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Abstract

Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness.
Axoglial alterations of the distal (close to the chiasm) optic nerve (ON) could be the first
structural change of the visual pathway in streptozotocin (STZ)-induced diabetes in rats.
We analyzed the effect of environmental enrichment on axoglial alterations of the ON pro-
voked by experimental diabetes. For this purpose, three days after vehicle or STZ injection,
animals were housed in enriched environment (EE) or remained in a standard environment
(SE) for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine
blue staining and phosphorylated neurofilament heavy immunoreactivity), microglia/macro-
phages (ionized calcium binding adaptor molecule 1 (Iba-1) immunoreactivity), astrocyte
reactivity (glial fibrillary acid protein-immunostaining), myelin (myelin basic protein im-
munoreactivity), ultrastructure, and brain derived neurotrophic factor (BDNF) levels were
assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal
morphology or retinal ganglion cell number were observed among groups. EE housing
which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease
in the anterograde transport from the retina to the superior colliculus, ON axon number, and
phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented
an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural
myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE hous-
ing avoided a decrease in BDNF levels induced by experimental diabetes. These results
suggest that EE induced neuroprotection in the diabetic visual pathway.

Introduction

Environmental enrichment refers to a housing condition that allows enhanced sensory, cogni-
tive and motor stimulation, relative to standard laboratory conditions [1,2]. In an enriched
environment (EE), animals are housed in large cages containing a variety of objects that are
daily changed, and running wheels for voluntary physical exercise, as well as increased
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opportunities for social interaction [2-4]. In the central nervous system (CNS), physiological
remodeling or repair processes are strongly influenced by experience-dependent mechanisms
[3-5]. EE housing enhances learning and memory, and improves compensatory processes in
the damaged CNS [3, 6-8]. The exposure to EE accelerates the development of the visual sys-
tem, and enhances visual cortex plasticity both during development and adulthood [9]. Adult
rats housed in a complex environment have significantly more synapses per neuron in the
visual cortex compared to control animals [10]. Moreover, it has been demonstrated that the
exposure of adult amblyopic rats to EE promotes a complete recovery of visual acuity and ocu-
lar dominance, probably through a brain derived neurotrophic factor (BDNF)-dependent
mechanism [11], and that post-ischemic environmental enrichment housing protects the adult
rat retina from acute ischemic damage [12]. In addition, prolonged exposure to EE from birth
of rd10 mice, a mutant strain undergoing progressive photoreceptor degeneration mimicking
human retinitis pigmentosa, induces remarkable therapeutic effects on the visual system [13].
These findings highlight the potential of EE as a promising non-invasive strategy to promote
recovery of normal sensory functions in different animal models of neurodegeneration in the
adult CNS.

Diabetic retinopathy (DR), one of the most serious complications of diabetes, is a leading
cause of reduced visual acuity and acquired blindness. Almost all individuals with type 1 diabe-
tes mellitus, and more than 60% of individuals with type 2 diabetes mellitus have some degree
of retinopathy after 20 years of diabetes [14]. In inadequately controlled patients, the retinal
microvasculature is constantly exposed to hyperglycemia, which provokes vascular damage
and leakage, edema, capillary basement membrane thickening, neovascularization, hemor-
rhage, ischemia, and neuroglial alterations [15, 16]. Visual function disorders have been dem-
onstrated in diabetic patients with very early stages or even before the onset of retinopathy
[17]. In that context, it was shown that diabetes induces nonvascular cell death and retinal
neurodegeneration [15]. Moreover, diabetes provokes early changes in the visual signal trans-
mission and its central processing, which take place before the appearance of the first ophthal-
moscopically detectable signs of DR [18-20]. Significant loss of contrast sensitivity and color
vision impairments have been described in patients with type 1 diabetes whom had no evidence
of retinopathy [21-24]. Loss or remodeling of neurons in the retina or the visual pathway
might account for the early reduction of visual function in diabetes. Streptozotocin (STZ)-
induced diabetes is a well validated model of type 1 diabetes in rodents (reviewed in [25]). We
have demonstrated a significant axon loss, a large increase in astrocyte reactivity, and myelin
alterations only in the distal (but not the proximal, near to the retina) portion of the optic
nerve (ON) at 6 weeks of experimental diabetes induced by STZ [26]. Since at this time point
(i.e., at 6 weeks after STZ injection), no substantial structural alterations are evident in the ret-
ina, or the main retinal synaptic target in rodents, the superior colliculus (SC), these results
suggest that axoglial alterations at the distal (close to the chiasm) portion of the ON could be
the first structural change in the diabetic visual pathway [26]. Recently, we have demonstrated
that EE housing prevents the electroretinographic dysfunction, and preserves inner retina syn-
apses, and blood retinal barrier integrity at early stages of experimental diabetes induced by
STZ in adult rats [27]. Having demonstrated significant neurodegenerative changes in the dis-
tal portion of the ON, and a protective effect of EE on retinal injury at early stages of experi-
mental diabetes, the aim of the present report was to explore whether EE is able to protect the
ON from axoglial alterations induced by experimental diabetes.
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Materials and Methods
Ethics Statement

All animal procedures were in strict accordance with the ARVO Statement for the Use of Ani-
mals in Ophthalmic and Vision Research. The ethic committee of the School of Medicine, Uni-
versity of Buenos Aires (Institutional Committee for the Care and Use of Laboratory Animals,
(CICUAL)) approved this study, and all efforts were made to minimize animal suffering.

Animals

Adult male Wistar rats (average weight 300 + 50 g) were housed in a standard animal room
with food and water ad libitum, under controlled conditions of humidity and temperature

(21 £ 2°C). The room was lighted by fluorescent lights (200 lux), that were turned on and off
automatically every 12 h (on from 8.00 AM to 8.00 PM). For the control group (standard envi-
ronment, (SE)), animals (2 per cage) were housed in standard laboratory cages (33.5 x 45 x
21.5 cm). For enriched environment (EE) housing, six animals at a time were housed in big
metallic cages (46.5 x 78 x 95 cm), containing four floors and several food hoppers, water bot-
tles, running wheels, tubes, ramps and differently shaped objects (balls, ropes, stones) daily
repositioned, and fully substituted once a week, as previously described [27]. Particular care
was taken not to repeat cage arrangement and object availability during the experiments. Food
and water were offered ad libitum, but the location of the hoppers and bottles was daily
changed in order to stimulate exploratory conduct. Cages were cleaned twice a week at the
same time and by the same protocol to that used for standard cage cleaning.

For diabetes induction, a single intraperitoneal injection of STZ (60 mg/kg in 0.1 M citrate
buffer, pH 4.5) was performed, whereas control rats received an equal volume of citrate buffer.
Animals were examined 3 days after injections with a glucose meter (Bayer, Buenos Aires,
Argentina), and those with glycemia greater than 350 mg/dl were considered diabetic, and
caged in SE or EE. The body weight and plasma glucose levels were weekly monitored. A total
number of 86 animals were used for the experiments, distributed as follows: 24 animals for
anterograde transport study, 48 animals for histological and immunohistochemical studies,
and 24 animals for semithin and ultrathin sections analysis.

Cholera toxin B-subunit injection

Rats were anesthetized with ketamine hydrochloride (150 mg/kg) and xylazine hydrochloride
(2 mg/kg) administered intraperitoneally, and a drop of 0.5% proparacaine was topically
administered for local anesthesia. Four microliters of 0.1% cholera toxin B-subunit (CTB) con-
jugated to Alexa 488 dye (Molecular Probes Inc., Eugene, OR, USA) in 0.1 mol/L PBS (pH 7.4)
were injected into the vitreous, using a 30-gauge Hamilton syringe (Hamilton, Reno, NV,
USA), as previously described [26]. The injections were applied at 1 mm from the limbus, and
the needle was left in the eye for 1 minute to prevent volume loss. Three days after injection,
rats were anesthetized as previously described and intracardially perfused with saline solution,
followed by a fixative solution, containing 4% formaldehyde in 0.1 mol/L PBS (pH 7.4). Brains
were carefully removed, post-fixed overnight at 4°C, and immersed in a graded series of sucrose
solutions for cryoprotection. Coronal sections (40 um) were obtained using a freezing micro-
tome (Leica Microsystems, Buenos Aires, Argentina). Sections were mounted on charged slides
(Erie Scientific Company, New Hampshire, USA), with antifade medium (Vectashield, Vector
Laboratories, Burlingame, CA, USA), and viewed with a fluorescence microscope (BX-50,
Olympus, Tokyo, Japan) connected to a digital camera (3CCD, Sony, Tokyo, Japan). Images
were obtained using ImagePro Plus software (Optimus, Media Cybernetics, Silver Spring, MD,
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USA). Every other coronal section from the beginning to the end of the SC (approximately 30
sections) was used for the SC retinorecipient area reconstruction, using Matlab (The Math-
Works Inc., Natick, MA, USA). Digital images were converted to 8-bit grayscale, and the optic
density of CTB staining was calculated. The total length was measured and divided into bins
(4 um), from the medial to lateral region. CTB quantification was performed by dividing the
total pixel area by CTB+ pixels. Finally, a colorimetric thermal representation was applied
(from 0% = blue to 100% = red). The number of sections and the thickness (2X) were used for
a final reconstruction of the retinal projection to the SC.

Tissue processing

Anesthetized rats were perfused as already described. Then, the eyeballs with the intraorbital
(near the retina, proximal) ON portion and the brain with the intracranial (near the chiasm,
distal) ON portion were carefully removed and immersed for 24 h in the same fixative. After
dehydration, eyecups and ONs were included in paraffin wax, and transversal sections (5 pum)
were obtained with a microtome (2125 RTS, Leica Biosystems, Buenos Aires, Argentina), and
mounted on charged slides (Erie Scientific Company, New Hampshire, USA). For histological
analysis, retinal sections were stained with hematoxylin and eosin (H&E). Microscopic images
were digitally captured with a microscope (Eclipse E400, Nikon, Tokyo, Japan); 6-V halogen
lamp, 20 W, equipped with a stabilized light source) and a camera (Coolpix s10; Nikon; Abing-
don, VA, USA) and the total retinal thickness (in um) and the number of cells in the ganglion
cell layer (GCL) were assessed. Measurements (400X) were obtained at 1 mm dorsal and ven-
tral from the optic disc. The number of cells in the GCL was counted along the whole retina
section (400X). For each eye, results obtained from four separate sections were averaged, and
the mean of 5 eyes was recorded as the representative value for each group.

Immunofluorescence

Antigen retrieval was performed in paraffin sections, by heating (90°C) slices for 30 minutes in
citrate buffer (pH 6.3). Sections were preincubated with 2% normal horse serum for 1 h, and
then were incubated overnight at 4°C with primary antibodies. A mouse monoclonal anti-
phosphorylated neurofilament heavy (NFHp) (1:1000; catalogue #: ab24570, Abcam, MA,
USA), a goat polyclonal anti-ionized calcium binding adaptor molecule 1 (Iba-1) (1:1000; cata-
logue #: ab5076, Abcam, MA, USA), a mouse monoclonal anti-glial fibrillary acidic protein
(GFAP) conjugated to Cy3 (1:1200; catalogue #: c9205, Sigma Chemical Co., St. Louis, MO,
USA), a mouse monoclonal anti-brain derived neurotrophic factor (BDNF) (1:50; catalogue #:
sc-546, Santa Cruz Biotechnology, Buenos Aires, Argentina), and a rabbit polyclonal anti-mye-
lin basic protein (MBP, 1:1000; generously donated by Dr. Campagnoni, Mental Retardation
Research Center, University of California, Los Angeles, CA, USA) were used. After several
washings, secondary antibodies were added, and sections were incubated for 2 h at room tem-
perature. Regularly, some sections were treated without the primary antibodies to confirm
specificity. Nuclei were stained with DAPI, mounted using antifade medium (Vectashield, Vec-
tor Laboratories, CA, USA), and viewed using a fluorescence microscope (BX-50, Olympus,
Tokyo, Japan), connected to a video camera (3CCD; Sony, Tokyo, Japan) attached to a com-
puter running image analysis software (Optimus, Media Cybernetics, Silver Spring, MD, USA).
Comparative digital images from different samples were obtained using identical exposure
time, brightness, and contrast settings.
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Quantification of NFHp(+)-, GFAP(+), and Iba1-(+) area

The NFHp(+), GFAP(+), and Ibal(+) area was measured in ON sections and expressed as per-
centage of an identical total area. In addition, NFHp(+) spots were measured. NIH Image] Soft-
ware (National Institutes of Health, Bethesda, Maryland; http://imagej.nih.gov/ij/) was used to
quantify the intensity for each parameter. The mean of 5 ONs was recorded as the representa-
tive value for each group.

Quantification of BDNF-immunoreactivity

The BDNF(+) area was measured in ON sections, and expressed as percentage of the total area.
NIH Image] Software (National Institutes of Health, Bethesda, Maryland; http://imagej.nih.
gov/ij/) was used to quantify BDNF intensity in identical rectangular areas of ON longitudinal
sections (400X). Results obtained from four sections were averaged, and the mean of 5 eyes was
recorded as the representative value.

Retinal ganglion cell quantification

Flatmount retinas were obtained as previously described [28], and incubated overnight with a
polyclonal goat anti-Brn3a antibody (1:500; catalogue #: sc31984, Santa Cruz Biotechnology,
Buenos Aires, Argentina), after several washings, secondary antibodies were added, and sec-
tions were incubated for 2 h at room temperature. Images (200X; area corresponding to 0.1
mm?) from 4 different quadrants from the central and peripheral retina were captured, and the
mean of 20 images was considered as the representative value, and expressed as the total num-
ber of Brn3a(+) cells in 2 mm?.

Optic nerve analysis

Morphometric analysis of the ON was performed as previously described [26]. Briefly, under
deep anesthesia, animals were intracardially perfused with saline, containing 0.5 ml heparin
and 2.4% sodium nitroprusside as vasodilator, followed by a fixative solution containing 2%
glutaraldehyde and 4% formaldehyde in 0.1 M PBS (pH 7.4). Eyes were carefully removed and
the proximal (2 mm after the ON head) and distal (2 mm before the optic chiasm) portions
were obtained, as previously described. After several washings, the samples were post-fixed in
1% osmium tetroxide in sodium phosphate buffer for 1 h. Dehydration was accomplished by
gradual ethanol series, and tissue samples were embedded in epoxy resin for semithin or ultra-
thin sectioning. Semithin sections (0.5 um) were obtained using an ultramicrotome (Ultracut
E, Reichert-Jung, Salzburg, Austria), stained with toluidine blue-borax, and used for morpho-
metric analysis. Light microscopic images were digitally captured using a Nikon Eclipse

E400 microscope via a Nikon Coolpix s10 camera (Nikon, Tokyo, Japan). ON total area was
calculated from light microphotographs of transverse semithin sections obtained with a final
magnification of 20X. Images at high magnification (1000X) of the ON were obtained (area
corresponding to 0.01 mm?) and the number of the axons were quantified taking the internal
margin of myelin sheath as a reference, using Image] software version 1.42q (NIH, Bethesda,
MD, USA). For each sample, 5 different images were quantified, and the mean of 6 ONs from
different animals were averaged and taken as the representative value for each group. All the
images obtained were assembled and processed using Adobe Photoshop SC (Adobe Systems,
San Jose, CA, USA) to adjust the brightness and contrast. No other adjustments were made.
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Electron microscopy

Ultrathin sections (70 nm) were obtained, mounted on 200 mesh grids, and stained with uranyl
acetate 2% in ethanol 70%) and Reynold s lead citrate. Finally, sections were viewed and pho-
tographed (3000X, 12000X, and 50000X) using a transmission electron microscope (Zeiss EM
10 C; Zeiss, Oberkochen, Germany), equipped with a digital camera (ES1000W, Gatan, Pleas-
anton, CA, USA) for morphologic analysis.

Statistical analysis

The results were analyzed by two-way ANOVA in a completely randomized design (diabetes
and EE). Comparisons were made with the Tukey’s test. Results were considered significant at
P <0.05.

Results

The average body weight and glycemia of SE- or EE-housed animals at 6 weeks after the injection
of vehicle or STZ are shown in Table 1. A significant weight loss and an increase in blood glucose
levels were observed in STZ-treated rats, as compared with vehicle-injected rats. EE housing did
not change these parameters in control or diabetic animals. The active anterograde transport
from retinal ganglion cells (RGCs) to the SC at 6 weeks of diabetes induction was analyzed using
CTB. In rodents, virtually all RGCs project to the stratum zonale and the stratum griseum superfi-
ciale of the contralateral SC. In non-diabetic animals, intensely CTB-stained retinal terminals
were observed in the SC (Fig 1). After 6 weeks of diabetes onset, a clear reduction in CTB-stain-
ing was observed in the SC from animals housed in SE, whereas in EE-housed diabetic animals,
the deficit in CTB transport induced by experimental diabetes was prevented (Fig 1). EE housing
did not affect CTB anterograde transport in non-diabetic animals.

At 6 weeks after vehicle or STZ injection, Brn3a-immunoreactivity in the central and
peripheral retina did not differ among groups, as shown in Fig 2. In addition, no differences in
the total retinal thickness, GCL cell number, and Brn3a(+) cell number were observed among
groups (Table 2). EE housing did not affect these parameters in non-diabetic rats.

ON axons were analyzed by toluidine blue staining, as shown in Fig 3. At 6 weeks of experi-
mental diabetes, a significant reduction in the axon number (but not in nerve cross-section
area) was observed at the distal (but not proximal) portion of the ON. In EE-housed diabetic
animals, the axon number at the distal portion of the ON was similar to that observed in non-
diabetic animals housed in SE. No differences in the proximal portion of the ON were observed
among groups, and EE housing of non-diabetic rats did not affect these parameters (data not

Table 1. Average body weight and blood glucose concentration in SE- or EE-housed animals.

Average of body weight (g) Average of blood glucose concentration (mg/dl)
Control Control Diabetes Diabetes Control Control Diabetes Diabetes
+ SE + EE + SE + EE + SE + EE + SE + EE
Before vehicle or STZ 397 £1 392+4 398+ 9 393+ 16 114+3 1122 112+3 115+ 2
injection
6 weeks after vehicle or STZ 486 + 10 498 £ 8 326 £ 8 ** 322 £ 5** 1112 115+3 572 + 21** 553 + 28**
injection

Body weight and blood glucose levels in vehicle- or STZ-injected animals housed in SE or EE. STZ induced a significant decrease in body weight and an
increase in blood glucose levels, which did not differ between SE- and EE-housed animals. Data are mean + SEM (n = 12 animals per group).
**: P < 0.01 vs. non-diabetic animals in SE, by Tukey’s test.

doi:10.1371/journal.pone.0136637.1001
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Fig 1. Effect of EE housing on CTB anterograde transport. Photomicrographs showing retinal projections in the superficial layers of the SC from control
or diabetic rats housed in SE or EE. Three representative sections (rostral, medial, and caudal) for each group are shown. In SE-housed animals that were
diabetic for 6 weeks, a clear reduction in the density of retinal terminals and zones of no CTB staining were found, particularly in the lateral area. EE housing
which was ineffective in non-diabetic animals, preserved CTB anterograde transport in diabetic animals. Dorsal views of a retinotopic SC map reconstruction,
representative of 6 animals per group are also shown. Scale bar =1 mm.

doi:10.1371/journal.pone.0136637.g001

shown). To further investigate the effect of EE on ON axons, NFHp-immunoreactivity was
analyzed in the proximal and distal ON from diabetic animals housed in SE or EE. As shown in
Fig 4, intense NFHp-immunoreactivity was observed in longitudinal and transversal sections
of the proximal and distal portions of ONs from non-diabetic animals housed in SE or EE. A
significant decrease in NFHp-immunoreactivity in distal (but not proximal) ON portion was
observed in SE-housed diabetic animals, whereas EE housing prevented the effect of experi-
mental diabetes on this parameter.

Proximal and distal ON microglia/macrophages were analyzed by Iba-1 immunostaining, as
shown in Fig 5. At 6 weeks after STZ injection, an increase in Iba-1 immunoreactivity was
observed in transversal sections of the distal (but not proximal) portions of ON from SE-
housed diabetic as compared with non-diabetic animals, whereas EE housing decreased the
effect of experimental diabetes on this parameter. EE housing of non-diabetic animals did not
affect Iba-1 immunoreactivity in the proximal and distal ON.

To investigate the effect of EE housing on ON astrocytes, GFAP-immunoreactivity was ana-
lyzed in the proximal and distal ON portion from control or diabetic rats housed in SE or EE.
A significant increase in GFAP-immunoreactivity was observed in the distal ON from SE-
housed diabetic rats as compared with SE- or EE-housed non-diabetic animals, whereas EE
housing prevented the increase of this parameter in diabetic animals (Fig 6). No changes in
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Fig 2. Retinal histology and RGC analysis. Panel A: Representative photomicrographs showing the histologic appearance of retinas from control or
diabetic rats housed in SE or EE for 6 weeks (hematoxylin and eosin staining). No obvious differences in the retinal structure were observed among groups.
OS, photoreceptor outer segments; INL, inner nuclear layer; IPL, inner plexiform layer; ONL, outer nuclear layer; OPL, outer plexiform layer; GCL, ganglion
cell layer. Panel B: Shown are representative photomicrographs of Brn3a immunostaining in flat-mounted retinas in center and periphery from 5 animals/

group. Scale bar: 50 ym.
doi:10.1371/journal.pone.0136637.9002

GFAP-immunoreactivity were observed in the proximal ON. Fig 7 shows MBP-immunostain-
ing in ON sections from non-diabetic and diabetic animals housed in SE or EE, and ultrastruc-
tural analysis of the distal ON from all the experimental groups. A slight disorganization of
myelin, with some demyelinated zones were observed in the distal ON from diabetic animals
housed in SE, whereas in diabetic animals housed in EE, MBP-immunoreactivity was similar to
that found in non-diabetic animals housed in SE or EE. At ultrastructural level, compact bun-
dles of myelinated axons were observed in ONs from non-diabetic animals housed in SE or EE.

Table 2. Retinal morphometric analysis at 6 weeks of diabetes.

Total retinal thickness
Cell number in the GCL
Brn3a(+) number / 2 mm?

Control + SE Control + EE Diabetes + SE Diabetes + EE
1204+ 2 119.9+1.9 121.9+25 120.8+2.6
15.3+04 154+ 04 15.4+0.8 15.9+0.7

4147 £ 190 4213 + 189 4014 £ 150 4042 + 200

Quantification of total retinal thickness, GCL cells, and Brn3a(+) cells. These parameters did not differ among control or diabetic animals housed in SE or
EE. Data are mean + SEM (n = 5 animals per group).

doi:10.1371/journal.pone.0136637.1002
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Fig 3. Analysis of ON axons. Panel A: Light micrographs of semithin transverse sections at the proximal
and distal myelinated portions of the ON from a non-diabetic rat housed in SE, a diabetic rat housed in SE,
and a diabetic rat housed in EE (toluidine blue staining). Scale bar = 25 ym. Panel B: No differences in the
ON transversal area were found among groups. Panel C: Quantification of axon number. In SE-housed
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Proximal

Distal

Control + SE

Control + SE

Control + EE

animals, experimental diabetes induced a significant decrease in the axon number at the distal (but not
proximal) portion of the ON which was prevented by EE housing. Data are mean +SEM (n: 6 animals per
group), ¥*P <0.01 vs. SE-housed non-diabetic animals, a: P < 0.01 vs. SE-housed diabetic animals, by
Tukey’s test.

doi:10.1371/journal.pone.0136637.g003

In the distal ON from SE-housed diabetic animals, myelin was highly disorganized, and fre-
quent lamellar membranous bodies were observed. EE housing prevented these ultrastructural
alterations in diabetic animals (Fig 7).

BDNF-immunoreactivity in the distal ON portion was evaluated at 6 weeks after STZ injec-
tion. In SE-housed animals, diabetes induced a significant decrease in BDNF-immunoreactiv-
ity, whereas in EE-housed diabetic animals, BDNF-immunoreactivity was similar to that
observed in the ON from non-diabetic animals housed in SE or EE, as shown in Fig 8.

Discussion

The exposure to EE is known to produce functional recovery after various types of CNS lesions
[4,29, 30]. We have previously shown that EE housing protects the adult retina against acute
ischemic [12], and early diabetic [27] damage. However, the beneficial effect of EE housing

Control + EE Diabetes + SE Diabetes + EE N
11N
; \
: .
: .
.
Diabetes + SE Diabetes + EE
g 10000
s \
£ \
iy
\

SE EE SE EE SE EE SE EE
Control Diabetes Control Diabetes
Proximal Distal

Fig 4. NFHp immunolabeling. Upper panel: Representative photomicrographs showing NFHp immunostaining in longitudinal and transversal sections of
the proximal portion of ON from non-diabetic and diabetic animals housed in SE or EE. Lower panel: NFHp immunostaining in the distal portion of the ON.
Scale bar: superior panel = 50 ym, inferior panel = 100 um. Right panel: Quantification of the NFHp(+) area and NFHp(+) spot number in the proximal and
distal ON. In SE-housed animals, experimental diabetes induced a significant decrease in these parameters in the distal (but not proximal) ON which was
prevented by EE housing. NFHp-immunostaining in the proximal and distal ON did not differ between non-diabetic animals housed in SE or EE. Data are
mean +SEM (n: 5 animals per group), *P < 0.05, **P < 0.01 vs. SE-housed non-diabetic animals, b: P < 0.05, a: P < 0.01 vs. SE-housed diabetic animals, by
Tukey’s test.

doi:10.1371/journal.pone.0136637.9004
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Fig 5. Microglia/macrophages in the ON. Representative photomicrographs showing Iba-1 immunostaining in cross-sections of proximal and distal
portions of the ON from SE or EE-housed rats at 6 weeks after vehicle or STZ injection. Analysis of Iba-1(+) area. Experimental diabetes induced a significant
increase of Iba-1(+) area in the distal ON from SE (but not EE) housed animals. No changes in Iba-1(+) area were observed in the proximal ON among
groups. Data are mean + SEM (n: 5 animals per group), **P < 0.01 vs. SE-housed non-diabetic animals, a: P < 0.01 vs. SE-housed diabetic animals, by
Tukey's test. Scale bar = 50 pm.

doi:10.1371/journal.pone.0136637.9005
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against ON alterations induced by chronic damage such as STZ-induced experimental diabetes
was not previously examined. In a previous report, we have shown that in STZ-induced diabe-
tes, axonal alterations at the distal portion of the ON precede RGC loss [26]. The present
results indicate that EE housing, which had no effects per se in non-diabetic animals, prevented
axoglial alterations of the ON observed at early stages of experimental diabetes. Remarkably,
the protective effect of EE was independent from the metabolic profile, as suggested by the fact
that EE did not affect the STZ-induced weight loss and hyperglycemia.

DR is a major sight-threatening disease, and accumulating evidence indicates that glial acti-
vation and neuron injury occur at early stages of the disease [31,32]. In addition, histopatholog-
ical findings in 3-month diabetic rats demonstrate vacuolization of myelin, segmentation loss,
and proliferation of astrocytes in the ON [33]. As previously described, a loss of connectivity
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Fig 6. Astrocyte analysis in the ON. Representative GFAP-immunostaining in transverse sections of proximal and distal ON from a non-diabetic rat housed
in SE or EE, and a diabetic rat housed in SE or EE. In the distal (but not proximal) ON from SE-housed diabetic rats, the area occupied by astrocytes (GFAP
(+) area) was significantly increased. EE housing prevented the effect of experimental diabetes on GFAP immunoreactivity. Data are mean + SEM (n: 5
animals per group), **P < 0.01 vs. SE-housed non-diabetic animals, a: P < 0.01 vs. SE-housed diabetic animals, by Tukey’s test. Scale bar = 100 pm.

doi:10.1371/journal.pone.0136637.9g006
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Fig 7. Myelination and ultrastructural analysis of the distal ON. Panel A: MBP-immunoreactivity was examined in the distal portion of the ON from all the
experimental groups. A slight disorganization of MBP-immunostaining was observed in SE-housed diabetic animals as compared with SE- or EE-housed
non-diabetic animals or diabetic animals housed in EE. Shown are images representative of 5 animals per group. Scale bar = 50 ym. Panel B: Transverse
sections of the distal ON from all the experimental groups. In SE- and EE-housed non-diabetic animals, compact bundles of myelinated axons were
observed, whereas in the ON from SE-housed diabetic animals, myelin was highly disorganized (arrow head), and frequent lamellar membranous bodies
(arrow) were observed. EE housing prevented these alterations in diabetic animals. Shown are images representative of 6 animals per group. Scale bar
superior panel = 2 ym; middle panel = 0.5 um, inferior panel = 200 nm.

doi:10.1371/journal.pone.0136637.g007

between the retina and its main central target in rodents (the SC) occurred in SE-housed ani-
mals at early stages of diabetes [26], whereas EE housing prevented the decrease in the density
of CTB-labeled axon terminals in the SC from diabetic animals. In agreement with these
results, it has been demonstrated that EE promotes an increase in retinal CTB transport after
deafferentation of the SC in adult rats [34]. Although no obvious changes in retinal morphol-
ogy or in the number of RGCs were observed in the central and peripheral retina from SE-
housed animals that had been diabetic for 6 weeks, a significant decrease in axon number
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Fig 8. BDNF immunoreactivity in the distal ON after 6 weeks of diabetes. In diabetic animals housed in SE, a significant decrease in BDNF
immunostaining was observed in the distal portion of the ON, whereas in the ON from diabetic animals housed in EE, BDNF immunoreactivity was similar to
that found in non-diabetic animals kept in SE or EE. Shown are photographs representative of 5 ONs from different animals per group. Scale bar = 50 pm.

doi:10.1371/journal.pone.0136637.9g008

occurred in the distal (but not proximal) portion of the ON, whereas the exposure to EE pre-
vented the decrease in axon number. As the main component of the neuron cytoskeleton, neu-
rofilament protein mainly distributes in the cell body and processes of neurons, and plays an
important role in maintaining the normal morphology and structure of neurons [35]. Although
these proteins are primarily dephosphorylated in the perikarya and dendrites of neurons,
almost all neurofilaments in axons (including optic nerve axons) are phosphorylated [36,37].
Phosphorylation of NFH appears to be a major mechanism of the formation of neurofilament
crossbridges, and it is deeply involved in axonal transport, axonal plasticity, and neuronal
morphology [38]. A decrease in the phosphorylation of NFH was described in ON degenera-
tion induced by experimental glaucoma in monkeys [39], and after intravitreal injection of
N-methyl-D-aspartate [40], and transient retinal ischemia in mice [41]. However, to our
knowledge, changes in NFHp in the diabetic ON were not previously examined. As shown
herein, experimental diabetes induced a decrease in NFHp-immunoreactivity in the distal (but
not proximal) portion of the ON which was prevented by EE housing. In that context, the
decrease in axon number and NFHp-immunoreactivity induced by experimental diabetes and
its prevention by EE housing could account for the protective effect of EE on the CTB antero-
grade transport. In agreement, concomitantly with a decrease in axonal transport, a significant
decrease in NFHp-immunoreactivity in the porcine ON after an acute increase of intraocular
pressure was described [42].

Microglia surveys the CNS environment under normal conditions, and promptly responds
to neural damage through proliferative, hypertrophic, morphological, and migratory changes
[43,44]. Moreover, infiltrating macrophages from the peripheral circulation enter the site of
injury. Many of the same immunohistochemical markers are expressed in these two cell types
which are morphologically indistinguishable from each other; therefore they are often referred
to as microglia/macrophages. Microglial activation was reported in the retina at early stages of
diabetes [44-46], and also in the ON from humans with diabetes [47]. The present results indi-
cate an increased microglia/macrophages response in the distal portion of the ON from dia-
betic animals housed in SE, which was prevented by EE housing. Reactive gliosis is a hallmark
of many neurodegenerative conditions, including diabetes [48]. Astrocytes in the CNS respond
to tissue damage by becoming reactive. They migrate, undergo hypertrophy, and contribute to
form a glial scar that inhibits axon regeneration. Therefore, limiting astrocytic responses repre-
sents a potential therapeutic strategy to improve functional recovery [49]. As shown herein, EE
housing prevented the increase in GFAP immunoreactivity in the distal portion of the ON at
early stages of experimental diabetes.

MBP is an important constituent of CNS myelin sheaths and plays a major role in myelin
membrane formation and structure [50]. Therefore, MBP is a reliable index of oligodendrocyte
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differentiation and myelin formation. At 6 weeks of diabetes, myelin disarrangement shown by
alterations and disorganization of MBP-immunoreactivity and profound myelin alterations at
ultrastructural level were observed in the distal portion of the ON from diabetic animals
housed in SE, whereas EE housing preserved ON myelin arrangement and ultrastructure.

While studies on structural synaptic plasticity induced by EE have focused on neuronal ele-
ments, the structural-functional plasticity of glial cells remains relatively unexplored [51]. The
present results could suggest an experience-dependent plasticity of ON microglia, astrocytes
and oligodendrocytes even in adult animals, and particularly in a diabetic background. In
agreement, it was shown that EE housing reduces the number of microglial cells in the mouse
sensori-motor cortex after photothrombotic cortical infarct [52], and that raising rats in EE
decreases the effect of aging on the number and size of astrocytes, as well as on GFAP percent-
age in the hippocampus [53]. Moreover, it was demonstrated that EE delays the loss of myelin-
ated fibers in the white matter of rats during normal aging [54].

It has been postulated that environmentally-induced plasticity in the brain does not simply
consist of changes in different classes of cells independently; rather, interactions between neu-
rons and glia are also altered to more optimally meet physiological and behavioral demands
[55]. In this sense, although we could not ascertain whether the damage provoked by experi-
mental diabetes, and the protection induced by EE housing primarily occurred in axons or glial
elements, our results could suggest that the bidirectional communication between axons and
glial cells of the adult ON can be positively affected by EE. On the other hand, the fact that axo-
glial alterations at the distal portion of the ON preceded RGC loss does not implies that the ini-
tial neuronal event is axonal [26], and, instead, a sublethal impairment of RGCs could render
them unable to support their axons, resulting in progressive dying-back of the axon toward the
cell body [56]. In this context, the prevention of retinal diabetic damage induced by EE housing
[27] could also be involved in the protective effect of EE on the diabetic ON.

The mechanisms underlying the beneficial effects of EE remain unclear. Many lines of evi-
dence support that EE increases the availability of trophic factors, which in turn mediate
changes to neurons and their supporting network [11]. Although EE housing induces changes
in the expression levels of a large number of genes, one group of molecules particularly sensi-
tive to EE are neurotrophins [57, 58] which play a key role in structural and functional plastic-
ity during development and also in the adult [59]. In particular, one of the key factors involved
in the brain protection induced by EE is BDNF. Mice reared from birth in EE have higher levels
of the BDNF protein in their visual cortex at P7 [60, 61]. Moreover, the acceleration of visual-
cortical development in EE animals closely resembles that observed in transgenic mice overex-
pressing BDNF in their forebrain [62]. In SE-housed diabetic animals, a decrease in BDNF
immunoreactivity was observed in the distal portion of the ON which was prevented by EE,
supporting that BDNF could be one of the molecular mechanisms involved in the protective
effect of EE at the ON level. In this sense, we have previously shown that EE avoided the
decrease in retinal BDNF levels at early stages of experimental diabetes [27]. Therefore,
although the additional involvement of other mechanisms cannot be ruled out, these results
point at BDNF as a key factor in the retinal and ON protection against early diabetic damage
induced by EE. In agreement, it was recently demonstrated that visual cortex BDNF partici-
pates in the recovery of vision in adult amblyopic rats induced by EE exposure [63].

At present, which components of EE (sensory, motor, cognitive, or social stimulation) are
responsible for the ON protection against early diabetic damage, and to what extent is EE
in animal models relevant for humans are still open questions. EE provides an increased
stimulation at multiple sensory, motor, cognitive and social levels. Although most humans do
experience a high degree of environmental complexity, some of the EE components can be
overstimulated in humans with diseases involving neurodegeneration such as diabetes. In this
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sense, changes in several aspects of the lifestyle, such as regular social interactions and/or phys-
ical exercise could be recommended to humans at risk of diabetic visual damage. In this way,
preservation of the visual functions through an intensified use of the sensory and motor sys-
tems, and/or social interactions could be a novel and non-invasive possibility to promote ON
protection. Recently, Sale et al. [7] have raised the view of EE as an “endogenous pharmaco-
therapy” in which neural plasticity is not obtained by external administration of active sub-
stances, but using the environmental stimulation to enhance the spontaneous reparative
potential held by the brain. Besides diabetes, a similar scenario of ON damage (i.e., microglial
reactivity, astrocytosis, and loss of myelin and axons) has been described in other visual dys-
functions, such as glaucoma and ON crush. In this line, despite that more studies are required
to define the mechanism responsible for the ON protection of adult diabetic animals in
enriched conditions, these data support the further investigation of a non-invasive strategy
such as EE as a means of promoting successful protection of the ON structure against injury,
dysfunction, and degeneration.
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