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Barriers and opportunities in pancreatic
cancer immunotherapy

Check for updates

Yixin Ju1,2, Dongzhi Xu1,2, Miao-miao Liao1, Yutong Sun3, Wen-dai Bao1, Fan Yao 1,2,4 & Li Ma 5,6

Pancreatic ductal adenocarcinoma (PDAC) presents a fatal clinical challenge characterized by a dismal
5-year overall survival rate, primarily due to the lack of early diagnosis and limited therapeutic efficacy.
Immunotherapy, a proven success in multiple cancers, has yet to demonstrate significant benefits in
PDAC. Recent studies have revealed the immunosuppressive characteristics of the PDAC tumor
microenvironment (TME), including immune cells with suppressive properties, desmoplastic stroma,
microbiome influences, and PDAC-specific signaling pathways. In this article, we review recent
advances in understanding the immunosuppressive TME of PDAC, TME differences among various
mousemodels of pancreatic cancer, and themechanismsunderlying resistance to immunotherapeutic
interventions. Furthermore, we discuss the potential of targeting cancer cell-intrinsic pathways and
TME components to sensitize PDAC to immune therapies, providing insights into strategies and future
perspectives to break through the barriers in improving pancreatic cancer treatment.

Pancreatic ductal adenocarcinoma (PDAC), accounting for 90% of pan-
creatic tumors, remains a formidable malignancy with a dismal 5-year
survival rate of merely 12%1.More than 80%of patients are diagnosed at an
advanced stage, either locally advanced or metastatic disease, rendering
curative surgical intervention futile2,3. Although gemcitabine in combina-
tion with albumin-bound paclitaxel or modified FOLFIRINOX (5-fluor-
ouracil, leucovorin, irinotecan, and oxaliplatin) has been established as the
standard first-line chemotherapeutic protocol for metastatic cases2, the
clinical median survival still falls short of 1 year4,5.

Cancer immunotherapeutic approaches, including immune check-
point blockade (ICB), chimeric antigen receptor (CAR)T-cell therapies, and
cancer vaccines, have achieved significant advancements in treating various
cancers6–8, such as melanoma, lung cancer, renal cell carcinoma, and
lymphoma9–12. However, their effectiveness in PDAC remains
disappointing6. Clinical studies utilizing immune checkpoint inhibitors
(ICIs), including anti-programmed death ligand-1 (anti-PD-L1) or anti-
cytotoxic T-lymphocyte-associated protein-4 (anti-CTLA-4) mono-
immunotherapy and combination therapy, have not been successful in
treating pancreatic cancer13–15. In a recent phase 2 trial of metastatic PDAC,
combining ICIs (durvalumab and tremelimumab) with chemotherapy

(gemcitabine and nab-paclitaxel) did not improve survival compared with
chemotherapy alone16.

The immunosuppressive tumor microenvironment (TME) in PDAC, a
major factor contributing to immunotherapy resistance, includes tumor-
infiltrating immune-suppressive cells, stromal cells, the microbiome, and the
extracellular matrix (ECM). The immune infiltration in PDAC is character-
ized by an abundance of suppressive cells, a deficiency of anti-tumor immune
cells, and immune dysfunction17–19. Exploring combination strategies invol-
ving immunotherapy and agents tailored to target these TME characteristics
has emerged as a prominent area of research in pancreatic cancer.

In this article, we review recent advances in understanding the
immunosuppressive TME of PDAC, describe TME differences among
various animal models, discuss the mechanisms of immune resistance
induced by TME and tumor cells, and summarize strategies aimed at
improving the efficacy of immunotherapy in pancreatic cancer.

Highly immunosuppressive tumor microenvironment
in PDAC
The TME of PDAC consists of various immune-suppressive cells,
including immunosuppressive myeloid cells, M2 macrophages, N2
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neutrophils, mast cells, Th2 cells, regulatory T cells, and regulatory B cells
(Fig. 1 and Table 1). On the other hand, there is notable dysfunction and
deficiency of anti-tumor immune cells, including CD8+ T cells, con-
ventional dendritic cells, natural killer cells, M1 macrophages, N1 neu-
trophils, and Th1 cells (Fig. 1 and Table 2). The suppressive immune cells
impede the cytotoxicT-cell-mediated tumor ablation effect, either directly
or indirectly through inhibition of dendritic cells. In addition, the
microbiome, stromal cells, and ECM modulate immune cell infiltration

and function, contributing to the establishment of an immunosuppres-
sive TME.

Immunosuppressive myeloid cells
Suppressive myeloid cells in the TME can be broadly categorized into
myeloid-derived suppressor cells (MDSCs) comprising granulocytic
MDSCs and monocytic MDSCs, tumor-associated macrophages (TAMs)
derived from either the bone marrow or resident tissue macrophages6,20,

Fig. 1 | The immunosuppressive TME in PDAC. a Schematic representation of the
interplay among tumor cells, tumor-infiltrating immune cells, and cancer-associated
fibroblasts (CAFs) in the PDAC TME. Tumor cells and CAFs secrete chemokines
and growth factors, such as granulocyte colony-stimulating factor (G-CSF),
granulocyte-macrophage colony-stimulating factor (GM-CSF), CXCL2/5, and
CXCL12 to recruit suppressive immune cells to tumor tissues. Pro-tumor immune
cells contribute to the exhaustion of effector T cells and the activation of CAFs.
Activated CAFs, in turn, support tumor growth through desmoplasia and

inflammatory cytokines such as IL-6; in addition, theymay cooperate withmast cells
to promote tumor cell proliferation and metastasis. Upregulation of immune
checkpoint molecules (e.g., PD-L1 and TIGIT) on tumor cells and immune cells, as
well as downregulation of MHC-I, contribute to T-cell dysfunction. b Pro-tumor
cells include myeloid-derived suppressor cells (MDSCs), M2 macrophages, N2
neutrophils, regulatory T cells, regulatory B cells, mast cells, and Th2 cells. Anti-
tumor immune cells include CD8+ T cells, dendritic cells (DC), M1 macrophages,
natural killer (NK) cells, N1 neutrophils, and Th1 cells.
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tumor-associated neutrophils (TANs), and mast cells. These myeloid cells
are recruited to the TME by various factors and attenuate anti-tumor T-cell
responses in PDAC21,22.

MDSCs.MDSCs are a subset of anti-inflammatory, immunosuppressive
cells, originating from immature myeloid cells under various patholo-
gical conditions such as chronic inflammation, cancer, and autoimmune
disease23. In pancreatic cancer, MDSCs exert immunosuppressive
functions and promote immune evasion through EGFR-MAPK-
dependent upregulation of PD-L1 expression in tumor cells24. It has
also been reported thatMDSCs deplete nutrition through arginase-1 and
the Xc- transporter, resulting in the downregulation of the T-cell
receptor (TCR) and restriction of T-cell activation6,25. In addition,
MDSCs can promote regulatory T (Treg) cell induction in a cell-cell-
dependent manner26,27. In an autochthonous PDACmodel, depletion of
granulocytic MDSCs elevated CD8+ T-cell infiltration and increased
tumor cell apoptosis28. Moreover, reducing MDSCs through loss or
inhibition of CXCR2 mitigated tumor metastasis and conferred sensi-
tivity to anti-PD-1 therapy, thus prolonging survival in mice with
pancreatic cancer29. Notably, a recent preclinical study by DePinho and
colleagues30 demonstrated that inhibition of chemokine receptors on
MDSCs (by using a CXCR1/2 inhibitor) combined with modulation of
T-cell immune checkpoints (by using a 41BB agonist and a LAG3
antagonist) could reprogram the highly suppressive tumor immune
microenvironment of pancreatic cancer. This approach led to durable
responses and survival benefits in a mouse model of PDAC, suggesting a
potential clinical strategy.

TAMs. TAMs in the PDAC TME are characterized by an enrichment of
pro-tumor M2-like phenotypes and a relatively low presence of anti-
tumor M1-like phenotypes19. The immune suppression mediated by
these pro-tumorTAMs stems from their ability to hamper the anti-tumor
activity of CD8+ cytotoxic T lymphocytes by supporting PD-L1
expression in tumor cells and depleting nutrition in T cells24,27,31. More-
over, TAMs hinder adaptive immune responses through the dectin-1/
galectin-9 axis32 and facilitate the production of immunosuppressive
factors in tumor cells, such as CXCL1 and CXCL5, through elevated
expression of apolipoprotein E (ApoE)33.

In PDAC models, reprogramming TAMs through the blockade of
receptor-interacting serine/threonine protein kinase 1 (RIP1) leads to
activation of cytotoxic T cells and differentiation of T helper (Th) cells into a
mixed Th1/Th17 phenotype34. Previous studies have revealed the pro-
tumor effects of Th2 cells and the anti-tumor effects of Th1 cells34,35. While
the precise function of combined Th1/Th17 phenotypes remains to be
defined in tumors, they appear to possess significant immunogenicity and
are associated with the downregulation of FOXP3, a biomarker of Treg
cells34. Interestingly, an exosome-based dual delivery biosystem, featuring
electroporation-loaded galectin-9 siRNA and surface modification with an
oxaliplatin prodrug, effectively reversed M2-like phenotypes of TAMs and
enhanced anti-tumor immunity in mice36. In addition to their role in
immune suppression, TAMs support cancer cells by secreting growth fac-
tors such as TGF-β37,38 and producing cytokines and chemokines that
accelerate tumor metastasis directly or indirectly39–41.

A study comparing immune infiltrates in pancreatic cancer and mel-
anoma identified VISTA (V-domain immunoglobulin suppressor of T-cell
activation) as a potential immune checkpoint primarily expressed on
CD68+macrophages in PDAC42. Targeting VISTA-positive macrophages
holds promise as a strategy to augment CD8+ T-cell responses and treat
pancreatic cancer. Furthermore, a recent preclinical study demonstrated
that dual antagonism of CCR2 and CCR5 (CCR2/5i), when combined with
radiation therapy and an anti-PD-1 antibody, resulted in a reduction in
tumor infiltration by Tregs, M2-like TAMs, and MDSCs43. Notably, this
combination treatment increased intratumoral effector andmemoryT cells,
supporting the clinical development of CCR2/5i in combination with
radiation therapy and ICB for the treatment of PDAC.T
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TANs. Neutrophils are major players in innate immunity. A single-cell
RNA-seq (scRNA-seq) analysis uncovered a terminally differentiated
subpopulation of TANs exhibiting hyperactivated glycolysis and pro-
tumor functions in PDAC, which is associated with unfavorable prog-
nosis in patients44. Pro-tumor neutrophils secrete immunosuppressive
cytokines and chemokines, thereby inhibiting the activity of cytotoxic
CD8+ T cells45. Moreover, neutrophil extracellular traps (NETs) have
been reported to contribute to immunotherapy resistance induced by
TANs.One of the inducers ofNETs, IL17, which is upregulated in PDAC,
recruits neutrophils while excluding cytotoxic CD8+ T cells from
tumors46. In preclinicalmousemodels, targetingTANswith lorlatinib has
been shown to enhance the response to PD-1 blockade, highlighting the
potential of modulating pro-tumor neutrophils in the TME as a treat-
ment strategy for PDAC47.

Aside from primary tolerance, the replenishment of TANs is a con-
tributing factor to therapy resistance in pancreatic cancer. Targeting
CCR2+ macrophages led to a compensatory influx of CXCR2+ TANs, a
phenomenon associated with poor outcomes in PDAC patients; interest-
ingly, dual inhibition of CCR2+ TAMs and CXCR2+ TANs significantly
improved anti-tumor immunity and chemotherapeutic responses in
orthotopic models of PDAC48. Similar to the plasticity of TAMs, recent
studies have revealed the plasticity of TANs—the presence of both N1 and
N2 phenotypes in the TME of PDAC patients. The N1/N2 ratios positively
correlated with CD8+ T-cell infiltration, median overall survival (OS), and
recurrence-free survival, and inversely correlated with the abundance of
tumor-infiltratingTregs49. Inmousemodels of PDAC, blockade of theTGF-
β1 receptor promoted the polarization of neutrophils into an anti-tumorN1
phenotype, thus enhancing the response of tumors to the combination
treatment with irreversible electroporation (which ablates tumors by
inducing irreversible membrane destruction of cells) and anti-PD-150.

Mast cells. Mast cells, like neutrophils and macrophages, originate from
myeloid progenitor cells. Compared with normal tissues, PDAC tissues
exhibit a significant increase in infiltration by mast cells, which promote
the proliferation and invasion of pancreatic cancer cells and contribute to
chemotherapy resistance51–54. The exact role and mechanisms by which
mast cells regulate tumor immunity in PDAC are not fully understood.
Nevertheless, it is worth noting that in preclinical models of melanoma,
combining anti-PD-1 therapy with the depletion of mast cells resulted in
tumor regression55, suggesting that mast cells may suppress the immune
response and limit the efficacy of immunotherapies.

Treg cells
Tregcells are a specializedsubset ofTcells thatmodulate effectorTcells.The
abundance of FOXP3+ Treg cells within pancreatic tumors increases
during PDAC progression and correlates with poor survival56–58. The
immunomodulatory effect of Treg cells has been studied in different
models59,60. Bar-Sagi and colleagues61 reported that Treg cells inhibit the
function of dendritic cells through direct contact, leading to the down-
regulation of dendritic cell-derived costimulatory ligands that are crucial for
CD8+ T-cell activation in PDAC. This study also demonstrated that the
elimination of Treg cells induced an effective anti-tumor immune response
in mice bearing orthotopic pancreatic tumors derived from a KPC model
(expressing mutant forms of Kras and Trp53)61. On the other hand, how-
ever, Pasca di Magliano and colleagues62 reported that the removal of Treg
cells accelerated tumor progression by reprogramming cancer-associated
fibroblasts in genetically engineered mouse models of PDAC. The con-
flicting results fromorthotopic andautochthonousmodels indicate context-
dependent crosstalk between Tregs and other cell types in pancreatic
cancer TME.

B cells
Plasma cells, a subtype of terminally differentiated B cells, play an essential
role in amplifying anti-tumor immune responses through antibody pro-
duction. However, in PDAC patients and tumor-bearing mice, cancer can

induce differentiation of naïve B cells into regulatory B cells (as opposed to
plasma cells) through Bruton tyrosine kinase (BTK) signaling, which results
in a reduction in tumor-infiltrating cytotoxic T cells, thereby contributing to
immune evasion63,64. In addition, BTK induces the programming of T(H)2-
type macrophages and diminishes CD8+ T-cell cytotoxicity by facilitating
the communication between B cells and TAMs in PDAC65. Furthermore,
extensive research has advanced the understanding of the mechanisms of
immunosuppression induced by B cells and IL-3563,66–69. Targeting B cells
throughmolecular blockade has shown promise in reducing tumor growth
and disease progression, presenting a therapeutic strategy for treating
PDAC in combination with immunotherapy63–65,68–71.

Stromal cells and extracellular matrix (ECM)
PDAC is characterized by extensive desmoplasia, where fibroblasts are the
major cell type72. A subset of fibroblasts (myofibroblasts), along with tumor
cells and macrophages, can produce a dense fibrotic matrix composed of
ECM proteins, thereby influencing the progression of PDAC and its
response to treatment73–75. The excessive desmoplastic stroma limits the
penetration of tumors by drugs and cytotoxic CD8+T cells76. Addressing
this challenge, enzymatic degradation of hyaluronic acid (HA) has been
shown to alleviate desmoplastic pressure. This approach not only expands
the microvasculature but also contributes to a 2-fold increase in overall
survival inmousemodelswhencombinedwith chemotherapy77,78. Inhuman
PDAC tissues, elevated focal adhesion kinase (FAK) activity correlates with
increased fibrosis and poor CD8+T-cell infiltration79. Treatment with a
FAK inhibitor led to a reduction in fibrosis and tumor-associated immu-
nosuppressive cells, sensitizing the p48-Cre;LSL-KrasG12D/+;Trp53flox/+

mouse model of PDAC to T-cell immunotherapy and immune checkpoint
inhibitors79. Furthermore, combining HA degradation with FAK inhibition
promoted the survival of PDAC-bearing mice treated with an anti-PD-1
antibody80; notably, this combination treatment enhanced T-cell infiltration
while concurrently reducing MDSCs.

Besides producing dense ECM, CAFs interact with immune cells and
induce immune suppression through secreted factors suchas IL-6,CXCL12,
granulocyte-macrophage colony-stimulating factor (GM-CSF), and mac-
rophage colony-stimulating factor (M-CSF)81,82. The removal of CAFs
expressing fibroblast activation protein (FAP) has been shown to inhibit
tumor growth and enhance the efficacy of anti-CTLA-4 and anti-PD-L1
antibodies in mouse models of PDAC83. On the other hand, however,
depletion of alpha smooth muscle actin (αSMA)-positive CAFs hampers
immune surveillance, leading to an increase in Treg cells and shorter sur-
vival in mice with PDAC84. Taken together with other studies73,74,85–87, these
findings underscore the functional heterogeneity of CAFs. CAFs can be
classified into inflammatory CAFs (iCAFs), αSMA+myofibroblasts
(myCAFs), and antigen-presenting CAFs (apCAFs), with a small subset of
CAFs being derived from pancreatic stellate cells74,87,88. While apCAFs
support immune evasion by inducing expansion of Treg cells89, the pro-
tumor role of iCAFs is associated with the cytokine IL-6, which suppresses
anti-tumor immunity by eliciting metabolic stress and dendritic cell
apoptosis90,91. Moreover, induction of iCAFs by IL-17A-producing
CD8+ T cells promotes PDAC progression and is associated with a poor
prognosis92. myCAFs are the major source of type I collagen in the PDAC
stroma, and depletion of type I collagen leads to upregulation of Cxcl5 in
tumor cells, which promotes the recruitment ofMDSCs and dysfunction of
CD8+ T cells, thereby accelerating pancreatic cancer progression and
decreasing survival93. Intriguingly, whereas intact type I collagen triggers
degradation of discoidin domain receptor 1 (DDR1) and impedes PDAC,
matrix-metalloprotease-cleaved type I collagen promotes PDAC growth by
activating the DDR1–NF-κB–NRF2 axis94.

Stroma-modulating drugs have shown the potential to enhance the
efficacy of ICB therapy in preclinical models of PDAC. For instance,
combination treatment with the sonic hedgehog inhibitor cyclopamine and
the chemotherapeutic drug paclitaxel increased the infiltration of
CD8+ T cells into tumors. A synergistic effect of this combination with
anti-PD-1 therapy was observed in both orthotopic and genetically
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engineered mouse models of PDAC76. More recently, the combination of
MEK inhibitor (MEKi) with STAT3 inhibitor (STAT3i) demonstrated
promising results in mitigating the polarization of iCAFs and enriching
CAFs with mesenchymal stem cell-like features. The resulting stroma
remodeling facilitated the M2-to-M1 reprogramming of TAMs, improved
the trafficking of CD8+T cells, and impeded the infiltration of myeloid
cells95. When the MEKi + STAT3i combination was added to anti-PD-1
treatment, prolonged survival was observed in PDAC-bearing mice com-
paredwith anti-PD-1 treatment alone. These findings suggest that targeting
the stromal components holds promise as a strategy to overcome immu-
notherapy resistance in PDAC. The exploration of stroma-modulating
drugs in combination with immunotherapies may pave the way for
improved treatment outcomes.

Microbiome
Recent studies have implicated the microbiome in the pathogenesis and
immune suppression inPDAC96,97. The gutmicrobiome can translocate into
pancreatic cancer tissues, modulating the tumor microbiome and altering
the immune landscape of TME97,98 (Fig. 2). Ablation of the gut microbiome
by oral antibiotics has been shown to reverse the immunosuppressive TME.
This reversal is characterized by an increase in anti-tumor interferon-γ-
producing T cells, Th1 cells, and M1 macrophages, as well as a decrease in
pro-tumor IL-17a- and IL-10-producing T cells and MDSCs, thereby
enhancing the efficacy of ICB therapy97,99. Moreover, fungus-dependent IL-
33 secretion by PDACcells plays a role in recruiting and activating Th2 cells
and innate lymphoid cells 2 (ILC2)100; these cells, in turn, contribute to
immune suppression by secreting pro-tumorigenic cytokines. In addition,
pathogenic fungi can promote PDAC progression via a mannose-binding
lectin (MBL)–C3 axis96. It has also been reported that compared with
healthy individuals, Proteobacteria, Synergistetes, and Euryarchaeota are
enriched in PDAC patients, reprograming TAMs toward a pro-tumorM2-
like phenotype through Toll-like receptor (TLR) signaling97. Intriguingly,
Lactobacillus metabolization of dietary tryptophan fosters TAM polariza-
tion toward an immune-suppressive phenotype through the aryl hydro-
carbon receptor, accelerating PDAC progression101.

Collectively, these findings highlight the complex relationship between
the microbiome and the immune response in PDAC, opening up potential
avenues for therapeutic interventions. For instance, the delivery of gut
microbiome-derivedmetabolite trimethylamineN-oxide (TMAO)has been
shown to enhance anti-tumor immunity and restrain tumor growth in

orthotopic models of PDAC. When combined with anti-PD-1 therapy,
TMAO delivery led to a significant reduction in tumor burden and pro-
longed survival compared with treatment with TMAO or ICB alone102. In a
study led byMcAllister and colleagues98, analysis of the tumor microbiome
in PDAC patients by using 16S rRNA gene sequencing revealed higher
microbial diversity in patients with longer survival. Notably, human-to-
mice fecalmicrobiota transplants fromcontrol, long-termsurvival, or short-
term survival donors differentially modulated the tumor microbiome,
tumor growth, and tumor immune infiltration98. Furthermore, a metage-
nomic analysis uncovered specific microbiome species associated with
PDAC, including enrichment of Streptococcus and Veillonella spp and
depletion of Faecalibacterium prausnitzii103. This study suggests that
microorganisms could serve as potential sources of biomarkers for pan-
creatic cancer. It should be noted that recent re-analyses of previously
reported pan-cancer microbial composition data have identified significant
pitfalls, including contamination, false positive classifications, problematic
handling of batch effects, and limitations in the machine learning approa-
ches used104, which warrant corrections and future improvement.

Immune features of PDAC metastases
The liver and lung are the common sites of metastasis in patients with
PDAC105,106. In general, patients with liver metastases have a poorer prog-
nosis compared with those with lung metastases, indicating inherent dis-
parities between these metastatic sites105,106. In mouse models of metastatic
PDAC, significant differences were observed in the TME between the liver
and the lung: whereas the liver exhibited immunosuppressive character-
istics, the lungTMEshowedhigh levels of immune infiltration and activated
immune signaling105. Using cytometry by time-of-flight, Jaffee, Fertig, and
colleagues analyzed a mouse model of metastatic PDAC and found a
reduction in dendritic cells, NK cells, cytotoxic T cells, and Th cells in the
TME of liver metastases relative to those present in lung metastases105.
Moreover, significant enrichment of PD-L1 and LAG3 was observed in the
hepatic TME, alongwith higher levels of pro-tumorigenic chemokines such
as CCL5, CCL22, and CXCL12 relative to the lung. In contrast, immune-
activating chemokines, such as CXCL9 and CXCL10, were found to be
enriched in lung metastases relative to liver metastases105.

A recent investigation of patient samples revealed significant immune
heterogeneity in PDAC recurrences across various sites including the liver,
lung, peritoneum, and local areas106. This study demonstrated low immu-
nogenicity, stemness, and innate immune responses in patients with liver

Fig. 2 | The microbiome associated with immune suppression in PDAC TME.
a Intratumoral fungus-mediated IL-33 secretion by PDAC cells recruits and acti-
vates Th2 cells and innate lymphoid cells 2 (ILC2), which stimulate tumor growth by
secreting pro-tumorigenic cytokines such as IL-4, IL-5, and IL-13. b Pathogenic
fungi promote PDAC progression by driving the complement cascade via a

mannose-binding lectin (MBL)–C3 axis. c Proteobacteria, Synergistetes, and Eur-
yarchaeota are enriched in PDAC patients, reprogramming TAM toward a pro-
tumor M2-like phenotype through Toll-like receptors (TLRs). (d) Lactobacillus-
derived indole fosters TAMpolarization toward an immune-suppressive phenotype
through the aryl hydrocarbon receptor (AhR). Figure created with BioRender.com.
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and/or peritoneal recurrences, contrasting with notable interferon-γ sig-
naling and mixed adaptive and innate immune responses in PDACs with
local and/or lung recurrences. In addition, accumulation of P2RX1-negative
neutrophils was found in PDAC liver metastases, alongside various sup-
pressive cells such as macrophages and fibroblasts, which promote meta-
static progression in the liver107–109. Furthermore, JAK-STAT–dependent
macrophage-fibroblast crosstalk was reported to facilitate liver metastatic
outgrowth in PDAC. Notably, pharmacological inhibition of STAT3 or
myofibroblastic metastasis-associated fibroblast (myMAF)-specific genetic
depletion of STAT3 restored anti-tumor immunity and reduced liver
metastases109.

TME differences among various mouse models of
pancreatic cancer
Patient-derived xenograft (PDX) models, syngeneic mouse models, and
genetically engineered mouse models (GEMMs) are widely used in pan-
creatic cancer research and preclinical drug testing110. It is important to
recognize that these models exhibit distinct TMEs, necessitating careful
selection based on the specific experimental objectives in preclinical studies.
Moreover, there is a critical need to emphasize comparative validation across
multiple models to ensure the robustness and reproducibility of findings.

Cell line-derived xenograft and PDX models of pancreatic cancer are
widely used for gene function studies and evaluation of therapeutic
approaches111. These models are categorized based on the implantation site
into orthotopic and subcutaneous models. Subcutaneous models facilitate
non-surgical implantation of tumor cells or tissue fragments, whereas
orthotopic models, despite being more technically challenging to establish,
better recapitulate tumor growth in the natural tissue microenvironment
compared with subcutaneous models. It is important to note that PDX
models require immunodeficient mice (typically nude mice, SCIDmice, or
NOD-SCID mice) to prevent immune rejection of human-derived xeno-
grafts. However, this immunodeficiency limits their utility for studying the
immune cell composition of tumors or evaluating immunotherapy efficacy.
Addressing this limitation, humanized mouse models have been developed
for immunotherapy studies. For example, Chang and colleagues112 isolated
CD34+ hematopoietic stem cells from human umbilical cord blood and
injected them into 3- to 4-week-old NSG mice to establish a humanized
model. Treatment with siRNA nanoparticles targeting PD-L1 upregulated
interferon-γ-positive CD8+T cells and inhibited pancreatic tumor growth
in thismodel, underscoring the potential of humanized PDACPDXmodels
for advancing immunotherapy research.

Syngeneic mouse models of PDAC involve implanting immunologi-
cally compatible cancer cells or tissues into mice with an intact immune
system, which distinguishes them from xenograftmodels. Thesemodels can
also be established through subcutaneous or orthotopic implantation110.
Orthotopic tumors actively interact with the tissue microenvironment,
providing a more physiologically relevant model. However, due to the
technical challenges associated with orthotopic models, subcutaneous
models remain commonly used in preclinical drug trials. It should be noted
that cell line- ormodel-dependent effects are often observed. For example, in
a study investigating the potential of a CD47 monoclonal antibody to
enhance the responseofPDACto ICIs, combination therapy targetingCD47
andPD-L1 showed synergistic inhibition of tumor growth in the Panc02 but
not in theMPC-83 syngeneic mousemodel113. This indicates that treatment
responsesmay vary betweenmodels derived fromdifferent PDAC cell lines.
scRNA-seq analysis revealed that anti-CD47 treatment reshaped the intra-
tumoral lymphocyte andmacrophage populations inPanc02 tumor-bearing
mice, resulting in increased intratumoral CD8+T cells, more active T-cell
clusters, enhancedanti-tumorpro-inflammatorymacrophages, and reduced
anti-inflammatorymacrophages113. Thesefindingsunderscore the suitability
of specific syngeneic models with intact immune systems for investigating
the intratumoral immune microenvironment and conducting preclinical
trials of immunotherapy.

GEMMs allow immunocompetent mice to spontaneously develop
pancreatic cancer, eliminating the need for exogenous implantation

methods. They have become indispensable for evaluating various ther-
apeutic strategies111. Among these models, the LSL-KrasG12D/+;Trp53flox/
flox;Pdx-1-Cre (KPC) model is a commonly used GEMM capable of gen-
erating spontaneous pancreatic tumors that closely mimic human PDAC,
with features including prominent connective tissue hyperplasia, abnormal
vascular distribution, and high metastatic potential. These tumors also
exhibit extensive infiltration of immunosuppressive macrophages and low
numbers of effector T cells110. Studies on KPCmice have demonstrated that
CD40 activation induces tumor regression through a T-cell-independent
mechanism. This finding aligns with histological analyses of human tumors
treated with a combination of CD40 agonists and gemcitabine. However,
these results differ from those observed in the implantable KPCmodel114,115,
suggesting that GEMMs may be more similar to humans in terms of the
TME and themechanisms of immunotherapy response. This highlights the
importance of model selection.

In conclusion, various PDAC mouse models exhibit significant dif-
ferences in TME and response to immunotherapy. For preclinical experi-
ments, selecting models with intact immune function, tumor pathological
features, and microenvironments similar to those of humans is important
for studying pancreatic carcinogenesis, metastasis, and immunotherapeutic
strategies.

Pancreatic cancer cell-intrinsic factors contributing to
immunotherapy resistance
In addition to the immunosuppressive TMEof PDAC cells, tumor-intrinsic
features also contribute to immune evasion (Fig. 3). KRAS mutations are
present in more than 95% of PDAC116, among which the major mutations
are G12D (40%), G12V (33%), and G12R (15%)117 (Fig. 3a). Downstream
signaling pathways and metabolic networks in mutant KRAS (mKRAS)-
driven tumors play a pivotal role in immune suppression and tumor
progression116,117. For instance, mKRAS leads to upregulation of CXCL1,
CXCL5, and GM-CSF through NF-κB, PI-3K, or MAPK pathways, fos-
tering the proliferation, maturation, and recruitment of immunosuppres-
sive myeloid cells33,118,119. Moreover, mKRAS boosts PD-L1 expression on
tumor cells through p38 andMAPKpathways, thereby activating the PD-1/
PD-L1 checkpoint and causing T-cell exhaustion24,120. In addition, mKRAS
modulates the tumor cell metabolism, increasing glucose uptake, and
aerobic glycolysis, as well as the production of reactive oxygen species
(ROS)121,122. ROS, in turn, mediates mKRAS-induced PD-L1 expression
through FGFR1 signaling122. It has also been shown that mKRAS recruits
immunosuppressive IL-17-producing T cells35 and promotes the formation
and maintenance of fibro-inflammatory stroma123.

Activation of WNT signaling is often observed in pancreatic
cancer124,125 (Fig. 3b). In PDAC,WNT pathway activation is associated with
the aberrant expression of WNT ligands. Moreover, a subset of PDAC
tumors carrymutations inRNF43, which encodes ring finger 43, a ubiquitin
ligase that inhibits WNT signaling by ubiquitinating FZD receptors and
LRP5/6 co-receptors, leading to their internalization and lysosomal
degradation126,127. The loss of RNF43 in a genetically engineered mouse
model of PDAC accelerated tumor progression and upregulated regulatory
T-cell immune checkpoint molecules, which could be a potential
mechanism of immune evasion128. In addition, lncRNA-mediated inhibi-
tion of β-catenin degradation has been observed in pancreatic cancer
cells129,130. Although current evidence indicates that WNT pathway activa-
tion is immunosuppressive in PDAC, the role ofWNT–β-catenin signaling
in regulating cancer immunosurveillancemay be cancer-type-dependent131.

In addition to KRAS mutation and RNF43 loss, downregulation of
major histocompatibility complex class I (MHC-I) contributes to immune
evasion and immunotherapy resistance due to impaired antigen presenta-
tion. Kimmelman and colleagues132 demonstrated that in pancreatic cancer
cells, an autophagy-dependent mechanism, involving the autophagy cargo
receptor NBR1, targets MHC-I molecules for lysosomal degradation. A
subsequent study revealed that progranulin from tumor cells (not macro-
phages) correlates with poor overall survival in PDAC. Inhibition of pro-
granulin effectively halted autophagy-dependent degradation ofMHC-I and
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restored MHC-I expression in pancreatic cancer cells. Moreover, antibody-
based progranulin blockade in a mouse model of PDAC impeded the
initiation and progression of tumors133. Glucocorticoid receptor (GR) sig-
naling was thought to suppress immunity by acting on immune cells134. In a
recent study, our laboratory uncovered a new role of GR as a transcriptional
activator of PD-L1 and a transcriptional repressor of MHC-I in pancreatic
cancer cells135 (Fig. 3c). In preclinical models, either genetic depletion or
pharmacological inhibition of GR promoted the infiltration and effector
function of cytotoxic T cells, leading to enhanced immune surveillance and
sensitization of pancreatic tumors to ICIs135. These findings highlight GR
signaling in pancreatic cancer cells as a tumor-intrinsic mechanism of
immune suppression and suggest that therapeutic intervention targetingGR
holds promise for improving the responsiveness of pancreatic cancer to
immunotherapy. Furthermore, it should be noted that p53, which is fre-
quently altered in PDAC, has been shown to promote antigen processing
and MHC-1 surface expression136,137. Both aspects of antigen presentation
are downregulated in p53-null and p53-mutant cancer cells136,137.

Metabolic enzymes have crucial roles in multiple aspects of cancer,
including tumorigenesis, progression, metastasis, and therapy resistance.
Recently, Sherman and colleagues138 reported that pancreatic cancer cell-
intrinsic glutamic-oxaloacetic transaminase 2 (GOT2), a key player in the
malate-aspartate shuttle, remodels TME to suppress anticancer
immunity138. Mechanistically, GOT2 promotes the transcriptional activity
of nuclear receptor peroxisome proliferator-activated receptor delta
(PPARδ) to restrict CD4+ and CD8+T-cell infiltration of the TME,
revealing a non-canonical function for this metabolic enzyme138. Moreover,
Zhang and colleagues139 showed that deficiency in quinoid dihydropteridine
reductase orchestrates a series of events culminating in the recruitment of

MDSCs, which ultimately induce immunosuppression in PDAC. In addi-
tion, pancreatic cancer cells can impair NK cell activity by competitively
depleting vitamin B6, thereby compromising anti-tumor immunity140.
Interestingly, metabolism-focused CRISPR screens have identified genes
linked to immune evasion in PDAC, including Tap1, Tapbp, and the
autophagy gene Atg7141. Furthermore, tumor cell-intrinsic deficiency in the
epigenetic regulator SETD2 has been shown to promote tumor progression
through two mechanisms: 1) by enhancing mitochondrial oxidative phos-
phorylation through interactions with a subset of lipid-rich CAFs142, and 2)
by boosting recruitment of immunosuppressive neutrophils through acti-
vation of the PI3K-AKT pathway143.

Reprogramming cancer microbiome has been linked to immune
evasion, particularly in PDAC. The collagen I (Col1) homotrimer produced
by pancreatic cancer cells fosters oncogenic signaling by binding to α3β1
integrin, resulting in the development of a tumor microbiome abundant in
anaerobic Bacteroidales in hypoxic and immunosuppressive TME144.
Deleting Col1 homotrimers in a mouse model of PDAC yielded significant
benefits, including increased overall survival, enhanced T-cell infiltration,
and improved responsiveness to anti-PD-1 immunotherapy144.

Therapeutic strategies and clinical trials of pancreatic
cancer immunotherapies
Despite anumber of breakthroughs in immunotherapies formultiple cancer
types, their clinical utility in PDAC, whether administered as monotherapy
or in combination with other therapies, has been insufficient. Nevertheless,
extensive preclinical studies and clinical trials have provided valuable
insights. In this section, we discuss three types of immunotherapeutic
strategies for pancreatic cancer treatment (Table 3): (i) targeting myeloid

Fig. 3 | Tumor-intrinsic signaling pathways associated with immune evasion
in PDAC. aMutated KRAS (mKRAS), which is permanently bound to GTP, con-
stitutively activates downstream signaling pathways, resulting in PD-L1 over-
expression and the recruitment of immunosuppressive cells to pancreatic tumors.
b Aberrant activation of the WNT–β-catenin pathway, which can be caused by
mutation of RNF43 or lncRNA-mediated inhibition of β-catenin degradation,
reduces dendritic cell recruitment by downregulatingCCL4 and upregulatingPD-L1

expression. c Lipophilic glucocorticoids (GCs) diffuse through the cell membrane
and bind to the glucocorticoid receptor (GR) in the cytoplasm of PDAC cells. This
binding induces a change in the chaperone complex bound to GR, leading to its
translocation into the nucleus. Once in the nucleus, GR activates PD-L1 expression
and represses MHC-1 expression by binding to glucocorticoid response elements
(GREs), ultimately leading to the reduction in the abundance and effector function
of tumor-infiltrating CD8+ T cells.
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cells, dendritic cells, or B cells to enhance T-cell trafficking and anti-tumor
responses; (ii) reprogramming macrophages to be tumoricidal; and (iii)
remodeling stroma cell and ECM.

Targeting myeloid cells
The reduction of immunosuppressive myeloid cells in the TME can be
achieved by blocking the chemokine-receptor axis in these cells, resulting in
diminished infiltration of myeloid cells. Targeting CD11b, CSF-1R, CCR2/
5, and CXCR1/2 has emerged as therapeutic strategies.

CD11b is an integrin molecule expressed on myeloid cells, playing a
role in chemotaxis and cellular functions. In preclinical studies, the
administration of a small-molecule agonist of CD11b led to a reduction in
suppressive myeloid cell infiltration and repolarization of TAMs toward an
anti-tumor phenotype, thereby eliciting a T-cell response. This treatment
also showed an enhancement in the therapeutic effects of an anti-PD-1
antibody145. However, a clinical trial (NCT04060342) investigating the
combination of the CD11b agonist (GB1275) with gemcitabine, nab-
paclitaxel, andpembrolizumab (ananti-PD-1antibody)was terminateddue
to the lack of a clear benefit in PDACpatientswhenGB1275was used either
as a monotherapy or in combination with pembrolizumab146.

In an orthotopic model of PDAC, blocking CSF-1R not only reduced
TAM infiltration but also reprogrammed TAMs to enhance T-cell activa-
tion, resulting in increased efficacy of anti-PD-1 and anti-CTLA-4147.
Unfortunately, clinical trials combining an anti-CSF-1R antibody with
immunotherapy for PDAC treatment have not yielded satisfactory results
thus far. For example, a phase 1a/b single-arm study combining the anti-
CSF-1R antibody cabiralizumab with PD-1 blockade (nivolumab)
demonstrated discouraging outcomes with an objective response rate
(ORR) of 6.0%, amedian overall survival (OS) of 5.6months, and amedian
progression-free survival (PFS) of 1.7 months (NCT02526017)148. More-
over, a phase 2 clinical study evaluating cabiralizumab in combination with
nivolumab and chemotherapy did not improve PFS in patients with
advanced PDAC (NCT03336216)6,149. Currently, several ongoing trials are
testing the combination of small-molecule CSF-1R inhibitors with immu-
notherapy in pancreatic cancer. One such trial is a dose escalation phase
1 study evaluating the safety and efficacy of a small-molecule CSF-1R
inhibitor (pexidartinib) combined with an anti-PD-L1 antibody (durvalu-
mab) in patients with metastatic/advanced pancreatic or colorectal cancer
(NCT02777710)150.

Chemokine receptors, CCR2/5 and CXCR2, play a crucial role in
facilitating myeloid cell infiltration into the TME43,48. Blocking these path-
ways has emerged as a potential strategy to overcome immunosuppression.
A phase 1b trial investigating the combination of the CCR2 inhibitor PF-
04136309with FOLFIRINOXnot only demonstrated safety but also yielded
an ORR of 49% and a disease control rate (DCR) of 97%, surpassing the 0%
ORR and 80% DCR observed in the FOLFIRINOX alone group151. How-
ever, a phase 2 trial of PF-04136309 in combination with gemcitabine and
nab-paclitaxel was terminated due to toxicity and a lack of superior efficacy
compared with the gemcitabine plus nab-paclitaxel group152. Several early-
phase clinical trials combining BMS-813160 (a CCR2/5 dual antagonist)
with ICIs and chemotherapy or vaccines are underway (Table 3). Mean-
while, targetingCXCR2withAZD5069 in combinationwith an anti-PD-L1
antibody inpatientswithmetastatic PDACresulted indisappointing results,
with an ORR of 5.6%, OS of 2.8 months, and PFS of 1.6 months
(NCT02583477)153. Currently, an early-phase clinical trial investigating a
CXCR1/2 dual inhibitor (SX-682) plus an anti-PD-1 antibody (nivolumab)
is recruiting patients with metastatic pancreatic cancer (NCT04477343)154.

Targeting dendritic cells
Pancreatic cancer often exhibits a paucity and dysfunction of dendritic cells,
which underlies poor infiltration and effector function of T cells90,155,156.
Restoring dendritic cells in PDAC might enhance anti-tumor immunity.
CD40, a member of the tumor necrosis factor (TNF) receptor superfamily,
holds the capacity to license dendritic cells for promoting anti-tumor T-cell
activation157. Several formulations of agonistic CD40 antibodies have

undergone testing in preclinical and clinical settings, demonstrating toler-
ability and feasibility. DeNardo and colleagues156 engineered a neoantigen-
expressingmousemodel of PDACand showed that enhancingdendritic cell
infiltration and activity using FLT3 ligand along with an agonistic CD40
antibody resulted in increased intratumoral CD8+ cells and prolonged
survival when combined with radiation therapy. Currently, early-phase
clinical trials are in progress, evaluating the combination of the agonistic
CD40 antibody and FLT3 ligand with anti-PD-1, gemcitabine, and nab-
paclitaxel for treating pancreatic cancer and other advanced cancers (e.g.,
NCT03329950)158.

Dendritic cell vaccination has emerged as a strategy to enhance anti-
tumor immunity159. In a syngeneic Panc02 model of pancreatic cancer,
combining dendritic cell-based vaccination with gemcitabine significantly
improved the survival of tumor-bearingmice comparedwith vaccination or
gemcitabine alone160. Moreover, the combination of an allogeneic tumor
lysate-loaded dendritic cell vaccine with an agonistic CD40 antibody sig-
nificantly increased survival in a mouse model of pancreatic cancer, which
was accompanied by an increase in CD8+T-cell infiltration161. A recent
phase 1 clinical trial involving 10 patients with resected PDAC demon-
strated the safety of an allogeneic tumor lysate-loaded autologous dendritic
cell vaccine, with seven out of 10 patients showing no recurrence or pro-
gression at amedian follow-up of 25months162. An ongoing phase 1 clinical
trial is evaluating the safety and efficacy of a tumor lysate-loaded dendritic
cell vaccine in combination with an agonistic CD40 antibody in patients
with metastatic PDAC following FOLFIRINOX chemotherapy
(NCT05650918)163.

Targeting B cells
BTK-dependent crosstalk betweenB cells andTAMshas been identified as a
driver of PDAC growth. In mice bearing PDAC, the use of a BTK inhibitor
(ibrutinib) led to the restoration of anti-tumor immunity, inhibition of
pancreatic tumor growth, and enhanced responsiveness to standard-of-care
chemotherapy65. However, a phase 3 clinical trial combining ibrutinib with
gemcitabine and nab-paclitaxel failed to show improvements in PFS and
overall survival in PDAC patients compared with the placebo plus gemci-
tabine/nab-paclitaxel cohort164. Meanwhile, the combined treatment with
acalabrutinib (a second-generation BTK inhibitor) and pembrolizumab
produced modest clinical benefits, with an ORR of 7.9% and a DCR of
21.1%, compared with the 0% ORR and 14.3% DCR observed in the aca-
labrutinib monotherapy group165.

Reprogramming macrophages
Beyond its role in activating conventional dendritic cells, CD40 activation
has been found to reprogram macrophages into tumoricidal TAMs in
PDAC-bearing mice115. However, in a randomized phase 2 trial involving
105 patients with PDAC, sotigalimab, an agonistic CD40 antibody, did not
demonstrate survival benefits when combined with chemotherapy (gem-
citabine/nab-paclitaxel) and an anti-PD-1 antibody (nivolumab)166. Cur-
rently, a phase 1 clinical trial is recruiting patients withmetastatic PDAC to
assess the response to gemcitabine/nab-paclitaxel in combination with the
anti-CTLA-4 antibody ipilimumab plus nivolumab, hydroxychloroquine,
or NG350A (a CD40 agonist) (NCT04787991)167. In addition to CD40
agonism, the cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2)
antagonist has demonstrated the induction of T-cell-dependent repro-
gramming of TAMs to be tumoricidal, reducing tumor burdens by
enhancing phagocytosis in orthotopic models of PDAC168. A phase 1 trial
evaluating the combination of the cIAP1/2 antagonist ASTX660 with the
anti-PD-1 antibody pembrolizumab is recruiting patients with pancreatic
cancer or other solid tumors (NCT05082259)169.

CD47 expressed on tumor cells acts as a “don’t eat me” signal by
engaging signal-regulating protein alpha (SIRPα) expressed on macro-
phages, thereby blocking phagocytosis. This phagocytic checkpoint has
gained attention as an attractive target for immunotherapy170. Given the
substantial T-cell dysfunction and exhaustion observed in PDAC and other
“cold” tumor types, macrophage-based therapeutic strategies have emerged
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to address resistance to T-cell-based immunotherapy21. A phase1/2 clinical
trial is currently recruiting patients to evaluate the safety and efficacy of
PT886, a bispecific antibody targeting both CD47 and claudin 18.2—a
tumor antigen that is overexpressed in PDAC (NCT05482893)171.

Targeting stroma
Following encouragingpreclinical studies, clinical trials focusedon targeting
PDAC stroma to enhance therapy responses have emerged. In preclinical
models, the degradation of hyaluronan by PEGPH20 demonstrated a sig-
nificant survival benefit when combined with gemcitabine77,78. In PDAC
patients not selected for tumor hyaluronan status, the addition of PEGPH20
to FOLFIRINOX led to increased toxicity and a reduced median OS
(7.7 months compared with 14.4 months in the FOLFIRINOX alone
group)172.On theother hand, in a randomizedphase 3 clinical trial involving
patients with hyaluronan-high metastatic PDAC, the combination of
PEGPH20 with gemcitabine/nab-paclitaxel improved the ORR but did not
increaseOS or PFSwhen comparedwith the placebo plus gemcitabine/nab-
paclitaxel arm173. Currently, a phase 2 trial is evaluating the combination
treatmentwithPEGPH20andpembrolizumab inpatientswithhyaluronan-
high metastatic PDAC (NCT03634332)174.

In a genetically engineeredmousemodel of PDAC, the administration
of an FAK inhibitor led to a reduction of fibrosis and increased sensitivity to
immunotherapy (anti-PD-1 plus anti-CTLA-4)79. A phase 1 study
demonstrated that the combination of defactinib (a small-molecule inhi-
bitor of FAK)withPD-1blockadeplus gemcitabine resulted in stabledisease
in 11 out of 20 patients with metastatic PDAC175; this outcome was
accompanied by an increase in CD8+ T cells and a decrease in Tregs,
macrophages, and stromal cells. Currently, a phase 2 trial is underway to
evaluate the efficacy of pembrolizumab plus defactinib following che-
motherapy as a neoadjuvant and adjuvant treatment in patients with
resectable PDAC (NCT03727880)176.

CXCL12, produced by FAP+ CAFs, inhibits T-cell infiltration in
pancreatic cancer. In a preclinical model of PDAC, pharmacological inhi-
bitionofCXCR4, the cognate receptor ofCXCL12, enhanced the anti-tumor
efficacy of PD-L1 blockade83. A phase 1 study investigated the safety and
tolerability of the CXCR4 antagonist LY2510924 in combination with the
anti-PD-L1 antibody durvalumab, revealing modest clinical benefits, with
three out of eight patients achieving stable disease177. Of note, a recent phase
2 trial assessing the combination of BL-8040 (a CXCR4 antagonist), pem-
brolizumab, and Onivyde (topoisomerase I inhibitor) demonstrated
encouraging results, including anORRof 32%, aDCR of 77%, and duration
of response (DOR)of 7.8months inpatientswithmetastatic chemotherapy-
refractory PDAC178.

The JAK-STAT pathway activates pancreatic stellate cells (PSCs) and
induces inflammatory CAFs, contributing to immunosuppression in
PDAC81,87,179. In a phase 2 study of ruxolitinib, a small-molecule JAK1/JAK2
inhibitor, in combination with the chemotherapeutic agent capecitabine,
there was no observed benefit in OS generally, but a significant increase in
OS was noted in patients with systemic inflammation compared with the
placebo plus capecitabine group180. Unfortunately, two subsequent rando-
mized phase 3 studies combining ruxolitinib and capecitabine for treating
advanced/metastatic pancreatic cancer showed no improvement in OS or
PFS181. Currently, a phase 1 clinical trial combining ruxolitinib, retifanlimab
(an anti-PD-1 antibody), and trametinib (a MEK inhibitor) is recruiting
patients with metastatic PDAC (NCT05440942)182.

Discussion
Both pancreatic cancer cell-intrinsic signaling pathways and the TME play
significant roles in immune suppression, contributing to the inherent
resistance of pancreatic cancer to immunotherapy. Various therapeutic
strategies, when combined with immunotherapy, have shown encouraging
results in preclinical studies. However, the translation of these findings into
clinical benefits has been challenging thus far. It is crucial to elucidate the
mechanisms by which human PDAC evades immune surveillance and to

devise approaches that effectively overcome immunotherapy resistance in
patients. It should be noted that unrestricted cell death or tissue damage
induced by chemotherapymight lead to an immunosuppressive TME183. In
contrast, radiation therapy was reported to enhance the response to
immunotherapy in patients with microsatellite-stable pancreatic cancer184.

Improving pancreatic cancer immunotherapy involves exploring
various strategies. Some key strategies and future perspectives include: (1)
combination therapies: combining different immunotherapeutic agents,
including inhibitors of established and newly discovered immune check-
points, with targeted therapies or other immunomodulators, may enhance
the overall anti-tumor response. (2) Stroma-targeted approaches: targeting
the dense stroma in pancreatic cancer to reduce fibrosis holds promise for
improving drug delivery and enhancing immune cell infiltration. (3) Vac-
cine development: developing personalized cancer vaccines based on indi-
vidual tumor profiles has the potential to stimulate a specific and robust
immune response against cancer cells. (4) Bispecific antibodies: designing
antibodies that can simultaneously target multiple antigens is likely to
enhance their specificity and efficacy in engaging immune cells against
cancer. (5) Adoptive cell therapies: CAR T-cell therapies, which use
genetically engineered T cells directed to specific cancer-associated antigens
to elicit cytotoxic activity, represent a promising therapeutic modality,
although significant challenges exist for CAR T-cells to infiltrate the
immunosuppressive TME of pancreatic tumors. (6) Biomarker identifica-
tion: identifying reliable biomarkers to predict the response to immu-
notherapywill allow for better patient stratification and treatment selection.
(7) Clinical trial innovation: designing innovative clinical trials to test
emerging therapies and combinations can ensure a rapid translation of
promising preclinical findings into clinical benefits.

These strategies are active areas of research and development, with the
potential to significantly impact the future of pancreatic cancer immu-
notherapy. In addition, investigating strategies for early detection of pan-
creatic cancer will enable timely intervention, potentially improving the
success of immunotherapeutic approaches.
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