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Abstract

Background: With the challenges that dengue fever (DF) presents to healthcare systems and societies, public
health officials must determine where best to allocate scarce resources and restricted budgets. Constrained
optimization (CO) helps to address some of the acknowledged limitations of conventional health economic
analyses and has typically been used to identify the optimal allocation of resources across interventions subject to a
variety of constraints.

Methods: A dynamic transmission model was developed to predict the number of dengue cases in Thailand at
steady state. A CO was then applied to identify the optimal combination of interventions (release of Wolbachia-
infected mosquitoes and paediatric vaccination) within the constraints of a fixed budget, set no higher than cost
estimates of the current vector control programme, to minimize the number of dengue cases and disability-
adjusted life years (DALYs) lost. Epidemiological, cost, and effectiveness data were informed by national data and
the research literature. The time horizon was 10 years. Scenario analyses examined different disease management
and intervention costs, budget constraints, vaccine efficacy, and optimization time horizon.

Results: Under base-case budget constraints, the optimal coverage of the two interventions to minimize dengue
incidence was predicted to be nearly equal (Wolbachia 50%; paediatric vaccination 49%) with corresponding
coverages under lower bound (Wolbachia 54%; paediatric vaccination 10%) and upper bound (Wolbachia 67%;
paediatric vaccination 100%) budget ceilings. Scenario analyses indicated that the most impactful situations related
to the costs of Wolbachia and paediatric vaccination with decreases/ increases in costs of interventions
demonstrating a direct correlation with coverage (increases/ decreases) of the respective control strategies under
examination.

Conclusions: Determining the best investment strategy for dengue control requires the identification of the
optimal mix of interventions to implement in order to maximize public health outcomes, often under fixed budget
constraints. A CO model was developed with the objective of minimizing dengue cases (and DALYs lost) over a 10-
year time horizon, within the constraints of the estimated budgets for vector control in the absence of vaccination
and Wolbachia. The model provides a tool for developing estimates of optimal coverage of combined dengue
control strategies that minimize dengue burden at the lowest budget.
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Background

Dengue fever (DF) is the most common vector-borne
disease in Thailand as a result of rising incidence and in-
creasing geographical incursion [1]. The main vectors of
transmission for dengue in Thailand are the female mos-
quitoes of the Aedes Aegypti species and, to a lesser
extent, Aedes Albopictus, with both prevalent in the
country. All four of the dengue virus serotypes (DENV-
1, DENV-2, DENV-3, DENV-4) circulate in Thailand [2]
and have historically been associated with major dengue
outbreaks in the country.

At present, the widespread prevention and control of
DF is limited to the avoidance of mosquito bites and
vector control measures, primarily based on insecticides
and community engagement for environmental manage-
ment initiatives [3]. Treatment consists primarily of sup-
portive care, in the absence of licensed antiviral
prophylactic or therapeutic treatments [4]. The dengue
control strategy in Thailand is derived from World
Health Organization (WHO) guidelines [3] consisting of
three key elements: 1) avoiding transmission by prevent-
ing mosquito bites of people infected with dengue; 2) ac-
tive community detection of non-consulting cases; and
3) vector control strategies comprising environmental
management, source reduction, and chemical interven-
tions (adulticide and/ or larvicide) [5].

With respect to dengue control by means of vaccin-
ation, only one dengue vaccine has been licensed, al-
though uptake to date has been limited [6, 7], due in
part to complex eligibility requirements amongst other
factors [6]. A number of other dengue vaccines are
under investigation, although at different stages of the
development lifecycle with, for example, Phase 3 overall
dengue vaccine efficacy results being recently published
(and publicly presented) [8, 9].

In addition to the more traditional methods of vector
control highlighted above, innovative ‘technologies’ are
also undergoing evaluation, including the release of Wol-
bachia infection, which reduces the ability of Aedes
Aegypti mosquitoes to transmit dengue, zika, chikun-
gunya, and yellow fever [10, 11]. Female mosquitoes in-
fected with the bacteria can pass this to their progeny
and spread Wolbachia vertically across the generations.
There is growing evidence of the effectiveness of large-
scale deployments of Wolbachia-infected mosquitoes
across different geographies resulting in substantive de-
creases in dengue incidence [12-14].

With the challenges that DF poses to healthcare sys-
tems and society at large, public health officials must de-
termine where to allocate scarce resources to manage
these problems and response(s). Cost-effectiveness ana-
lysis (CEA) is often used for healthcare resource alloca-
tion with the optimal allocation of resources achieved by
selecting interventions in increasing order of their

Page 2 of 14

incremental cost-effectiveness ratios [15]. In a compan-
ion piece to the current study [16], a CEA was carried
out to assess the impact of different control interven-
tions in Thailand, focusing primarily on historical forms
of vector control, but also anticipating new control strat-
egies in the form of vaccination against dengue and Wol-
bachia-infected mosquitoes.

The emphasis of such analyses is on value for money,
i.e. whether interventions are worth the ensuing invest-
ment, rather than who pays for it. Accordingly, CEAs
highlight what decision-makers ideally should do, but
not necessarily what they are practically able to do
(within the potential budget available). As Sendi et al.
[17] indicate, ¢ ... decision-makers are increasingly con-
strained by a fixed-budget and may not be able to fund
new more expensive interventions, even if they have
been shown to represent good value for money. CEA
does not directly address this challenge, with commenta-
tors asserting that for local decision-makers, the criter-
ion for determining how to spend public money (in the
form of CEA) should be associated with the budget
available for allocation [18].

Constrained optimization (CO) in the field of oper-
ational research (OR) assists in addressing some of the
limitations of conventional health economic analyses
and has been used to identify the optimal allocation of
resources across interventions subject to a variety of
constraints [19-21]. In two position papers, the Inter-
national Society for Pharmacoeconomics and Outcomes
Research Optimization Methods Good Practices Task
Force underlined the facility of CO methods in health-
care when resources are constrained [22, 23]. Historic-
ally, OR methodologies have successfully been employed
in a variety of optimization problems arising in health-
care [24—26]. In the field of infectious diseases, Brandeau
[27-34] highlighted how OR-based models can help de-
termine resource allocation that maximizes health bene-
fits, providing important input into decision-making
processes. In a similar vein, the identification and evalu-
ation of optimal strategies to minimize infectious disease
(subject to constraints) has also been explored by other
authors by means of mathematical models, for example,
in the determination of the most effective combination
of preventive interventions for malaria [35, 36], human
papillomavirus infection and cervical cancer [37, 38],
and DF [39-42], amongst others [43, 44].

In this paper, we take up where the previous analyses,
focused on CEA, concluded [16]. The CO approach ap-
plied in this study endeavours to provide decision-
makers/ stakeholders with additional practical informa-
tion when a proposed budget constraint is explicitly con-
sidered. The objective is not to make recommendations
concerning specific control frameworks and/ or practical
implementation for Thailand; rather, as highlighted, to
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complement CEA evidence as well as provide further in-
sights into prioritizing and combining dengue control
strategies.

The paper is organized as follows. First, we present a
mathematical model of DF transmission with vaccin-
ation and Wolbachia as control interventions, economic-
ally assess the strategies under examination and propose
a CO problem, the aim being to identify the optimal
combination of these two interventions, within the con-
straint of a fixed budget, to minimize the number of
dengue cases compared to steady state. We conclude
with a discussion and next steps.

Methods

Resource allocation for infectious disease management
Objective function

Two separate and complimentary objective functions
were used, namely, number of dengue cases (i.e. incident
number of DF cases) and disability-adjusted life years
(DALYs) lost. Number of dengue cases formed the pri-
mary objective function in base-case analyses, with
DALYs lost as secondary.

The impact of interventions (including cumulative
costs and effects) was estimated over a 10-year time
horizon following intervention initiation. This follow-up
period is believed to correspond to a reasonable time-
scale for public health decision-makers [45, 46].

Decision variables
Vaccination: acts on susceptible individuals with outputs
governed by the balance between vaccine efficacy, vac-
cination coverage, and waning of protection. Similar to
Knerer et al. [16], we used a dengue vaccine profile ap-
proximately consistent with (dengue) vaccines in late
stage development and applied certain assumptions in
this regard. The vaccine was assumed to have an overall
protective efficacy of 73% (50 and 80% examined in sce-
nario analysis) in all populations and against all grades
of DF and an assumed duration of protection of 10 years.
Additionally, it was assumed that the vaccine is effective
after a course of vaccination, protects both seronegatives
and seropositives, and has no adverse events or serious
adverse events (breakthrough cases). Consistent with
analyses undertaken in previous studies [16, 47], it is as-
sumed that dengue vaccination would form part of rou-
tine paediatric vaccination and fit into existing child
immunization schedules at age 1year and under (in the
current model, vaccination is administered at birth).
When considering vaccination in combination with
Wolbachia, it was assumed that vaccination coverage
had arrived at steady state with no delay in imple-
mentation, i.e. there was no ramp-up period.
Wolbachia: This is a potential intervention for arbo-
virus control, demonstrating the ability to circulate
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amongst wild Aedes aegypti populations in field trials
[48, 49] and with applications to chikungunya and zika
virus as well as to DF, which share the same vector of
transmission [50]. Potential outcomes of Wolbachia in-
fection may include reduced egg-laying rates, reduced
mosquito population, shorter (mosquito) lifespan and re-
duced transmission capabilities, which can greatly de-
crease the potential to spread mosquito-borne viral
diseases (such as referred to above). A Wolbachia re-
placement strategy and mechanism of action involves
the release of Wolbachia-infected mosquitoes into the
natural mosquito environment, which subsequently mix
and breed with native wild mosquitoes. Wolbachia infec-
tion takes place during reproduction resulting in the
transformation of wild-type mosquito environments into
Wolbachia-infected environments as the process repli-
cates itself over generations of mosquitoes. Researchers
have captured relevant differences between mosquitoes
(Wolbachia-infected/ non-Wolbachia-infected) both ex-
plicitly (i.e. modelling Wolbachia-infected mosquitoes)
and/ or implicitly (i.e. focusing on parameters affected
by Wolbachia) in assorted models of differing complexity
(e.g. Dorigatti et al. [51], Ndii et al. [52], Xue et al. [53],
Shen [54], Bafiuelos et al. [55], O'Reilly et al. [56]). Scaling
factors are variously used to reflect evidence of, for ex-
ample, changes in birth/ reproduction/ maturation rates
(from aquatic to adult mosquito stage), mortality and bit-
ing rates, and human vector transmissibility [52, 53] due
to Wolbachia infection. In this regard, mortality rates of
Wolbachia-infected mosquitoes (wMel strain) are higher
than non-Wolbachia vectors, as evidence shows that Wol-
bachia infection reduces the mosquito lifespan [51-54].
Similarly, Wolbachia infection is thought to hinder mos-
quito feeding and decrease the (successful) biting rate [52,
53] due to a condition known as bendy proboscis. In turn,
a reduced biting rate also means that the overall human-
to-vector transmission rate is reduced, as some Wolba-
chia-infected mosquitoes may not be infected with dengue
virus due to a process known as ‘viral replication inhib-
ition’ [52, 53, 55].

Given the somewhat exploratory nature of these ana-
lyses, we made a number of simplifying assumptions and
compared long-term epidemiological projections with
another study [51] as a basic validation check. In the
previous analysis, dengue disease was suppressed for ap-
proximately 25 years before any meaningful rebound in
incidence was observed [51]. We focused only on the
situation where Wolbachia-infected mosquitoes arrive to
steady-state/ fixation in the (mosquito) population after
a period of release and the possibility to reduce or elim-
inate the disease in the human population. Accordingly,
factors such as the necessary and sufficient conditions
for Wolbachia penetration and propagation in the Aedes
aegypti population or optimal release strategy are not
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considered. Model parameters impacted by Wolbachia
infection, including mosquito death and biting rates, and
transmissibility of infection, are modified (using scaling
factor estimates derived from the literature), to convert
non-Wolbachia parameters to Wolbachia-infected param-
eters [52, 53]. The scaling factors used in the analysis are
presented in Table 1. In a previous study by the authors
[16], a model-based analysis estimated a country wide
Wolbachia release programme in Thailand would result in
a decrease of approximately 84% in disease burden over
10 years (using the same scaling factors referred to above).
This is broadly consistent with estimates from the litera-
ture referenced above as well as a model-based analysis
predicting that a nationwide Wolbachia replacement
programme instigated in Indonesia (100% coverage)
would prevent approximately 86% of cases in the longer
term [56].

Budget constraints
The purpose of the budget constraint(s) is to approxi-
mate real-life settings, where decisions are formulated
within a limited budget and very high levels of both vac-
cination and Wolbachia are unlikely to be fully realized.
In the current context, the overall (available) budget was
constrained to be no higher than cost estimates of the
current vector control programme.

Cost estimates of vector control of $0.396, $0.66, and
$1.056 per capita per year for sustained vector control in

Table 1 Parameter notation, values, and sources

Page 4 of 14

Thailand, representing lower bound, base case, and
upper bound estimates, respectively, were derived from
Fitzpatrick et al. [59]. This equates to (discounted)
budget constraints of approximately $251, $368, and
$589 million (2013 United States Dollars) for lower
bound, base case, and upper bound estimates respect-
ively, for Thailand over 10 years.

Optimization routine

Simulation output suggests that the output surface for
each of the objective functions is an inclined plane, with
a small amount of curvature. As a result, we opted to
perform a grid search to identify the best combinations
of interventions to use that satisfy the budgetary con-
straints. As the search space is relatively low-
dimensional and the simulation model runs moderately
quickly, this is a reasonably efficient method for identify-
ing the best mix. If the number of decision variables
were to increase, more sophisticated optimization
methods would be required.

In the grid search, the parameter space of the respect-
ive interventions (i.e. vaccination coverage 0-100% and
Wolbachia [release] coverage 0—100%) is divided by 100
and then 10,000 simulations (i.e. 100 x 100) are run. The
programme eliminates all combinations that exceed the
pre-specified budget constraint and retains only those
permutations that fall within the programme scope. The
process then concludes with the presentation of the

Symbol Definition Value Data source
Un Human birth rate = death rate 1/(70 x 365)  [47]

Ly Vector mortality rate (non-Wolbachia) 12 days’1 [57]

T, Average extrinsic incubation rate 9 days’1 [57]

Th Average intrinsic incubation rate 7 days™ [57]

¥h Human recovery rate 6 days ™’ [58]

Bhv Transmission probability, vector (non-Wolbachia) to host 0.186 Modelled
Bun Transmission probability, host to vector (non-Wolbachia) 0.186 Modelled
b, Biting rate (non-Wolbachia) [0, 1] [57]

€ Vaccine efficacy 73% Assumed?
S Waning rate at which temporarily protected individuals with dengue vaccine become partly susceptible to DF 10 years Assumed
p Proportion (coverage) of population vaccinated at birth [0, 1] Modelled
[ Vector mortality rate (Wolbachia) 1.10 % [52, 53]
Ty Average extrinsic incubation rate (Wolbachia) T, [52, 53]
by, Biting rate (Wolbachia) 0.95 x b, [52, 53]
Brw Transmission probability, vector (Wolbachia) to host 0.5 By, [52, 53]
B Transmission probability, host to vector (Wolbachia) Bn [52, 53]
Br Scaling factor, vector birth rate (Wolbachia) 0.95 [52, 53]
W Wolbachia release coverage [0, 1] Modelled

DF dengue fever
“Informed by candidate vaccines in development [8, 9]
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optimal combination of the two interventions that
minimize the number of dengue cases and DALYs (sub-
ject to budget constraints).

Dynamic transmission model background

We modelled the transmission of DF in the popula-
tion of Thailand, using a system of ordinary differen-
tial equations adapted and simplified from Knerer
et al. [16, 47]. In the earlier studies, an age-structured
susceptible—exposed—infectious—recovered/susceptible—ex-
posed—infectious dynamic transmission model combining
seasonality, consecutive infection by all four serotypes,
cross-protection, and immune enhancement, as well as
combined vector-host transmission was developed. The
model was used to represent dengue transmission
dynamics using parameters appropriate for Thailand
and to assess the impact and cost-effectiveness of
combined vector-control and vaccination strategies on
disease dynamics.

In the current study, we do not model population age
structure and assume only one ‘global’ dengue serotype
is circulating, as the use of a single serotype/ infection
model was considered sufficient to answer the research
question under investigation and adhere to the principle
of parsimony. The human population is divided into four
compartments comprising: humans susceptible to den-
gue infection (Sy), exposed to infection (Ep), infected
and infectious (I), and recovered (R,) compartments.
The total human population (N,) is equal to the sum of
the populations of humans in all human compartments,
ie. Ny =Sy + Ep + 1, + Ry The life cycle of the mosquito
is represented by three infection phases, susceptible
mosquitoes (vectors) (S,), exposed (incubating) mosqui-
toes (E,), and infected and infectious mosquitoes (I).
The total vector (mosquito) population is equal to N,
(i,e. Ny =S, +E, +1). The complete model without
study interventions is presented in the system of equa-
tions below:

% = tpNn- (bvﬁhv ]{[v) Sh=tySn + 0V
% = <bvﬁhv ]{[‘/h> Sn=(py, + Th)En

% = ThEn—(wy + v3)In

% = Yulh=tnRn

”;S; = u,Ny- (bvﬁvhsv Jffh) Sy

dE, I

- v v - va
= (bBaS )+ )
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% = TVEV_MVI v

In the presence of Wolbachia, the model is extended
to include a Wolbachia-carrying mosquito population.
The population of Wolbachia-carrying mosquitoes is di-
vided into subpopulations of susceptible (S,,), exposed
(E.), and infectious (I,) mosquitoes, where S,, +E,, +
I, =N, In total, the model comprises 11 compartments;
four for the human population, three each for the two
mosquito populations, and one for vaccination. The
complete model with study interventions is presented in
the system of equations below:

dasy I, L
= G-eoinNic (0 ) + (bebis ) )Smsi+ Vi

av,
= (ep)upNw—(py, + )V

dEy, I, 1,
o <<bv/3hu N_h> + (bwﬁhw m))sh—(ﬂh + 71)Ep

d,
dt

dR;,
e Yidn—t,Ru

= TuEp—(py, + y3) In

ds, I
=~ (1-WN,~( b,B,, Sy~ ) -, S,

dE, I
ar (bVﬁvhSV ]\[h> ~(u, +1)E,

dl,
dt

ds, Iy
., = NWB - bw wixr |~ w
Jr MW NuBr ( BunS Nh) HyS

=T1,E, _,uvlv

dE,, 1
. = bw wixr |7 w Ew
dt < ﬁwhS Nh) (/’tw +T )
dl,
. = WEW_ IW

dr T Hy

Initial conditions were derived by running the model
to equilibrium steady state without any control interven-
tions. Key model assumptions are as follows:

e The total human population (Ny,) is treated as
constant, i.e. births balance deaths at rate py, with no
immigration of infected individuals into the human
populace.

e The mortality rate due to DF is assumed to be
negligible (< 1% with appropriate medical care [6])
and is therefore not included in the model.
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e The population is homogeneous, which means that
every individual in a compartment is homogenously
mixed with the other individuals.

e Mosquito bites are homogeneously distributed
amongst all human hosts, which means that each
mosquito can bite any human host with equal
probability.

e There is no natural protection, i.e. humans and
mosquitoes are assumed to be born susceptible and
losses of immunity are not considered, nor are
maternally derived antibodies.

e The mosquito has no resistant phase due to its
relatively short life expectancy.

e The coefficient of transmission of the disease is fixed
and does not vary seasonally in the base case.

Table 1 lists the parameter values and their units and
sources.

Data, expansion factors, and calibration

Similar to Knerer et al. [16], epidemiological data from
National Epidemiological Surveillance in Thailand [60-
64] was used to populate the dynamic transmission
model. For the years 2008—2012, there was an average of
82,505 reported cases of dengue per year, including 43,
890, 1688 and 36,927 dengue haemorrhagic fever (DHF),
dengue shock syndrome (DSS), and DF cases, respect-
ively [60—64]. Approximately 74% of these cases were
hospitalized (61,465), with 88 deaths per year (72% due
to DSS, with the remainder attributable to DHF).

The average number of reported cases was adjusted by
an expansion factor of 8.5 to derive total ‘actual’ dengue
cases. This is consistent with suggested expansion fac-
tors in South-East Asia for converting total reported
dengue cases into estimated ‘actual’ cases, ranging from
approximately 3.8 in Malaysia, to 8.5 in Thailand and 19
in East Timor [65]. Similarly, expansion factors were also
calculated for individual countries based on the active
phase of the CYD14 trial, which varied according to case
definitions (different laboratory or clinical criteria) [66].
For Thailand, these were 12.0, 8.6, and 8.8 for virologic-
ally confirmed dengue, clinically diagnosed and viro-
logically confirmed dengue, and clinically diagnosed
dengue, respectively [66].

Model estimates were calibrated with figures reported
by the National Epidemiological Surveillance in Thailand
in 2008-2012 [60—64] multiplied by an expansion factor
to adjust for under-reporting. The transmission parame-
ters for human (f3;,) and vector(S,;) were calibrated using
a gradient-based optimization loop that minimized the
mean-square difference between the model and recorded
observations (adjusted for under-reporting). Model code
was written in MATLAB and the optimization function
‘fminsearch’ was used. At steady state, the model predicted
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an average of approximately 697,000 dengue cases per
year in Thailand for all age groups combined. This com-
pares to the average number of reported DF/ DHF cases
in Thailand for the period 2008-2012 [60—-64] adjusted
for underreporting [65], all age groups combined (n =701,
256), which indicates a good fit between observed and
predicted data.

Outcomes

DALY estimates were taken from Knerer et al. [16],
which were calculated using the methodology described
by Murray [67, 68]. In the former study, and consistent
with the approach of Clark et al. [69], the authors as-
sumed that unreported cases are likely less severe than
reported cases, although may still hinder usual daily ac-
tivities, but for a shorter length of time. Accordingly,
similar disability weights had been assigned for both un-
reported and reported cases of DF, but for a shorter dur-
ation of time (4 and 10 days for unreported and reported
cases, respectively).

Costs
As with the outcomes described above, we derived dis-
ease as well as intervention costs from our earlier paper
[16] and highlight salient details in the following
sections.

In brief, unit costs (per DF episode) derived from
Shepard et al. [70] were used to calculate the following
costs:

i. DPayer perspective:
— direct medical costs for inpatient and outpatient
dengue cases.
iil. Societal perspective:
— direct medical costs for inpatient and outpatient
dengue cases
— direct non-medical costs for inpatient and out-
patient dengue cases
— indirect costs for inpatient and outpatient
dengue cases.

Total costs are comprised of direct medical costs and
intervention costs (detailed below) from the payer per-
spective; and direct medical costs, direct non-medical
costs, and indirect costs, in addition to intervention
costs, from the societal perspective.

Studies with applicable unit costs [71, 72] and used by
other researchers — for example, Lee et al. [73] — were
similarly not considered in the present study, for the rea-
sons outlined in Knerer et al [16]. Namely, their reliance
on expert opinion, secondary data, or being considered
somewhat outdated, leading to potential under-
estimation of costs [70].
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Cost inputs and other values are presented in Table 2.
As part of scenario analyses, an alternative unit cost pro-
file (Fitzpatrick et al. [59]) was substituted to determine
the impact on the base-case results.

Costs of unreported cases

Where costs were ascribed to unreported cases for type
of treatment, it was assumed that any treatment costs
for unreported cases were on an outpatient basis only
(i.e. there were no hospitalizations and/ or deaths associ-
ated with unreported cases), in line with the likely less
severe nature of these cases [16, 69]. Unreported hospi-
talizations and deaths have been documented and some
estimations for hospitalizations exist for Thailand [70].
However, a conservative approach was employed in the
estimation of these costs.

Productivity costs due to death

Any economic costs associated with premature mortality
(i.e. productivity loss and lifetime earnings foregone)
were not included in calculations due to concerns over
the risk of double counting benefits associated with
averted deaths [79, 80].

Intervention costs

In earlier cost-effectiveness analyses that also included
exploratory analyses of the cost-effectiveness of large-
scale deployment of Wolbachia infection [16], two dif-
ferent cost estimates were used to calculate the costs of
a Wolbachia intervention (due to uncertainty in the
costs of such an intervention): firstly, a Wolbachia cost
per dengue case averted of $1 (which was then used to
back-calculate a cost of release per person covered of

Table 2 Base case and scenario analysis values and sources
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$4.45) and secondly, a Wolbachia cost per person covered
of $1 (the latter being an aspirational cost of the World
Mosquito Programme Wolbachia method [75-77]).

In the current study and continuing with the explora-
tory nature of analyses, we use similar costs to those
above, with a Wolbachia cost of $1 per dengue case
averted being used in base-case analyses and a Wolba-
chia cost per person covered of $1 being examined in
scenario analyses.

As an additional scenario analysis, we also use a cost
per person covered of $15.05 (the mean of the acceler-
ated costs in Brady et al. [78]) adjusted to 2013 prices
(for consistency). This is the average of the cost per per-
son for an accelerated Wolbachia programme ranging
from approximately $12 to $21 per person. This includes
both urban areas (~$12 per person covered) and rural
areas (~$14-21 per person covered).

Costs were assigned over 4 years to simulate acceler-
ated Wolbachia implementation to the point where Wol-
bachia-infected mosquitoes had reached steady state/
fixation in the population.

For vaccination, a cost of $40 per vaccination course
and assumed vaccine administration costs of $4 was
used [16].

Discount rate

Costs were discounted at 3% per annum as suggested by
Thailand’s Health Technology Assessment guidance and
the WHO [81, 82].

Scenario analyses
Scenario analyses were carried out on different features
and input data of the model to test the robustness of

Input Base case

Scenario analysis

Vaccination target population Paediatric population vaccinated at birth

(0-100% coverage)

Optimization time horizon 10 years
Vaccine efficacy 73%
Time horizon 10 years

Inpatient costs

- $54.59 inpatient indirect costs [70]

Outpatient costs

- $13.65 outpatient indirect costs [70]
Cost of ‘un-reported’ cases $12.12 for clinic visit [73]

Vaccine price per course $40 plus $4 vaccine administration costs

Wolbachia

- $266 DF inpatient direct medical costs [74]
- $566.43 DHF inpatient direct medical costs [70]
- $72.77 inpatient direct non-medical costs [70]

- $141.61 outpatient direct medical costs [70]
- $82.20 outpatient direct non-medical costs [70]

Wolbachia cost per dengue case averted of $1
(i.e. cost of release per person covered of $4.45)

Paediatric population vaccinated at birth (70-100% coverage)

5 years
50%, 80%
5 years

Unit cost profiles from Fitzpatrick et al. [59]
- $141.55 hospital bed day, primary
- $169.24 hospital bed day, specialist

Unit cost profile from Fitzpatrick et al. [59]
- $18.29 ambulatory clinic visit

N/ A

$20 plus $4 vaccine administration costs; $60 plus $4 vaccine
administration costs

Wolbachia cost per person covered of $1 [75-77]; Wolbachia cost
per person covered of $15.05 [75-77] (adjusted to 2013 prices [78])

DF dengue fever, DHF dengue haemorrhagic fever
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Table 3 Optimal combination of Wolbachia and paediatric dengue vaccination coverage to minimize the number of dengue cases

(and DALYs lost) by budget constraint

Budget constraint Wolbachia (%) Paediatric Cases (millions) DALYs lost Wolbachia costs Vaccination costs Total costs (PP)
($ millions) vaccination (%) ($ millions) ($ millions) ($ millions)
Steady state 0 0 7.175 67,831 - - $337.830°

= 590 100 100 1.022 9660 273.744 350.666 $678.674

< 589 67 100 1.046 9888 182496 350.666 $588.677

< 368 50 49 1.194 11,288 135489 170.020 $368.772

< 251 54 10 1.296 12,256 147.854 25.331 $251.601

Bold text indicates steady state estimates without control
DALY disability-adjusted life year, PP payer perspective
2$414 million from a societal perspective

simulated findings and identify key parameters of influ-
ence that may impact base-case findings. Analyses pre-
dominantly focused on different budget constraints,
disease management costs (i.e. unit cost profile), inter-
vention costs, vaccine efficacy, and time horizon. An
additional scenario was examined in which the param-
eter search space for paediatric vaccination was re-
stricted to 70—-100% (rather than 0-100% in the base
case). Table 2 details scenario analysis inputs and
ranges.

Results
At steady state, the simulation model predicted approxi-
mately 7 million symptomatic dengue cases (7.175 mil-
lion) in Thailand for all age groups combined over a 10-
year period. The estimated total DALYs lost in this
period were approximately 67,831 with cumulative dis-
ease costs of $338 million from the payer perspective. In
the following sections, we detail Wolbachia and vaccin-
ation coverage, dengue reductions, and associated costs
(including disease and intervention costs) stratified by
different budgetary constraints.

In the unconstrained case, i.e., absence of budget re-
strictions or limits on investment (represented by the

red section in Fig. 1), the projected optimal coverage of
Wolbachia and paediatric vaccination (to minimize den-
gue incidence) comprised 100% coverage of each inter-
vention. In this situation, a reduction of approximately 6
million dengue cases and 58,000 DALYs with an associ-
ated budget of $679 million, was forecast over 10 years
(Table 3) versus steady state. Wolbachia-infected mos-
quito release costs of $274 million and vaccination costs
of $351 million formed the great majority of the budget
items. Table 3 also presents the optimal mix of the two
interventions when budget constraints are introduced,
encompassing base-case (approximately < $368 million),
lower bound (< $251 million), and upper bound (< $589
million) budget limits. Under base case budget con-
straints, the optimal coverage of the two interventions to
minimize dengue cases (and DALYs lost) was predicted
to be approximately even (Wolbachia 50%; paediatric
vaccination 49%) although with different constituent
costs (Wolbachia $135 million; vaccination $170 mil-
lion). Corresponding intervention coverages estimated
under lower and upper bound budgetary limits were
Wolbachia 54% and paediatric vaccination 10% for the
lower and Wolbachia 67% and paediatric vaccination
100% for the upper budget ceilings respectively. When

Table 4 Scenario analyses: optimal combination of Wolbachia and paediatric dengue vaccination coverage to minimize the number

of dengue cases (and DALYs lost) — base-case budget constraint

Scenario Wolbachia (%) Paediatric vaccination (%) Cases (millions) DALYs lost Total costs (PP) ($millions)
Wolbachia cost (lower bounds) 100 71 1.073 10,143 368.820
Vaccine cost —=50% 43 100 1.075 10,167 367.215
Unit cost profile [59] 45 64 1.161 10,979 368916
80% vaccine efficacy 44 53 1.180 11,158 368.389
Societal perspective 51 43 1.206 11,399 368.846
Vaccine coverage 70-100% 22 70 1216 11,500 368.680
50% vaccine efficacy 69 33 1.221 11,540 368630
Vaccine cost + 50% 68 23 1.230 11,628 368.925
Wolbachia cost (upper bounds) 21 41 1326 12,531 366.220
5-year follow-up 33 22 1317 12,450 202.720

DALY disability-adjusted life year, PP payer perspective
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Wolbachia coverage

0 0.1 0.2 0.3 0.4
Vaccination coverage

Bl :s251m Jlls252M<B<$368M

Fig. 1 Heatmap of paediatric dengue vaccination coverage and Wolbachia coverage against budget constraints

0.5 0.6 0.7 0.8 0.9 1

$369M<B<3589 M [Jll> $590 m

resources become limited under the lowest budget con-
straints (< $251 million), Wolbachia has more impact on
the population level of disease (as it becomes more af-
fordable relative to vaccination cost) and vaccination is
effectively reduced to a targeted hotspot control strategy.

Figure 1 presents a heat map of Wolbachia coverage
and vaccination coverage against budget constraints. In
this figure, intervention coverages are varied in the range
0-100% for each control strategy with the respective
budget constraints colour coded ranging from the lowest
budget constraint (< $251 million over 10 years) in blue
to the absence of any budget constraint in red.

The heatmap illustrates, for example, the limits of
intervention combinations by budgetary ceiling; the
chart showing the highest possible combinations of Wol-
bachia and vaccination coverage that are feasible with-
out exceeding upper limit budget constraints (as an
example). In practical terms, this could take the form of
either, for example, 100% Wolbachia coverage combined
with approximately 74% paediatric vaccination coverage
or approximately 67% Wolbachia coverage combined
with 100% paediatric vaccination coverage. In effect, this
suggests that one or other intervention can have very
high coverage (i.e. 100%), but not both interventions
without exceeding the budget ceiling. Similarly, from a
more restricted budgetary standpoint (i.e. green section

[base case] in Fig. 1), very high coverage of, for example,
Wolbachia, is compatible with lower coverage of vaccin-
ation (or vice versa or midway for both), but high levels
of coverage for both interventions together are not com-
patible within budget constraints. Depending on the
public health goal, trade-offs may need to be determined
to fulfil the desired objective. These trade-offs become
less urgent as the budget available to fund interventions
expands (as observed in the current study when the
budget constraint is loosened). Additional file 1 shows
dengue cases and DALYs lost by levels of Wolbachia
and vaccination coverage.

When assessing the impact of alternative situations as
part of wider scenario analyses (Table 4), approximately
half of the scenarios display lower dengue incidence
(and DALYs lost), with the remainder demonstrating
greater incidence versus base-case projections (all within
the budget ceiling of < $368 million discounted over 10
years). The most impactful scenarios relate to the costs
of Wolbachia and paediatric vaccination with decreases
and/ or increases in costs of interventions demonstrating
a direct correlation with the coverage (increases and/ or
decreases) of the interventions under examination. For
example, a reduction in vaccine acquisition costs results
in a corresponding increase in paediatric vaccination
coverage (100%) and a smaller reduction in Wolbachia
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coverage (i.e. more resources are directed to the lower-
cost vaccination programme). Similarly, a decrease in
Wolbachia costs gives rise to greater coverage (i.e. a
large-scale countrywide Wolbachia release programme)
as well as an increase in vaccination coverage (i.e. more
resources are directed to vaccination). Conversely, as
intervention costs increase, more investment flows to
the less costly option and coverage increases as a result.
When substituting a different and, in this case, lower
unit cost profile [59], more funds are seemingly freed up
for vaccination, with higher coverage compared to Wol-
bachia, reflecting the influence of unit costs in this re-
gard. An increase in vaccine efficacy, from 73% to 80%
representing the best case, results in greater resources
being targeted towards vaccination and less to Wolba-
chia (although the change in coverage and resultant
outcomes are relatively small). A decrease in vaccine ef-
ficacy, from 73% to 50% representing the worst case, re-
sults in the converse with resources directed more to
Wolbachia and away from vaccination. When paediatric
vaccination is restricted to the range 70-100% (in the
grid search), left over investment above the minimum
vaccination coverage of 70%, flows to Wolbachia (22%)
and away from vaccination in order to optimally maxi-
mise public health outcomes at the lowest cost.

Discussion

This study aimed to provide further insights into the
prioritization and combination of dengue control strat-
egies. The impact of Wolbachia infection (wMel strain)
and vaccination on the dengue disease burden in
Thailand was investigated as part of a constrained
optimization problem. The primary goal of the exercise
was to identify the best combination of vaccination and
Wolbachia to minimize the number of dengue cases
(and DALYs lost) subject to explicit budgetary con-
straints. We used a case study of Thailand for the ana-
lysis and set the budget constraint to be equal to the
estimated current per capita spend on vector control in
Thailand [59].

The paper acts as a complement to a CEA conducted
by the same authors [16], which investigated both histor-
ical methods of dengue control as well as new technolo-
gies. For the most part, health economic model analyses
are typically unconstrained, the assumption being that
resources are available as needed and thus, affordable
[22]. In practical terms, the reality may be that funding
is absent, as programmes are frequently subject to na-
tional and local budget constraints. From a global per-
spective, many interventions remain under- or even un-
funded by countries, although still falling within WHO
cost-effectiveness thresholds and considered value for
money as a result [18]. In low- and middle-income
countries (and increasingly in more developed markets),
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other considerations beyond cost-effectiveness are likely
important for decision-making, including affordability,
overall budget impact and sustainability of funding
amongst others [18].

The base epidemiological model underpinning the
optimization analyses was shown to calibrate well at
steady state with average reported symptomatic DF cases
in Thailand for the years 2008-2012 [60-64], adjusted
for under-reporting [16, 47, 65]. As a validation check,
predictions were compared with previous model projec-
tions presented in Knerer et al. [16], derived using a dif-
ferent model structure and fitted to age-specific data on
baseline dengue infection levels (2008-2012) [60—64].
Comparable figures for DALYs lost and cumulative dis-
ease costs over 10years were approximately 67,595
DALYs lost and $336 and $412 million [16] from the
payer and societal perspectives, respectively, indicating
good concordance between the different model outputs.

Our results suggest that several different combinations
of Wolbachia and vaccination (paediatric) can produce
analogous reductions in the incidence of dengue cases
yet have different budget impacts (comprising disease
and intervention costs) to achieve the respective cover-
ages. In the base case, the optimal mix between the two
study interventions was shown to be approximately
equivalent. Conversely, when an alternative (lower) unit
cost profile [59] was substituted in scenario analyses,
more resources were directed to vaccination with a
resulting higher coverage than Wolbachia, reflecting the
influence of unit costs in this regard. A priori hypotheses
in relation to the optimal mix and cost of interventions
were also borne out. For example, reduced Wolbachia
costs would lead one to surmise a congruent increase in
Wolbachia coverage (and decrease in vaccination cover-
age) whereas an increase in Wolbachia costs would lead
to the opposite. Similarly, reductions/ increases in both
vaccine acquisition costs, and efficacy would have paral-
lel effects.

This study is subject to a number of important limita-
tions. Similar to Knerer et al. [16], the transmission
model used in this analysis does not account for asymp-
tomatic cases, rather focussing on the economic impact
of clinically apparent (symptomatic) cases and their re-
mission. The vaccine profile employed in this study was
informed by real-world overall efficacy data [8, 9]. For
simplicity, a global serotype transmission model was
used that does not explicitly account for individual sero-
types (ie. DENV-1, DENV-2, DENV-3, and DENV-4)
nor the potential effects of secondary cases. Hence, any
apparent reported imbalances in vaccine immune re-
sponse between different serotypes and any potential
negative implications that may follow from this were not
considered. Regarding the use of reported efficacy data
[8, 9], estimates were applied to the target population
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under the respective vaccination schedule in the study,
rather than the age demographic specified in the original
trial. The assumption was that any age-based recom-
mendation would subsequently be extended to include
younger children (including those under study). The re-
ported overall vaccine efficacy was also assumed to be
constant for the course of study follow-up (10 years) and
therefore did not decrease over time. This may have led
to possible overestimation in the base case of the impact
of vaccination in the longer term. As a counterbalance, a
much lower vaccine efficacy (50%) was examined in sce-
nario analyses to reflect uncertainty in published overall
vaccine efficacy results in relation to long-term waning
of vaccine protection. Sensitivity analysis was restricted
to those parameters that did not form part of the cali-
brated model. Epidemiological variables including biting
rate, vector mortality rate, and transmission rate that
were part of the calibrated model were therefore not ex-
amined. With respect to vector mortality rate, Ndii [83]
reasoned that a maximum 10% reduction in Wolbachia-
infected vector mortality rate (as used in the current
analyses) was appropriate, citing evidence that an in-
creased rate would result in the Wolbachia-infected
mosquito population dying out and the non-Wolbachia
infected population dominating the environment. Geo-
graphical specificity/ heterogeneity was also not consid-
ered in the analyses, but would perhaps be of value to
help to characterize the optimal split between the two
study interventions (to minimize dengue infection) at a
finer spatial resolution, for example, north versus south,
urban hotspots versus rural locations, etc. Wolbachia
coverage will have additional benefits to the human
population (beyond the dengue mitigation included in
the current model), for example, in those areas of
Thailand where there is a preponderance of chikungunya
and/ or Zika virus. Whilst dengue is prevalent through-
out Thailand, research on the long-term circulation of
Zika virus indicates elevated risks of the disease (relative
to the country as a whole) in the northeast and east of
Thailand and reduced risks in the south of the country
[84]. Conversely, an ongoing outbreak of chikungunya
(since October 2018) indicates that cases are concen-
trated in Southern Thailand [85]. Historically, a large
outbreak of Chikungunya in 2008-2010 was also located
in the south of Thailand [86], reaching approximately a
third of country districts with a subsequent sero-survey
in 2014 confirming the extent of chikungunya penetra-
tion in this geographical area (estimated seroprevalence
of approximately 29.6%) [87]. Notwithstanding the po-
tential benefits of a spatial perspective to such analyses,
this does not preclude additional sources of heterogen-
eity in the local setting, which may affect the feasibility
of implementing different strategies and thus the overall
results.
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As previously highlighted in Knerer et al. [16], it is ac-
knowledged that many practical hurdles still exist before
a widespread Wolbachia-based dengue control strategy
could be implemented. These include, for example, the
optimal choice of Wolbachia strain, appropriate surveil-
lance, and monitoring of environmental and evolution-
ary changes, as well as community ‘buy-in’ and
acceptance [88, 89]. Certainly, the premise that is being
examined in this study is not the ‘how’ of implementa-
tion, rather what the possible population impact could
be once Wolbachia-infected mosquitoes have arrived at
equilibrium/ steady state fixation in areas where they
have been released. Although coverage is likely to be
limited initially, such analyses provide insights into the
human population impact of a potential Wolbachia
programme on a large, countrywide scale, both separ-
ately and in combination with other control strategies.

Conclusions

Our model provides a tool for developing estimates of op-
timal coverage of combined dengue control strategies
(Wolbachia and paediatric vaccination) that minimize
dengue burden at the lowest budget. If proposals/ sugges-
tions are usefully to be put forward in relation to broader
vaccine and/ or Wolbachia introduction for dengue con-
trol, policy and decision makers will likely need to deter-
mine which dengue interventions to prioritize to optimize
the health status of the population, which may necessitate
trade-offs depending on the public health goal. As alluded
to above, practical operational realities may conceivably be
more complicated than the somewhat simplified analyses
presented here; in particular, the source of funding bud-
gets for vaccination and/ or Wolbachia may be quite dis-
tinct, and thus not reflect the trade-offs discussed in this
study. Notwithstanding this, commentators suggest that
long-term dengue control necessitates increasing invest-
ment, complementary control strategies, and intervention
programmes across a broad geographic area to minimize
cross-border infection [90]. Accordingly, selecting the best
investment strategy for dengue control requires the identi-
fication of the optimal mix of interventions to implement
to maximize public health outcomes. This is often under
fixed budgetary constraints and depends on the character-
istics of the control strategies in each dengue setting. In
this vein, important questions for future work and poten-
tial next steps include: (1) Should further investments in
dengue interventions focus primarily on reinforcing exist-
ing control protocols and/ or increasing the coverage of
current interventions and/ or introducing new ones (vec-
tor control tools and integrated strategies) and under what
circumstances? (2) In what manner should a combination
of interventions be further expanded to achieve specified
public health objectives at the lowest budget (and poten-
tially in the context of budget cuts in health)?
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