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Heme oxygenase (HO) and biliverdin reductase (BVR) activities are important for neuronal

function and redox homeostasis. Resuscitation from cardiac arrest (CA) frequently results

in neuronal injury and delayed neurodegeneration that typically affect vulnerable brain

regions, primarily hippocampus (Hc) and motor cortex (mC), but occasionally also

striatum and cerebellum. We questioned whether these delayed effects are associated

with changes of the HO/BVR system. We therefore analyzed the activities of HO

and BVR in the brain regions Hc, mC, striatum and cerebellum of rats subjected to

ventricular fibrillation CA (6min or 8min) after 2 weeks following resuscitation, or sham

operation. From all investigated regions, only Hc and mC showed significantly decreased

HO activities, while BVR activity was not affected. In order to find an explanation

for the changed HO activity, we analyzed protein abundance and mRNA expression

levels of HO-1, the inducible, and HO-2, the constitutively expressed isoform, in the

affected regions. In both regions we found a tendency for a decreased immunoreactivity

of HO-2 using immunoblots and immunohistochemistry. Additionally, we investigated

the histological appearance and the expression of markers indicative for activation of

microglia [tumor necrosis factor receptor type I (TNFR1) mRNA and immunoreactivity

for ionized calcium-binding adapter molecule 1 (Iba1])], and activation of astrocytes

[immunoreactivity for glial fibrillary acidic protein (GFAP)] in Hc and mC. Morphological

changes were detected only in Hc displaying loss of neurons in the cornu ammonis 1

(CA1) region, which was most pronounced in the 8min CA group. In this region also

markers indicating inflammation and activation of pro-death pathways (expression of

HO-1 and TNFR1 mRNA, as well as Iba1 and GFAP immunoreactivity) were upregulated.

Since HO products are relevant for maintaining neuronal function, our data suggest that

neurodegenerative processes following CAmay be associated with a decreased capacity

to convert heme into HO products in particularly vulnerable brain regions.
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INTRODUCTION

Neurologic outcome in patients resuscitated from cardiac arrest
(CA) remains poor, despite improvements in advanced life
support and post-resuscitation care. Brain injury starts during the
initial CA (no-flow time), continues during resuscitation (low-
flow time) and culminates after re-oxygenation with the return
of spontaneous circulation (ROSC). These pathophysiological
events prepare the base of the post-cardiac arrest syndrome (1, 2)
and lead to neurologic and motor deficits (3), which were shown
to persist for a long time (4, 5). Using animal models, like others
we have previously shown that CA induced global ischemia
causes delayed neurodegeneration and neuronal dysfunction,
which is associated with decreased cognitive capabilities (6–9).
An experimental study using rats revealed that cognitive deficits
in response to global ischemia continue to develop and weremost
severe after 6 months when rats are in their middle age (10).
The same group also showed that cognitive deficits produced by
ischemia are severe in middle aged rats, suggesting that repair
mechanisms decline with age (11).

Multiple mechanisms are initiated immediately after ROSC
involving an imbalanced redox homeostasis (12), increased cell
stress, initiation of inflammation and cell death signaling (13–
15) followed by death of vulnerable neurons. The most frequent
structural changes occur in the hippocampus (Hc), consisting of
loss of pyramidal neurons in the cornu ammonis 1 (CA1) region
(16), which are associated with behavioral alterations (17).

The heme oxygenase (HO) system supports neuronal function
and contributes to the oxidative defense (18, 19). HO degrades
heme via oxidation yielding carbon monoxide (CO), free iron,
and biliverdin (BV), which is afterwards converted to bilirubin
(BR) (19). There are two catalytically active isoforms of HO in
mammals, HO-1 and HO-2. In neuronal tissue nearly all of the
HO-activity is ascribable to the constitutive HO isoform HO-
2, and contribution of HO-1 is almost absent in physiological
conditions (20). Functional HO is required for modulation of the
synaptic activity, for memory consolidation, and maintenance
of microperfusion, which operates predominantly via the heme
degradation product CO (21–23).

Apart from the exclusive role of HO-2 for maintaining
homeostasis and function in neuronal tissues, upregulation of
the inducible isoform of HO-1, synonym with heat shock protein
32 is observed in response to acute cell stress, such as hypoxia
and ischemia (24). Within several hours cerebral ischemia leads
to the induction of HO-1, initially in astrocytes, which is
subsequently extended on neuronal cells (25–27). Additionally
to the HO-1 induction, also up-regulation of HO-2 protein has
occasionally been described in response to cerebral ischemia (28).
Experimental models inhibiting HO or overexpressing HO prior
to an ischemic insult documented the neuroprotective effects of
HO, particularly that of HO-2 (29). HO mediated cytoprotection
can be mimicked by application of the HO reaction products CO
(30) or BV/BR (31, 32).

Given the particular role of HO in preserving neuronal
morphology and function, we questioned whether delayed
neurodegeneration caused by resuscitated cardiac arrest is
associated with changes of HO activity. Most studies delimitate

their investigation to the expression of mRNA or protein level
of either HO-1 or HO-2, or both HO isoforms in a few cases.
Several studies show an acutely increased mRNA and/or protein
expression of the HO-1 isoform in response to global ischemia
(28, 29). However, HO activity of brain regions following CA has
not been investigated yet. Instead, HO activity is extrapolated
from the observed expression levels of HO-1 and/or HO-2
mRNA or protein, although it is known that both enzymes, HO-
1 and HO-2, may be subjected to posttranslational modifications,
influencing their catalytic activity (33, 34). Therefore, the capacity
to degrade heme may be different from what mRNA or protein
levels suggest.

Thus, our study aimed at understanding whether HO activity
and expression do indeed correlate in vulnerable brain regions,
as is generally assumed. To test our hypothesis we applied an
experimental ventricular fibrillation model of 6 or 8min CA,
followed by cardiopulmonary resuscitation (CPR) using rats (7).
After 2 weeks, we analyzed in Hc, motor cortex (mC), striatum
and cerebellum the activity and expression levels of enzymes
of the heme degradation pathway. To understand whether
changes of the HO system are associated with neurodegenerative
processes, we further analyzed the affected regions for relevant
markers indicating gliosis and activation of inflammatory cell
death pathway processes.

MATERIALS AND METHODS

Animals and Experimental Protocol
The experimental protocol was approved by the Institutional
Animal Care and Use Committee of the Medical University
of Vienna and the Austrian Ministry of Science, Research
and Economy (GZ.: 66.009/0064-II/3b/2011). The experiments
were conducted in compliance with EU regulations for
animal experimentation (Directive 2010/63/EU of the European
Parliament and of the Council) and followed the ARRIVE
guidelines (35).

A total of 32 adult male Sprague-Dawley rats, 389± 56 g body
weight (BW), 10 weeks of age (Himberg, Austria) were randomly
allocated into the two resuscitation groups of 6 and 8min CA
(6min CA, n = 10; 8min CA, n = 12) and a sham operated
group (sham, n= 10). In the 8min CA group, more animals were
allocated, because we expected a higher loss of animals due to
longer CA times. In the sham group the same surgical procedures
were performed, without the induction of ventricular fibrillation
and consequent CA.

The experimental resuscitation model was described in
detail earlier (7). Briefly, sedation of the animals was induced
via the administration of sevoflurane 6% in FiO2 1.0 for
4min in a box. The rats were endotracheally intubated with
an adapted venous cannula (14GA Venflon BD Luer-Lok,
Helsingborg, Sweden) and mechanically ventilated, volume-
controlled with 65/min, 7 mL/kg BW and 0.3 FiO2 (Havard
Inspira advanced safety ventilator, volume controlled, MA1 55-
7058, Holliston, MA, USA). Buprenorphine (50 µg/kg BW)
was given subcutaneously (s.c.) after intubation and sevoflurane
3.5% was further administered via the ventilator for continuous
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anesthesia during surgery. Rectal and esophageal temperature
was kept stable at 37 ± 0.2◦C with a heated operating table.
The animals were catheterized via surgical cut-down into the
left femoral artery and vein (Argyle Polyurethane Umbilical
Vessel Catheter; 2.5 Fr, Convidien, Mansfield, MA, USA) for
arterial blood sampling, measurement of mean arterial pressure
(MAP) and venous drug administration. A human neonatal
pacing catheter (Vygon GmbH&Co Bi-Pacing-ball 3 Fr, Aachen,
Germany) was inserted in the cranially ligated right jugular
vein, with the tip ending in the inferior vena cava for inducing
ventricular fibrillation cardiac arrest.

After successful surgery, a baseline arterial blood gas analysis
was performed, and sevoflurane sedation was stopped 1.5min
before the induction of ventricular fibrillation and the end
of mechanical ventilation. After untreated CA (6min CA,
or 8min CA), bicarbonate (1 mmol/kg BW), unfractionated
heparin (100 I.U.), and epinephrine were given (20 µg/kg BW)
intravenously (i.v.) 60 s before the initiation of resuscitation.
Resuscitation was started with mechanical chest compressions
(200/min) delivered with a pneumatic chest compression device
(Streubel Automation, Grampersdorf, Germany) andmechanical
ventilation (20/min, 7 mL/kg BW, 1.0 FiO2). The animals were
defibrillated (2 times each with 5 Joule, biphasic; repeated
every 2min if ventricular fibrillation was present) and received
epinephrine (10 µg/kg BW) i.v. 60 s after start of CPR and
repeated every 2min to achieve ROSC.

After ROSC, the ventilation settings were adapted (65/min,
7 mL/kg BW and 0.5 FiO2) and an arterial blood gas sample
was taken 5min after ROSC. The catheters were removed, vessels
ligated, and skin incisions sutured using aseptic techniques. After
successful weaning frommechanical ventilation, the unconscious
rats were extubated, received oxygen via a nose cone mask and
buprenorphine (24 µg/kg BW) s.c. as long as pain or distress
was present. Further information regarding clinical data (mean
arterial pressure, blood gas analyses prior and after CA and
ROSC) is given as Table S1.

The rats were evaluated daily and neurologic status was
assessed on day 1 and day 14 after ROSC by an investigator
blinded to the study group, using neurological deficit score
(NDS; NDS 0% = normal, NDS = 100% dead) (36) and overall
performance category score (OPC; OPC 1 = normal, 2 =

moderate disability, 3 = severe disability, 4 = comatose, 5 =

dead (37). The neurological scoring system of NDS and OPC
is described in the Tables S2, S3. A schematic overview of the
experimental setup (a) and the study timeline (b) is shown
in Figure 1.

Sampling
At day 14 rats were euthanized with a sevoflurane and
buprenorphine overdose and perfused with saline (0.9% NaCl).
After perfusion, brains were removed from the skull and cut
into hemispheres. One half was fixed in 7.5% neutral buffered
formaldehyde solution for histological examination, and regions
of the other hemisphere (mC, Hc, striatum, and cerebellum) were
sampled for gene expression analysis and enzyme assays. For this
purpose, coronary sections at Bregma 1.7, −1.4, and −5.2 (38)
were cut. The mC was taken from the rostral section, striatum

from the next section and Hc from the third section. Cerebellar
peduncles were cut to remove the cerebellum from the brain
stem. The entire sampling process was done on a chilled marble
plate and lasted not longer than 30min. Brain regions were snap
frozen in liquid nitrogen and stored at −80◦C until use. The
entire procedure with analyses performed is shown in Figure 2.

Preparation of Tissue Homogenates for
Enzyme Assays and Expression Analysis
Homogenates of entire brain regions were prepared (Figure 2)
instead of using only parts/pieces, in order to avoid biases
due to potential tissue inhomogeneity. These homogenates were
used for the determination of the HO and BVR activity and
for the protein and gene expression analyses. Frozen tissue
was homogenized in 1:20 (w/v) Tris-buffer containing 300mM
sucrose, 20mM Tris, and 2mM EDTA at pH 7.4 using a Potter-
Elvehjem with PTFE pestle on ice. The homogenates were
distributed in 30 µL portions directly into liquid nitrogen. The
formed frozen droplets were stored at−80◦C until being used.

Determination of the Activity of HO
Enzyme by an Optimized Photometric
Enzyme-Coupled Assay
The determination of enzyme activities (HO and BVR) was
performed as previously described (39) with the following
modifications. Two droplets (corresponding to approximately
1mg of protein) were added to a reaction mixture containing
500 nmol NADPH (Sigma) in a total volume of 150 µL assay
buffer (100mM potassium phosphate buffer; 1mM EDTA; pH
7.4), supplemented with 20 nmol of hemin (for determination
of HO activity), or with 200 nmol BV (for determination of
BVR) and 250 nmol of NADPH. The residual homogenate was
used to determine the protein concentration using a Coomassie
Brilliant Blue binding assay (Bradford), as described elsewhere
(40). The mixture was incubated under constant agitation
in darkness for 30min at 37◦C. The reaction was stopped
by transferring the samples onto ice. BR was extracted into
benzene as described previously (41). BR concentration was
determined using a double beam spectrophotometer (U-3000,
Hitachi) and a standard calibration curve, which was generated
by adding known amounts of bilirubin to assay buffer followed
by subsequent extraction. The detection limit of BR using this
method was determined as 5 pmol BR. In all tissues the BVR
activity (the capacity to convert BV into BR) was much higher
(i.e., 10 times) than that of HO (the capacity to convert heme to
BR). This indicates that BVR activity is not limited and that all
BV formed by the HO enzyme is completely reduced to BR by
the underlying BVR. Enzyme activities were expressed as pmol
BR formed per mg protein in 30 min.

Analysis of HO Protein Levels by
Immunoblots
Proteins from droplets were separated under reducing conditions
by sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) on 10–15% PAGE gradient gels and blotted onto
nitrocellulose as described earlier (40). Immunoprobing with two
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FIGURE 1 | Schematic representation of setup and timeline of the experiments. (A) Instrumentation of animals using an endotracheal tube (endotr tube), an arterial

and venous catheter in the femoral artery and vein (art and ven catheter), an esophageal temperature probe (Tesoph), and a rectal temperature probe (Trect).

Fibrillation catheter for inducing ventricular fibrillation (fibrill cath). For resuscitation defibrillation pads (Defi Pads) were placed as indicated and a thumper was

positioned 2 cm cranial of the xiphoid process. (B) Animals were randomly allocated to sham (not shown) or the 6 or 8min cardiac arrest (CA) group following

anesthesia and surgery (Anesth/Surgery). Sevoflurane was stopped (Sevofl stop) and CA was induced by ventricular fibrillation (single lightning symbol; Fibr.). Heparin

(Hep), epinephrine (EPI) and sodium bicarbonate were added prior to cardiopulmonary resuscitation (CPR) attempted by 2 consecutive defibrillation steps (double

lightning bolts), repeated every 2min of CPR and followed immediately by epinephrine (EPI) supplementation every 2min of CPR. After successful resuscitation with

maximal 5 defibrillation attempts catheters were explanted (Cath Explant) and animals extubated (Extub). Overall performance category score (OPC) and neurological

deficit score (NDS) were determined in all surviving animals at day 1 and day 14 prior to sacrifice.

specific antibodies was performed: against HO-1 (Alexis Corp.,
Lausen, Switzerland) and HO-2 (Santa Cruz Biotechnology,
Santa Cruz, CA, USA), followed by cross-absorbed anti-rabbit
IgG-HRPO (Novex, Life Technologies Corporation, Grand
Island, NY, USA) and enhanced chemiluminescent detection
(ECL-detection). Fluorescence staining of the overall protein
pattern (prior to immunostaining) was used as a loading control
and for normalization (Overall protein stains are shown in
Figure S1). HO-1 proved to be below detection limit in brain.
Testing of Hc and mC specimens for HO-2 was performed on
individual animal basis.

Analysis of Gene Expression
Gene expression analysis was performed using qPCR as
described elsewhere (42). Briefly, RNA was isolated from
2 frozen droplets using 1mL of TriReagentTM. Extraction
of RNA was performed in accordance to manufacturer’s
protocol. The amount of extracted RNA was determined
spectrophotometrically at 260 nm and purity was assessed by the

260/280 nm ratio on an Eppendorf BioPhotometer plusUV/VIS
(Eppendorf, Hamburg, Germany). Copy DNA was prepared
as previously described (43). Equal aliquots from each cDNA
were pooled to generate an internal standard (IS) which was
used as reference for the quantification. Primer pairs used
for the expression analysis of HO-1 and TNFR1, and for the
internal reference genes hypoxanthine ribosyltransferase (HPRT),
and cyclophilin A (Cyc) were previously published (42). Primer
pairs for the analysis of HO-2 and BVR isoform A (BVRA)
gene expression were newly established for this study. Results
of validation experiments performed to verify the suitability
of these qPCR assays in accordance to the MIQE guidelines
(44) are available as Tables S4, S5 and Figure S2. The qPCR
was carried out on a CFX96TM (Bio-Rad, Hercules, CA, USA).
Data were analyzed using the inbuilt software CFX manager
(Version 2.0, Bio-Rad) in the linear regression mode. Expression
of target genes was calculated against IS using a modified
11Cq method and normalized for the relative expression
values obtained for internal reference genes HPRT & Cyc as
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FIGURE 2 | Schematic overview for the preparation of brain sections used for the different analysis. Brain samples were taken from rats surviving 2 weeks following

CA and processed as described in the Materials and Methods section. Half of the brain was fixed and used for histological examination [hematoxylin and eosin

staining (HE), immunohistochemistry for heme oxygenase (HO)-2, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP)]. Different

regions were cut from the other half and immediately snap-frozen. In order to prevent biases frozen tissue pieces were homogenized and distributed into droplets prior

to analysis of activity of HO and BVR, protein expression of HO-1 and HO-2, and gene expression [Tumor necrosis factor receptor 1 (TNFR1), HO-1, HO-2, and

biliverdin reductase A (BVRA)]. Analyses were performed in accordance to the procedures described in Materials and Methods section.

previously described (45). Values obtained from duplicates were
averaged and expressed as 2−11Cq in fold changes relative to
the IS.

Histological Analysis
Fixed brain hemispheres were cut into coronary sections, which
were embedded in paraffin wax and cut into 5µm thick sections.
Sections containing Hc, mC, striatum and cerebellum were
stained with hematoxylin and eosin (HE) and examined by a
pathologist blinded to the study groups. The presence of neuronal
necrosis was determined in a descriptive manner in HE stained
sections of these brain regions.

Immunohistochemistry was used to determine activation of
microglia (primary antibody against ionized calcium-binding
adapter molecule 1 (Iba-1), FUJIFILM Wako Chemicals,
Neuss, Germany, dilution 1:80,000) and astrocytes (primary
antibody against glial fibrillary acidic protein (GFAP), Agilent
Dako, Waldbronn, Germany, dilution 1:5,000) in the Hc in a
semiquantitative manner. Furthermore, immunohistochemical
investigations using a primary antibody against HO-2 (Santa
Cruz Biotechnology, Santa Cruz, CA, USA, dilution 1:100) were
performed to evaluate expression of HO-2 in Hc and mC. All
immunohistochemical stainings were done automatically on
an autostainer (Lab Vision AS 360, Thermo Fisher Scientific,
Waltham, MA, USA). Briefly, sections were cut and antigen
retrieval was performed in the Lab Vision PT Module (Thermo
Fisher Scientific, Waltham, MA, USA) with citrate puffer (pH6,
Iba1, and HO-2) and pronase digestion (GFAP), respectively.
Endogenous peroxidase activity was blocked by incubation in
H2O2. Ultra Vision Protein Blocking reagent (Labvision/Thermo
Fisher Scientific, Fremont, CA, USA) was used to avoid

non-specific binding of antibody. After application of the
primary antibody a polymer detection system (Ultra Vision
LP Large Detection System HRP, Labvision/Thermo Fisher
Scientific, Fremont, CA, USA) consisting of a secondary
antibody formulation conjugated to an enzyme-labeled
polymer was used. The polymer complex was visualized
with diaminobenzidine (Labvision/Thermo Fisher Scientific,
Fremont, CA, USA). Subsequently, sections were counterstained
with hematoxylin, dehydrated and mounted with Neo-Mount
(Merck, Darmstadt, Germany).

For the semiquantitative analysis of gliosis and expression
of HO-2, the region of interest was evaluated in the respective
immunohistochemical staining. An increase or decrease of
staining intensity and extent was assessed on a five-point scale.
Normal expression of Iba1 (microglia) and GFAP (astrocytes)
was assessed as “0,” while an increase was assigned to the
following categories: scattered (1), mild (2), moderate (3), or
high (4) expression. For HO-2 expression, the normal expression
pattern was rated as “4.” The staining intensity was compared
to the adjacent cortex tissue and a decrease was rated in four
categories: mild (3), moderate (2), severe (1) reduction or no
signal at all (0). Adobe Photoshop CC 2019 was used for white
balance and to assemble representative histological pictures.

Statistics and Data Analysis
Data from quantitative analysis were calculated as medians as is
recommended for qPCR data (46). Correlation between data sets
was analyzed using the Spearman ranked sign test. Groups were
compared by one-way non-parametric ANOVA (Kruskal Wallis)
followed by Bonferroni-correction using IBM SPSS statistics
(version 24). Values with p < 0.05 were considered significantly
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TABLE 1 | Overview of animals enrolled in the study (n = 32).

State of the animal Sham 6min cardiac

arrest

8min cardiac

arrest

Enrolled 10 10 12

Excluded from final

examination

1 3 5

No return of spontaneous

circulation (ROSC)

– 1 2

ROSC with overall

performance category

score = 5

– 2a 3a

ROSC with overall

performance category

score < 5

– 7 7

14-day survival 9 7 7b

aRats died before the end of the experiment and were excluded from final examination.
bFrom one animal only histological examinations and no biochemical analysis were

performed (see above).

different. For visualization of data GraphPad PRIMS version 5.00
(GraphPad Software Inc.) was used, indicating the values of the
single animals, and medians with 1st and 3rd quartiles per group.
The numbers of independent samples (n) are indicated in the
respective figure legends.

RESULTS

Of 32 enrolled rats, 9 rats had to be excluded from the study
(Table 1). One of the 10 sham operated animals woke up during
the surgery, anesthesia was deepened immediately and the rat
survived (day 1 and 14: OPC 1; NDS 0%). This animal was
excluded from final examinations. Three rats of the 6min CA
group and 5 of the 8min CA group either had no ROSC or
survived only few hours (6min CA group: no ROSC, n= 1; OPC
5, n= 2; 8min CA group: no ROSC, n= 2; OPC 5, n= 3). These
animals were excluded from final examinations as well. A total of
23 animals (sham group, n= 9; 6min CA group, n= 7; 8min CA
group, n = 7) remained for final examinations on day 14. From
one rat of the 8min CA group brain sample volume harvested
was not sufficient for the biochemical analysis, only histological
examinations and neurological scoring were performed. Mean
arterial pressure and blood gas analysis at baseline (after surgery)
and 5min after ROSC are presented in Table S5. All surviving
animals were scored for their neurological performance (OPC
and NDS) at day 1 and at day 14 prior to sacrifice. We used
repeated scoring as a suitable approach to rate the neurologic
recovery, as was described earlier (7, 9). The results of the
neurological scoring of CA animals with ROSC, including those
with OPC 5 (= dead) at day 1, and the results obtained for
animals surviving until day 14 are presented below (Table 2).

CA Leads to Decreased Activities of HO in
Motor Cortex and Hippocampus, While
BVR Activities Are Not Affected
From all investigated tissues we found HO activity to be lower
in samples from mC and Hc, while striatum and cerebellum

TABLE 2 | Results of repetitive neurological scoring of experimental animals.

Neurological state Day 1 Day 14

Sham 6min CAa 8min CA Sham 6min CA 8min CA

OPCb 1 9 5 – 9 7 7

OPC 2 – 2 7 – – –

OPC 3 – – – – – –

OPC 4 – – – – – –

OPC 5 (dead) – 2 3 – – –

NDSc (OPC 1–4) 0 ± 0 5 ± 2 13 ± 4 0 ± 0 0 ± 0 1 ± 2

aCA, cardiac arrest.
bOPC, overall performance category score (OPC 1= normal; 2=moderate disability. 3=

severe disability; 4 = comatose; 5 = dead; for details of calculating OPC see Table S2).
cNDS, neurological deficit score (NDS 0% = normal; NDS 100% = dead; mean ± SD; for

details of calculating NDS see Table S3).

did not show changes (Figure 3), when compared to the sham
control group. For themC, themedian of the 6minCA groupwas
decreased by 47% (p= 0.009) and of the 8min CA group by 42%
(p = 0.043). In the Hc, the activities were decreased to a lesser
extent [6min CA, 26% (p = 0.136); 8min CA, 39% (p = 0.029)].
BVR activity was not affected in any brain region (Figure 3).

Decreased HO-2 Protein Levels in
Response to CA Occur in mC (Immunoblot)
and Hc (Immunohistochemistry)
Since we have found lower HO activity in mC and Hc
homogenates, we questioned whether decreased levels of HO-
2 protein caused this effect. Although both isoforms HO-1 and
HO-2 contribute to the overall HO activity, the amount of HO-1
protein is generally very low in neuronal tissues (20). In line with
these findings, we also could not determine HO-1 at protein level
in immunoblots of tissue homogenates. Though, in homogenates
of mC from CA animals we determined lower levels of HO-2
protein (p = 0.01 for 8min CA; Figures 4A,C). Additionally,
homogenates of Hc from 6min CA animals displayed slightly
lower HO-2 protein levels in comparison to the respective sham
animals, but this difference was not significant (p = 0.233;
Figures 4B,D). It is possible that the differences between groups
in Hc did not result in statistical significances, because of the low
sample numbers available for some of the groups. We also tested
the immunohistochemical appearance of HO-2 specific staining
in sections of both brain regions (mC and Hc).

In sham animals, immunohistochemical staining for HO-2
showed a consistent signal in all layers of the Hc CA1-region
(Figure 5A). The signal intensity was nearly similar to the signal
intensity in the cerebral cortex in the same section (Figure 5A).
In contrast, in all CA animals, regardless of CA duration, the
HO-2 signal was significantly reduced in all hippocampal layers
compared to the corresponding cerebral cortex (Figures 5B,C
and Table 3). The neuronal expression of HO-2 was present
predominantly in surviving pyramidal neurons in CA animals
(Figures 5B,C inserts). In all animals, a consistent signal was
present in the neuropil of the mC, and in some neurons increased
staining intensities were detectable (Figures 5D–F). In contrast
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FIGURE 3 | Catalytic activities of the heme degradation pathway enzymes, HO and BVR, in brain regions 2 weeks after cardiac arrest (CA) (6 or 8min) and

resuscitation. Animals were subjected to CA for 6min (CA 6min) or 8min (CA 8min) or sham operated, as outlined in Materials and Method section. Brain regions

were analyzed for enzyme activity by measuring the capacity of homogenized tissue to convert heme (HO activity) or biliverdin (BVR activity) into bilirubin within 30min.

The obtained amount of BR was corrected for the underlying protein concentration and enzyme activity is given in nmol BR formed per mg protein in 30min (nmol

BR/mg protein/30min). Data are shown for single animals (gray open symbols) in each group: sham (instrumented animals, open circles, n = 9), rats subjected to CA

for 6min (CA 6min, open squares, n = 7) or 8min (CA 8min, open triangles, n = 6), indicating additionally group medians (thin black line) and 1st and 3rd quartiles

(bold black lines). Differences between groups are indicated (one-way non-parametric ANOVA (Kruskal Wallis) Bonferroni-corrected; *p < 0.05; **p < 0.01).

to Hc, in mC, the HO-2 specific staining was heterogeneous and
cell type-specific, making quantitative considerations with this
technique difficult. Nevertheless, the overall protein, determined
by immunoblots, revealed that CA decreased HO-2 levels in mC
as well. Therefore, our data suggest that the decreasedHO activity
may be caused by lower levels of HO-2 protein in mC and Hc.

Gene Expression Level of Enzymes of the
Heme Degradation Pathway and Activation
of Inflammatory Pathways (TNFR1)
In order to find out whether the decrease in HO-2 protein was
caused by a decreased mRNA transcription, we determined gene
expression levels. Additionally to HO-2 mRNA, we also analyzed
HO-1 and BVRA mRNA levels to cover gene transcription of

all enzymes of the heme degradation pathway. Contrary to our
expectation, we did not find gene expression levels of either HO
isoform decreased. In contrast, the expression levels of HO-1
were increased in Hc of rats subjected to 8min CA (Figure 6).
The HO-1 expression levels showed an association with the
duration of CA, since highest levels were found in the 8min CA
group. The median of the 6min CA group showed an increase
of 91%, while the median of the group of animals with 8min CA
showed an increase of 132%. Neither HO-2, nor BVRA mRNA
showed any changes (Figure 6).

It is known that HO-1 (synonym HSP32) is indicative for the
activation of a stress response. Activation of astroglia is frequently
associated with an increased HO-1 expression, along with other
inflammation associated markers, such as TNFR1. Indeed, we
could also show upregulation of TNFR1 mRNA in Hc of rats
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FIGURE 4 | Abundance of HO-2 in homogenates of mC (A) and Hc (B). Homogenates from brain regions of single animals were analyzed by SDS-PAGE and

immunostained for HO-2 as described in Materials and Methods section. For quantification, band intensities of HO-2 specific staining were normalized to total protein

staining of the respective gel lanes, in (C) for mC and in (D) for Hc. Values are given as AUFS (arbitrary units) as single data (gray open symbols) for each group: sham

animals (open circles), rats subjected to cardiac arrest (CA) for 6min (CA 6min, open squares) or 8min (CA 8min, open triangles), indicating additionally group

medians (thin black line) and 1st and 3rd quartiles (bold black lines). The numbers of analyzed animals per group are indicated below the graphs; a selection is

displayed here. Total protein patterns of the respective gels are shown in Figure S1. Differences between groups are indicated (one-way non-parametric ANOVA

(Kruskal Wallis) Bonferroni-corrected; *p < 0.01).

FIGURE 5 | Representative pictures of HO-2 expression in hippocampus and motor cortex. (A–C) Expression of HO-2 in the Hc, bar = 30µm, bar in inserts =

150µm. (A) The signal intensity in the hippocampus (Hc) of sham animals is nearly similar to the expression in the respective overlying cerebral cortex (Co). (B,C)

Reduced expression of HO-2 in the Hc of 6 and 8min CA animals compared to the respective cerebral cortex and compared to sham animals. Inserts: HO-2

expression is detectable in all pyramidal neurons of sham animals (A), but only in viable pyramidal neurons [arrows in (B,C)] in CA animals. (D–F) Expression of HO-2

in the mC, bar = 30µm; consistent expression of HO-2 in sham (D) as well as 6 (E) and 8min (F) CA animals with increased staining intensity in some neurons.
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subjected to 6 and 8min of CA (Figure 6). The expression levels
of TNFR1 mRNA showed a significant correlation with HO-1
mRNA (Spearman Rho, R = 0.649; p = 0.001, data not shown).

TABLE 3 | Semiquantitative evaluation of HO-2 and markers indicative for

activation of astrocytes and microglia in hippocampal sections of rats after 2

weeks following cardiac arrest.

Marker Sham 6min CAa 8min CA

HO-2 4 (4,4) 2 (1,2)*** 1 (12)***

Iba1b 0 (0, 0) 3 (3,3)*** 3.5 (3,4)***

GFAPc 0 (0, 0) 3 (2,4)*** 4 (3,4)***

aCA, cardiac arrest.
b Iba1, ionized calcium-binding adapter molecule 1 (microglia activation marker),

activation of.
cGlial fibrillary acidic protein; data are given as mean ± SD. Details of the scoring

system yielding median and interquartile ranges are described in the respective Materials

and Methods section. Significant differences were detected between sham animals and

animals subjected to CA for all markers (***p < 0.005 vs. sham), but not between 6 and

8min CA animals.

The median of the 6min CA group showed an increase of 33%,
while the median of the 8min CA group showed a more than
two-fold increase. Compared to the sham animals this increase
was significant for the animals subjected to 8min of CA (p =

0.003), but only by trend for the animals subjected to 6min of
CA (p = 0.055). None of the other regions displayed increased
levels of TNFR1.

Histopathological Changes Only in Hc 2
Weeks After CA
The results of mRNA expression analyses suggested an
ongoing stress response and additionally the number of HO-
2 expressing neurons was diminished in Hc. In order to
determine the morphological appearance of lesions in response
to CA and reperfusion we evaluated HE-stained sections of all
investigated regions.

Consistent lesions were detectable only in the Hc of animals
with CA. Sham animals did not show any lesions in the CA1
region (Figure 7A). Hypereosinophilic pyramidal neurons with
shrunken nuclei (necrotic neurons) were present in animals

FIGURE 6 | Expression of, HO-1, HO-2, BVRA and TNFR1 mRNA in motor cortex and hippocampus 2 weeks following cardiac arrest (CA). Gene expression was

quantified by qPCR. Data were normalized against the internal reference genes HPRT and Cyclophilin A and expressed relative to the IS (relative mRNA level). Gene

expression levels are shown for single animals (gray open symbols) in each group: sham animals (open circles, n = 9), rats subjected to CA for 6min (CA 6min, open

squares, n = 7) or 8min (CA 8min, open triangles, n = 6), indicating additionally group medians (thin black line) and 1st and 3rd quartiles (bold black lines). Significant

differences between groups were calculated by one-way non-parametric ANOVA (Kruskal Wallis followed by Bonferroni-correction) and are indicated (*p < 0.05; ***p

< 0.005).
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FIGURE 7 | Representative pictures of hippocampus, motor cortex, striatum and cerebellum at 14 days after CA, HE-staining, bar = 30µm. (A–C) Hippocampus, (A)

sham animal with viable pyramidal neurons, no lesions present. (B) 6min CA animal with many necrotic neurons (arrows) and few viable pyramidal neurons; (C) 8min

CA animal with many necrotic neurons (arrows) and only scattered viable pyramidal neurons. (D–F) Motor cortex, viable neurons in sham (D) as well as 6 (E) and 8min

CA (F) animals, no lesions present. (G–I) Striatum, viable neurons in sham (G) as well as 6 (H) and 8min CA (I) animals, no lesions present. (J–L) Cerebellum, viable

neurons in sham (J) as well as 6 (K) and 8min CA (L) animals, no lesions present. CA, cardiac arrest.

with 6 and 8min CA (Figures 7B,C). Animals with 8min
CA showed a tendency toward more severe lesions, but no
significant differences were found compared to 6min CA
animals. Lesions were not detected in mC (Figures 7D–F). Also
striatum (Figures 7G–I) and cerebellum (Figures 7J–L) showed
no lesions, regardless of CA duration and consistent with earlier
findings (7).

CA Leads to Activation of Microglia and
Astrocytes in Hc
Hc showed loss of pyramidal neurons in association with
increased mRNA expression levels of inflammatory markers

in animals subjected to CA surviving 14 days. We therefore
aimed at confirming ongoing gliosis by additionally analyzing
typical markers. Using immunohistochemistry we determined
an increased staining of Iba1 and GFAP regarding extent
and intensity in microglia (Figures 8A–C) and astrocytes
(Figures 8D–F) in CA-animals. Microglia showed rod-shaped
nuclei and soma with short thick processes consistent with
activation. Cytoplasm and nuclei of astrocytes were swollen
with large thick processes showing gemistocytic appearance.
By semiquantitative evaluation of glial activation statistically
significant differences were detected between sham and CA
animals in Iba1 and GFAP immunohistochemistry (p < 0.005).
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FIGURE 8 | Representative pictures of microglia and astrocyte activation after CA in the hippocampus, bar = 30µm. (A–C) Detection of microglia (antibody against

Iba1) in the Hc. (A) Normal appearance and numbers of microglial cells in sham animal. (B,C) Increased numbers of activated microglia in CA animals. (D–F)

Detection of astrocytes (antibody against GFAP) in the Hc. (D) Normal appearance and numbers of astrocytes in sham animal. (E,F) Increased numbers of

gemistocytes in CA animals. CA, cardiac arrest.

However, no differences were present between 6 and 8min CA
groups (Table 3).

DISCUSSION

We could show that 2 weeks after CA hippocampal and motor
cortex tissues display decreased HO activity, which is a reduced
capacity to convert heme. Although several reports have brought
evidence for the relevance of HO in protecting susceptible
neuronal structures against the consequences of ischemia, a
complete assessment of region specific changes of the cerebral
HO system in response to CA is not available yet.

Ischemia as a result from CA and resuscitation result in the
well-described phenomenon of ischemia/reperfusion injury (47).
Neuronal cells display a particular vulnerability, which depends
primarily on the duration of the ischemic insult, but also on the
brain region itself (48, 49) and CA1 pyramidal neurons of the Hc
appear consistently affected.

We found that 2 weeks after CA pyramidal neurons in the
CA1 region were lost and staining intensity of Iba1 and GFAP
were increased, showing activation of microglia and astrocytes.
In Hc, we found higher mRNA levels of HO-1, which correlated
with TNFR1 mRNA, both markers of inflammatory cell stress.
The degree of neurodegeneration seen in Hc showed a tendency
to increase with the duration of CA, since animals subjected
to 8min of CA displayed changes that were more pronounced.
Our findings confirm that cerebral ischemia affects nearly
always the Hc region (15), in which neuroinflammation
and neurodegeneration is persisting over long
periods (17, 50).

Loss of pyramidal neurons in CA1 is known to lead to learning
and memory deficits, and the reappearance of neurons in CA1

to improved learning and memory performance (51). Meanwhile
it is well-accepted that HO plays an important role for survival
of neurons, including CA1 neurons of Hc in response to cell
stress, such as ischemia. A model of asphyxia induced cardiac
arrest showed that neuronal injury and neuronal loss in the CA1
region were lower after 2 weeks when animals were pre-treated
with heme, while neuronal loss was higher upon pre-treatment
with a HO inhibitor (52). However, neither expression levels,
nor activities of the enzymes of the heme degradation pathway
were analyzed in the cited study. Nevertheless, a recent study
suggested a close association of cognitive capabilities and the
actual HO activity in Hc. Reversal of age-related cognitive deficits
and neuronal loss inCA1was associated with an increase in heme
degrading capacity of Hc and frontal cortex (53).

Functional HO enzyme maintains cellular homeostasis and
protection of neurons by different means (54). HO reaction
products play an important role in stress defense and tissue
regeneration (30–32) and transiently increased HO activity
therefore supports neuronal repair and regeneration following
an insult (55). Decreased HO activity, in contrast, impairs
neuronal function and aggravates neuronal injury. Deletion of
HO-2 in neuronal cells of Hc and cortex resulted in oxidative
stress mediated injury, which was absent in cells with functional
HO-2. The neuroprotection was attributed to BR (56), which
may protect cells against a 10,000-fold excess of H2O2 (57).
Further, neuronal function requires CO (58), particularly that
of neurons in Hc (59). Thus, inhibition of HO within the Hc
by pharmacological means resulted in retrograde amnesia (60),
showing that active HO is required for memory consolidation.
Memory consolidation involves cGMP (21), a second messenger
formed by soluble guanylate cyclase, of which CO, a product of
the HO reaction, is a known activator.
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The decrease in HO activity, which we have determined
in mC and Hc tissue, is supposed to operate simultaneously
in two adverse directions: on one hand, it will result in (i)
heme accumulation and on the other hand in (ii) a decreased
generation of HO reaction products (see below). Excess free
heme is highly toxic, especially for neuronal cells, due to
its ability to promote oxidative stress (61). Based on its
lipophilic nature, heme may induce lipid peroxidation and
subsequent membrane injury, which finally results in apoptosis.
Indeed, scavenging of heme by intracerebroventricularly applied
hemopexin reduced the infarct volumes, improved neurological
function and cognitive function after focal ischemia (62, 63). We
therefore think that the decreased HO activity, which is caused
by CA, results in neuronal deficits.

Up to now, it is not possible to determine the contribution of
the single HO isoforms to the overall heme degrading capacity
in tissue homogenates, because isoform specific inhibitors are
not available. However, it is known that in neuronal tissue
nearly all of the HO-activity is ascribable to the constitutive
HO isoform HO-2 (64), and the contribution of HO-1 is almost
absent in physiological conditions (20). Accordingly, studies
using HO-2 knockout mice showed that although traumatic
brain injury dramatically upregulated HO-1, and HO activity was
slightly increased shortly thereafter, the HO activity determined
in injured mice remained far below the values found in wild
type control mice (65). Only few studies, focusing on the events
occurring shortly after the insult, investigated HO activity in
neuronal tissues following ischemia. Spinal cord injury resulted
in an increased HO activity few days later (66). In another model
of focal cerebral ischemia injured areas displayed an increased
HO-1 protein abundance 3 days later, which correlated with
a locally increased capacity to produce BR (67). Thus, even
though stressful conditions increase the concentration of HO-1
the contribution of this isoform to the overall HO activity appears
limited and may be timely restricted in neuronal tissues. This
interpretation is supported by the fact, that HO-1 protein was not
detectable in mC and even in Hc, despite the increased mRNA
expression. Therefore, we can assume that HO-1 protein did not
contribute noteworthy to the measured HO activity.

In contrast, our findings suggest that the decreased HO
activity in rats subjected to CA, results at least partially from
lower HO-2 protein concentrations in mC and Hc tissue.
The in-situ protein expression of HO-2 in both regions using
immunohistochemistry showed that HO-2 expression varies
among cell types. Neuronal cells displayed stronger staining
intensities, and highest HO-2 levels were found in selected
neurons in mC. Due to this heterogeneity, HO-2 quantification
by immunohistochemistry is difficult. However, the overall
quantification using western blots showed a decrease in HO-2
protein in mC, which was significant, when CA lasted 8min.
Although we could not find morphological signs for neuronal
loss in mC a loss of a few of these HO-2 highly positive cells is
supposed to contribute measurably to a decrease in the overall
protein and enzyme activity. Compared to mC, in Hc HO-
2 staining was more homogenous, enabling a semiquantitative
approach using immunohistochemistry. In rats subjected to CA,
HO-2 representation was lower in all layers of Hc. This difference

became obvious, when comparing the staining intensity with the
adjacent cortex tissue. Further, HO-2 staining was predominantly
present in viable pyramidal neurons of CA1. Since these neurons
are a significant source of HO protein, it is highly probable
that a loss of these cells caused the decrease in HO activity.
Unfortunately, our data obtained from HO-2 immunoblots of
Hc tissue homogenates did not reveal significant differences
among groups, possibly because not all animals were included
into this analysis, due to the limited amount of tissue material.
Nevertheless, using different approaches, our data suggest that
the decreased HO activity in mC and Hc of rats subjected to
CA may result from lower levels of HO-2 protein present in
these regions.

We assume that this decrease in HO-2 was not caused by
gene regulation, since HO-2 mRNA expression was unchanged
in both regions, and in Hc, HO-1 mRNA was even increased
in response to CA. We can rule out that the partially opposing
results, which we have obtained, are caused by area specific
effects associated with heterogeneous cellular composition and
architecture of neuronal tissue. Our methodological approach of
using homogenates of the entire regions of interest, allowed to
directly compare the obtained data for all quantitative parameter.
Probably, CA induced a loss of HO-2 positive cells.

Additionally, it is possible that posttranslational modifications
that may affect the enzymatic activity (33, 68) are involved.
Oxygen and nitrogen radicals induce HO-1 mRNA, but
simultaneously, they may induce posttranslational protein
modifications, which down-modulate HO-activity (68).
Hippocampal tissue of aged subjects with cognitive impairment
or Alzheimer disease display increased levels of HO-1 protein
showing oxidative posttranslational modifications (33, 69).
Further, amyloid precursor proteins may associate with HO (70),
inhibit HO activity and thereby increase oxidative stress levels,
attributed to a decreased production of BR (34). Interestingly,
amyloid-β peptide is an integral part of the cGMP-induced
memory induction (71) that requires functional HO enzyme.
These findings suggest the existence of a vicious cycle consisting
of oxidative stress induced HO-1 expression and a lower HO
activity due to chronically enhanced oxidative stress levels.

Further studies are needed to clarify the cause for the decrease
in HO activity; however, our findings suggest compromised
neuronal function in both regions, Hc and mC. Additionally,
the decreased HO activity in Hc may compromise the repair
mechanisms and prevent reduction of oxidative stress levels.
We think that the increased HO-1 mRNA levels in Hc seen
at this late time point after CA stands for the attempt to
compensate for the decreased HO activity in order to restore
tissue homeostasis. Not necessarily, an increased HO activity
must result thereof. In contrast, many studies show that changes
in mRNA or protein levels also for other enzymes relevant for
the antioxidant defense do not fully account for the changes
in enzyme activity determined under certain stress conditions
(72, 73). Thus, contrary to the general assumption, HO mRNA
(and protein) expression levels are not suitable to predict the
resulting HO activity in neuronal tissues.

Except for Hc, our model revealed absence of histological
signs for neurodegeneration or gliosis at this late time point
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(7, 9, 74). It has been shown, that the duration and the depth of
the ischemic insult affect the chronology of the manifestation of
neuronal damage in the different brain regions (75). Although
we found decreased HO activity in mC, this region did not show
morphological signs for neurodegeneration. However, mCmight
functionally respond to CA and the decreased HO activity may
indicate a slowly progressing neuronal dysfunction, which is not
leading to such an impressive loss of neurons, as is the case for Hc.
However, further studies are required to elucidate themechanism
underlying the decrease in HO activity, which may contribute to
the delayed neurodegeneration in Hc and mC after CA.

CONCLUSION

Our data revealed decreased HO activity in two brain regions,
namely Hc and mC in a clinically relevant model for human
ventricular fibrillation cardiac arrest and resuscitation 2 weeks
after global ischemia. Our data suggest that reduced protein
levels of HO-2 may contribute to the decreased tissue capacity
to produce HO reaction products. In the CA1 region of Hc, a
region typically affected in cerebral ischemia, the decrease in
HO activity went in parallel with neuronal loss in CA1 and an
increase in levels of markers indicating ongoing gliosis. Although
the decreased HO activity in mC was not associated with visible
lesions, HO-2 positive cells may have been lost in response to
CA. Considering the importance of HO for neuronal protection
and function, it is conceivable that decreased HO activity is
causally involved in the delayed neurodegenerative processes,
which contribute to neuronal dysfunction frequently occurring
in CA patients. Our findings further suggest that protein or
RNA expression data do not allow inferring HO activities in
neuronal tissues.
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