 
> 0.95 are ShuffleNet, DenseNet-201, and MobileNet-v2. DenseNet-201 is the best model for the classification 
of COVID-19 CT data. The networks that have the highest average AUC (0.98) are the ResNet family and 
DenseNet-201.

The results obtained from CNNs without data augmentation are all better than those with data augmentation 
in terms of accuracy (compare results between Tables 2 and 3). For the case of training the networks with 
data augmentation, models that have average accuracy > 90% are ResNet-18 (90.16%), ResNet-50 (92.62%), 
Inception-v3 b(91.28%), and DenseNet-201 (91.72%); models that have average sensitivity > 90% are SqueezeNet 
(91.56%), ResNet-50 (91.14%), Xception (90.72%), Inception-v3 (90.30%), VGG-19 (90.72%), and MobileNet-v2 
(95.78%); models that have average specificity > 90% are ResNet-18 (90.95%), ResNet-50 (94.29%), ResNet-101 
(98.10%), Inception-v3 (92.38%), DenseNet-201 (95.24%), and NasNet-Large (91.90%); and models that have 
average F1 score > 0.9 are ResNet-18 (0.91), ResNet-50 (0.93), Inception-v3 (0.92), and DenseNet-201 (0.92). 
Two CNNs using data augmentation that have accuracy > 90%, sensitivity > 90%, specificity > 90%, and F1 score 
> 0.9 are ResNet-50 and Inception-v3. The networks without data augmenttaion have higher or equal values for 
the average AUC than or to those with data augmentation.

In summary, without data augmentation, the best classifier is DenseNet-201, which has the best accuracy, 
best balance between sensitivity and specificity, top F1 score, and top AUC. Figure 2 shows the plot of accuracy 
versus relative training time obtained from the 16 pretrained CNNs without data augmentation.

Discussion
The benchmark results using the same database reported in12, with a fixed split data of about 80% for training and 
20% for testing, have accuracy = 84.7%, sensitivity = 76.2%, and F1 score = 0.85, using a fine-tuned pretrained 
DenseNet with data augmentation. The results obtained from the 16 CNNs without data augmentation are better 
than these benchmark results.

The study published in13 applied 10 pretrained CNN using a different COVID-19 database with the same ratio 
of training and testing data, which is not publicly available, reported among all the 10 networks, ResNet-101 
was the best classification model. ResNet-101 achieved accuracy = 99.51%, sensitivity = 100%, and specific-
ity = 99.02%. Although using a different database, the results obtained in this study are comparable. However, 
the input data processing and training reported in13 requires much effort by requiring the extraction of regions 
of interest by a radiologist, which is subjective, time-consuming, and likely hinders the real-time application of 
the pretrained networks.

The work reported in14 requires the pre-processing of 3D CT scans by extracting the regions of interest using 
a U-Net for image segmentation. The pre-processed images were then passed to the COVNet for the prediction. 
The sensitivity and specificity obtained from COVNet were 87% and 92%, respectively, using a dataset that is 
not publicly available. Another work on the classification of COVID-19 CT images collected from 259 patients 
reported in15 modified the pretrained Inception that achieved accuracy = 79.3%, sensitivity = 67%, and speci-
ficity = 83%, and another test achieving accuracy = 85.2%. Similarly, the input images are extracted regions of 
interest such as small patchy shadows and interstitial changes, multiple ground glass and infiltrates in both lungs. 
The study reported in16 used the concatenation of two pretrained ResNet-based networks and the Bayesian func-
tion for screening COVID-19 patients using CT imaging. The data pre-processing of classification procedure 
requires 3D segmentation, extraction of regions of interest (such as ground-glass appearance, striking peripheral 
distribution along with the pleura, and independent focus of infections), and data augmentation. The overall 

Table 3.   Classification results without data augmentation.

CNN model Accuracy (%) Sensitivity (%) Specificity (%) F1 score AUC​

AlexNet 86.85 ± 13.66 80.25 ± 22.49 94.29 ± 4.84 0.85 ± 0.16 0.94 ± 0.04

GoogLeNet 93.83 ± 6.97 96.71 ± 4.06 90.57 ± 10.53 0.94 ± 0.06 0.96 ± 0.04

SqueezeNet 87.52 ± 6.45 86.84 ± 10.11 88.29 ± 12.01 0.88 ± 0.06 0.94 ± 0.06

ShuffleNet 95.97 ± 5.09 95.44 ± 7.47 96.57 ± 2.96 0.96 ± 0.05 0.97 ± 0.03

ResNet-18 95.44 ± 8.02 98.99 ± 1.65 91.43 ± 15.25 0.96 ± 0.07 0.98 ± 0.03

ResNet-50 93.62 ± 6.17 95.57 ± 6.27 91.43 ± 6.06 0.94 ± 0.06 0.98 ± 0.02

ResNet-101 93.29 ± 5.69 96.20 ± 1.79 90.00 ± 10.10 0.94 ± 0.05 0.98 ± 0.02

Xception 91.11 ± 10.14 89.56 ± 12.55 92.86 ± 7.80 0.91 ± 0.10 0.96 ± 0.03

Inception-v3 93.62 ± 5.22 96.20 ± 0.00 90.71 ± 11.11 0.94 ± 0.07 0.97 ± 0.04

Inception-ResNet-v2 88.59 ± 7.59 89.24 ± 2.69 87.86 ± 13.13 0.89 ± 0.07 0.96 ± 0.05

VGG-16 89.26 ± 8.80 92.83 ± 6.24 85.24 ± 14.45 0.90 ± 0.08 0.96 ± 0.03

VGG-19 90.16 ± 7.72 87.34 ± 10.36 93.33 ± 5.77 0.90 ± 0.08 0.97 ± 0.03

DenseNet-201 96.20 ± 4.95 95.78 ± 5.27 96.67 ± 4.59 0.96 ± 0.05 0.98 ± 0.03

MobileNet-v2 95.97 ± 7.18 96.71 ± 6.04 95.14 ± 8.55 0.96 ± 0.07 0.97 ± 0.05

NasNet-Mobile 89.26 ± 8.14 91.56 ± 5.12 86.67 ± 13.27 0.90 ± 0.07 0.95 ± 0.06

NasNet-Large 88.59 ± 7.59 90.51 ± 0.90 86.43 ± 17.17 0.90 ± 0.06 0.96 ± 0.03
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accuracy obtained was 86.7%. The classification results obtained in this study are preferable to those reported 
in14–16 in terms of accuracy and implementation of input data.

Although the use of regions of interest or cropped images is widely adopted for deep learning, including 
other classification problems19–22, this study finds that the direct input of CT images, which are then resized 
to fit the input size of the pretrained CNN, and transfer learning without data augmentation can achieve very 
high and better classification performance than those using data augmentation. Such findings are useful for the 
rapid deployment of AI tools to meet the urgent demand for curbing the pandemic, because it can relieve the 
task of manual detection of regions of interest carried out by experienced radiologists, employment of image 
segmentation methods, and more data collection.

Using the described network-training configuration with only 6 epochs, the CNNs could provide a very high 
performance of classification. Figures 3 and 4 show one of the training processes of DenseNet-201 (best network) 
and some features obtained from the deep learning of the best network, respectively.

Figure 2.   Plots of accuracy vs. relative training time (ratio of training time of a network to the training time 
of the SqueezeNet) of 16 pretrained CNNs using COVID-19 CT database, where the circle size indicates the 
magnitude of memory in MB.

Figure 3.   A training process of DenseNet-201.
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As the numbers of COVID-19 and non-COVID-19 CT images used in this study are 349 and 397, respectively, 
the binary classification in this study was not much disadvantaged from the class imbalance problem, where the 
class distributions are highly imbalanced. Due to imbalanced data, classifiers tend to result in low predictive 
accuracy for the minority class. Medical datasets are often not balanced in the class labels because of limited 
samples collected from patients and cost for acquiring annotated data. There are many techniques proposed for 
addressing class imbalance , which can be applied to medical imaging, such as the “deep domain adaptation”23 
for handling the shortage of large amounts of labeled data, weighted loss method by updating the loss function 
to result in the same loss for all classes, downsampling by removing images from the majority class, and 
oversampling by adding more images to minority classes using artificial data augmentation24,25. Open challenges 
in imbalance data and exploration for solutions can be found in26.

Conclusions
AI-based medical diagnosis systems based on deep learning of medical imaging are increasingly recognized to 
be clinically useful. However, development of suitable deep-learning networks and effective training strategy for 
clinical applications is a topic of research that needs to be explored27. Through a comprehensive investigation 
of 16 pretrained CNNs using certain parameter specification and training strategy for the networks, this study 
discovers the very high performance of several of these networks for COVID-19 diagnosis using CT images. The 
network configuration of the pretrained models can be implemented for classification of other image modality, 
such as X-ray, for the detection of COVID-19.

Most AI studies on chest CT used for differentiating COVID-19 pneumonia from other causes of pneumonia 
consider both three-class classification problems (COVID-19 pneumonia, non-COVID-19 pneumonia, and 
healthy) and two-class classification (COVID-19 pneumonia and healthy)2. Due to the limit of publicly available 
data, this study concerns with the two-class classification. However, extension of the use of pretrained CNNs to 
the three-class classification of COVID-19 imaging data is straightforward.

The findings reported from this study bring benefits to the development of fast and efficient diagnostic tools 
using imaging data and contribute to further leading into the development of more accurate point-of-care diag-
nostic and detection tools for containing the coronavirus pandemic.

Data availability
The MATLAB code used in this study is available at the author’s personal homepage: https​://sites​.googl​e.com/
view/tuan-d-pham/codes​.
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