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Introduction

Immunogenic cell death (ICD) emerged few years ago as an 
ability of some anticancer treatments, such as anthracyclines 
or oxaliplatin, to kill cancer cells in an immunogenic fashion, 
thereby secondarily stimulating the immune system.1,2 Thus, 
these treatments are not only capable of directly killing cancer 
cells via intrinsic cytotoxicity, but also by the conversion of dying 
cancer cells into an anticancer vaccine. The culmination of this 

process is the generation of a specific immune response against 
any residual cancer cells, should they be therapy-resistant or met-
astatic cells.

ICD depends on molecular signals called danger-associated 
molecular patterns (DAMPs) that activate innate immune cells 
driving the generation of specific antitumor immunity. Three 
major DAMPs have been identified and the combination of all 
3 has been found to be required for bona fide ICD induction.1
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Electrochemotherapy (ECT) is a local cancer treatment that has been used over the course of more than 2 decades for 
the removal of cutaneous and subcutaneous tumors. Several lines of evidence support the premise that the immune sys-
tem is an important factor underlying anticancer treatment efficacy, potentially including patient responses to ECT. The 
concept of immunogenic cell death (ICD) arose a few years ago, stating that some cancer treatments generate danger-
associated molecular patterns (DAMPs) that trigger an adaptive immune response against tumors. Hence, dying cancer 
cells behave as a therapeutic vaccine, eliciting a cytotoxic immune response against surviving malignant cells. In our 
study, we sought to evaluate the ability of ECT to generate cancer cell death encompassing the immunostimulatory 
characteristics of ICD. To this end, we assayed CT26 murine colon cancer cells in vitro in response to either electric pulses 
(EPs) application only  or in combination with the anticancer drug bleomycin (that is ECT) by quantification of calreticulin 
(CRT) membrane externalization, as well as the liberation of adenosine triphosphate (ATP) and high mobility group box 
1 (HMGB1) protein. We show here that cell permeabilizing yet non-lethal electric pulses induce CRT exposure on the 
cell surface of EP-only treated cancer cells, as well as ATP release. However, the association of electric pulses along with 
the chemotherapeutic agent bleomycin was mandatory for HMGB1 release coincident with regimen-induced cell death. 
These data obtained in vitro were then substantiated by vaccination protocols performed in immunocompetent mice, 
showing that the injection of dying ECT-treated cells elicits an antitumor immune response that prevents the growth of 
a subsequent administration of viable cancer cells. We also confirmed previous results showing ECT treatment is much 
more efficient in immunocompetent animals than in immunodeficient ones, causing complete regressions in the former 
but not in the latter. This supports a central role for immunity in this beneficial outcome. In conclusion, we show that ECT 
not only possesses an intrinsic cytotoxic property toward cancer cells but also generates a systemic anticancer immune 
response via the activation of ICD. Hence, ECT may represent an interesting approach to treat solid tumors while prevent-
ing recurrence and metastasis, possibly in combination with immunostimulating agents.



e28131-2	 OncoImmunology	 Volume 3 

Adenosine triphosphate (ATP) release is one of the hallmark 
features of ICD.3 This intracellular metabolite is released from 
dying cells in an autophagy-dependent fashion.4 Extracellular 
ATP is a chemoattractant for the homing of dendritic cells (DCs) 
and their precursors, immature myeloid cells.5 Furthermore, ATP 
binding to P2Y2 purinergic receptors favors the differentiation of 
precursor myeloid cells into mature DCs with antigen-present-
ing capacity.6 Additionally, extracellular ATP can activate the 
NALP3 inflammasome complex in DCs through P2X7 recep-
tors activation, thus leading to interleukin-1β (IL-1β) secretion, a 
cytokine required to solicit both IL-17-producing γδ T cells7 and 
interferon-γ-producing CD8+ T-cell activation.3,8 Ultimately, 
these 2 T cells subsets are responsible for the eradication of the 
remaining live tumor cells.

The exposure of calreticulin (CRT) on the cell surface is also 
essential for the elicitation of an immune response after anticancer 
treatment. Under physiological conditions, this protein is seques-
tered in the endoplasmic reticulum (ER) lumen and is involved 
in chaperone-related functions as well as calcium homeostasis 
and signaling. Upon ER stress induced by some anticancer treat-
ments,9,10 CRT is externalized to the cell surface and acts as an 
“eat me” signal for phagocytes, mostly DCs and macrophages, 
through their CD91 receptor.11,12 Eventually, this leads to tumor 
antigen presentation by these professional antigen-presenting 
cells and to T-cell priming.

Finally, the high mobility group box 1 (HMGB1) protein, that 
physiologically acts as a DNA chaperone, is passively released 
from secondary necrotic cells.13 In the context of ICD, it activates 
the release of pro-inflammatory cytokines (e.g., tumor necrosis 
factor, IL-1, IL-6, and IL-8) from innate immune cells such as 
neutrophils, monocytes, and macrophages.14,15 Moreover, when 
bound to toll-like receptor 4 (TLR4) on DCs, it augments the 
expression of the immature form of IL-1β and favors antigen-
processing and presentation.16

Electrochemotherapy (ECT) is a local anticancer treatment 
used for more than 2 decades to treat skin metastases.17 This 
treatment modality is a combination of non-permeant cytotoxic 
molecules, such as bleomycin, with permeabilizing (yet non-fatal) 
electric pulses18,19 applied at the tumor site to permit the chemo-
therapeutic agent to cross the cell membrane and to generate irre-
versible DNA damages. The multicentric study establishing the 
protocol for ECT use in clinics known as the European Standard 
Operating Procedures on Electrochemotherapy (ESOPE) 
reported that complete tumor regression was observed in 73.7% 
of the treated nodules and that the overall objective response was 
around 85%.20,21 Broadening ranges of cancer types are being 
treated by ECT and an increasing number of European oncology 
centers are adopting this treatment regimen, as reported by the 
2010 and 2013 International User’s Meetings (www.igeamedical.
com).

There are accumulating lines of evidence that the immune 
system contributes to ECT efficiency. In support, relative to 
outcome of ECT treatments in tumor-bearing immunocom-
petent mice, ECT-mediated tumor regression was dramatically 
decreased in animals deficient in functional T lymphocytes, 
irrespective of whether this immunoinsufficiency was due to 

prior injection of anti-CD3 (OKT3) monoclonal antibody22 or 
genetic factors, such as in immunocompromised nude mice.23,24 
Moreover, DC25,26 and T lymphocyte27 recruitment to the site of 
ECT-treated tumors has been previously reported, along with an 
elicited antitumor activity of monocytes and T lymphocytes.28 
These observations highlight a functional role of the activation of 
the immune system in physiological responses to this treatment.

ECT has also been applied in conjunction with histocom-
patible cells secreting IL-2, a cytokine that possesses tumor-
growth inhibitory properties,29 a treatment course that increased 
efficiency of ECT on treated tumors but that also generated a 
systemic response.30-33 Indeed, following an ECT treatment com-
bined with the inoculation of IL-2-secreting cells, contralateral 
non-ECT-treated tumors were infiltrated by CD4+ and CD8+ 
lymphocytes, an effect likely responsible for the observed 50% 
tumor rejection rate of these contralateral tumors in the mice 
receiving the combined treatment.31 Similar protocols resulted 
in antimetastatic effects following the treatment of subcutane-
ous32 or liver-transplanted tumors.33 Likewise, the injection of 
ECT-treated tumors with toll-like receptor 9 (TLR9) ligands 
such as CpG oligodeoxynucleotide, agents known to induce Th1 
immune responses,34 dramatically increased the treatment effi-
ciency in immunocompetent mice.26 The ECT/CpG combina-
tion also revealed a systemic effect since an increase rate of tumor 
rejection was observed in contralateral non-treated tumors. This 
systemic effect relied, at least partially, on a T cell-mediated 
immune response since no sustained tumor-inhibitory effect 
was observed in nude mice. Altogether, these data point out that 
immune cells are de facto involved in ECT efficiency and may 
also play an important role in eliminating cancer cells that have 
escaped the treatment.

In this report, we sought to determine if ECT-mediated can-
cer cell death features the hallmark characteristics of ICD.

Results

Toxicity of ECT in CT26 murine colon carcinoma cell line
In order to establish a model system for our ECT study, we 

assayed a range of bleomycin concentrations from 1 to 100 nM 
in the context of in vitro ECT in CT26 murine colon cancer 
cells (Fig. 1). A highly significant drop in cell viability (as mea-
sured by decreased cloning efficiency of replated cells) was appar-
ent starting from 5 nM of bleomycin only when electric pulses 
were co-applied (P < 0.01 to P < 0.001), as had been previously 
described in similar studies of other cell lines.35,36 At 100 nM, 
a slight toxicity of the drug alone was observed, such that we 
selected 50 nM bleomycin in further experiments. No signifi-
cant impact on cell viability of electric pulses alone was observed. 
Mitoxantrone (MTX), a well-known ICD-inducer11 exhibited a 
high cytotoxic activity at 1 µM as compared with non-treated 
cells. Hence, 1 µM MTX was selected for use as an ICD positive 
control in further experiments.

A kinetic evaluation revealed that when CT26 cells were 
treated by the application of electric pulses in the presence of 
50 nM bleomycin an ECT-mediated decrease in cell viability (as 
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reported by the incorporation of the fluorescent DNA 
stain YOYO-1 iodide) was initially detected approxi-
mately 45 h after the treatment (Fig. 2A). Non-treated 
cells began to die about 20 h later due to confluency 
(Fig. 2B). Control cells (cells treated by either electric 
pulses alone or bleomycin alone) behaved as the non-
treated cells (data not shown).

Electric pulses stimulate CRT externalization
CRT exposure was measured by antibody staining 

and cytofluorometric analysis of viable (propidium 
iodide-negative) CT26 cells 30 h after the treatment 
(Fig. 3). No significant effect of bleomycin alone (rela-
tive to non-treated cells) was observed. However, cells 
treated by MTX, electric pulses alone or ECT external-
ized a similar amount of CRT on the cell membrane, 
that is approximately twice that of the non-treated cells 
(P < 0.05).

Electric pulses and ECT liberate ATP
Quantification of ATP release was performed 30 h 

after the treatment (Fig. 4A). Similar to MTX-treated 
control cells, ECT-treated colon cancer cells released a 
significant amount of ATP with respect to non-treated 
cells. Exposure to 50 nM bleomycin alone during 30 h 
also triggered ATP release, although to a lesser extent 
than ECT. Electric pulses alone did not elicit signifi-
cant ATP release. A 20% cell viability drop (relative 
to non-treated cells) was observed when cells were 
exposed to bleomycin alone for 30 h (data not shown) 
accounting for the increased amount of released ATP 
detected.

Figure  1. Cytotoxicity of electrochemotherapy and mitoxantrone treatments on 
CT26 cancer cells. Cultured CT26 cells were treated by electrochemotherapy (ECT) 
using various doses of bleomycin or by 1 µM mitoxantrone (MTX) over the course of 
30 h. Cytotoxicity was assessed by cloning efficiency assay in which 200 cells/well 
per treatment group were replated in a 6-well plate and calculated as the number of 
colonies formed 1-wk later relative to the number of colonies obtained in the non-
treated condition. The concentrations mentioned in the figure are those of bleo-
mycin. NT = non-treated cells, NP = without electric pulses, P = with electric pulses. 
Statistical analyses were performed by Kruskal-Wallis test with Dunn’s multiple com-
parison test: **P < 0.01 and ***P < 0.001 with respect to the non-treated cells. Means 
± SD are shown from n = 9 from 3 independent experiments.

Figure 2. Kinetics of ECT-mediated cell death and confluency. (A and B) Cultured CT26 cells (5000 cells/group) were treated by electrochemotherapy 
(ECT) comprising electric pulses + 50 nM bleomycin over the indicated time frames. After the treatments, cells were seeded back into complete medium 
containing the fluorescent cell viability reporter YOYO-1 iodide. Cell viability (A) and confluence (B) were monitored every 4 h using the IncuCyteTM FLR 
live-cell imaging system. ECT-treated (triangles) vs. non-treated (squares) results are shown. Data are representative of 3 independent experiments each 
performed in triplicate. Means ± SD are pictured.
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It should be noted that the electropermeabilized cells 
were kept 30 min on the bench after the electroperme-
abilization procedure and then washed before being put 
back in culture. Hence, the ATP detection mentioned 
above is only correlated with the ATP released during 
the cell death process, far after the cells had their mem-
brane resealed (cell membrane reseals in minutes after 
the electric pulses application37). We also measured the 
ATP released in the pulsing buffer, during the 30 min 
following the electropermeabilization (Fig.  4B). We 
detected about 400 times more ATP than in the cell cul-
ture medium of non-treated cells.

Cell death triggered by ECT induces HMGB1 
release

HMGB1 release was measured in the CT26 cell 
culture supernatants 72 h after treatment. As shown in 
Figure 5, both ECT and MTX treatment stimulated a 
2.5-fold increase in the amount of free HMGB1 in com-
parison to non-treated cells. Consistently with the fact 
that the electric pulses used in ECT are not meant to kill 
cells when they are used without bleomycin, we did not 
detect a significant difference in the amount of HMGB1 
released between non-treated cells and cells treated by 
electric pulses alone. However, exposure to 50 nM bleo-
mycin over 72 h decreased cell viability by 30% (data not 
shown) probably contributing to the significant release of 
HMGB1 (relative to non-treated cells) that we observed 
under this condition.

ECT-treated cancer cells elicit a protective immune 
response against tumor challenge in syngenic mice

In order to assay the immunogenicity of ECT-treated 
CT26 cells, we next applied a vaccination protocol in 

Figure 3. Electric pulses stimulate calreticulin exposure. The levels of calreticulin 
(CRT) on the surface of CT26 cells were measured in response to electrochemo-
therapy (ECT). Cells were treated with ECT (electric pulses + 50 nM bleomycin), 
50 nM bleomycin only, electric pulses only or 1 μM mitoxantrone (MTX) for 30 h. 
Treated cells were stained using anti-CRT antibody followed by cytofluorometric 
analysis. Statistical analysis was performed by Mann-Whitney-Wilcoxon test; ns = 
not statistically significant,*P < 0.05 with respect to the non-treated cells (unless 
otherwise specified). Means ± SD are shown from n = 5 from 5 independent 
experiments.

Figure 4. Electrochemotherapy and electric pulses liberate ATP. (A and B) The concentration of extracellular ATP in CT26 culture media of cells treated 
by electrochemotherapy (ECT) was measured by bioluminescence ATP reporter assay. Cells were treated with ECT (electric pulses + 50 nM bleomycin), 
50 nM bleomycin only, electric pulses only or 1 μM mitoxantrone (MTX) and 250 000 cells/group were cultured for 30 h. ATP quantification was per-
formed in (A) cell culture supernatants 30 h after the treatment or (B) in the pulsing buffer directly after the delivery of electric pulses (EP). Statistical 
analysis was performed by Wilcoxon signed rank test; ns = not statistically significant; *P < 0.05 with respect to the non-treated cells (unless otherwise 
specified). Means ± SD are shown from n = 6–8 from 3-4 independent experiments.
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which dying ECT-treated CT26 cells (or MTX-treated 
control cells) were injected into immunocompetent syn-
genic BALB/c mice (Fig. 6). One week later, non-treated 
viable CT26 cells were injected in the contralateral flank. 
We found that BALB/c mice vaccinated with ECT-treated 
cells were protected against a subsequent challenge with 
viable colon cancer cells. The protective effect of vaccina-
tion with ECT-treated cells was nearly equivalent to that of 
MTX-treated cells, such that tumor take only reached 8% 
and 0%, respectively. Conversely, a 92% tumor take was 
obtained when control phosphate buffered saline (PBS) 
injection was performed as the immunization procedure, 
that is a highly significant (P < 0.001) difference relative to 
that of ECT- or MTX-treated cell vaccination. Vaccination 
with untreated viable cells could not be evaluated as mice 
had to be sacrificed before the challenge could potentially 
generate a contralateral tumor due to the growth of the vac-
cinal inoculum.

It should be noted that as a result of cell washing pro-
cedures of the vaccinal inoculum in vitro, the majority of 
ATP released as a direct consequence of the application of 
electric pulses was discarded.

ECT is much more efficacious in immunocompetent 
mice than in immunodeficient animals

Given that we almost reached an optimal protection in 
mice vaccinated with ECT-treated cells, we could surmise 
that the application of ECT on tumors in vivo might lead 
to complete antitumor protection via the massive amount of 
ATP released directly into the tumor cell microenvironment.

In order to mimic the treatment of human disease, and 
to determine the necessity for an intact immune system in 
eliciting ECT-mediated anticancer effects, ECT was per-
formed on established CT26 tumors in both immunocom-
petent wild-type and immunodeficient nude BALB/c mice. As 
shown in Figure 7, we observed that 7 out of 8 immunocompe-
tent mice were disease-free 24 d after the ECT treatment whereas 
all the treated nude mice presented progressive disease.

Discussion

ECT is an effective antitumor treatment used for the man-
agement of superficial tumors and is under preclinical and 
clinical evaluation for deep-seated tumors.18,38-44 In this report, 
we evaluated the ability of ECT to induce ICD so that dying 
cancer cells act as a vaccine by eliciting an antitumor immune 
response.

ICD relies on the generation of DAMPs that activate spe-
cific functions of immune cells.1,2 ATP, released by dying cells 
undergoing ICD,3 acts as a “find me” signal for DCs and their 
precursors, favoring their maturation and triggering the secre-
tion of IL-1β that ultimately leads to cytotoxic cell activation.5-8 
CRT, the major ER protein, is exposed on dying cells undergo-
ing ICD and constitutes an “eat me” signal for DCs.9-12 This 
leads to antigen presentation of tumor-associated antigens, 
which is favored by the passively released HMGB1 protein,16 

ultimately leading to the priming of specific anticancer effector 
cells.

Here, we first determined that 50 nM bleomycin combined 
with EPs resulted in massive cell death starting 45 h after the 
treatment (refer to Figs. 1 and 2A). We next measured the 
capacity of ECT to solicit hallmark features of ICD, includ-
ing evaluation of both CRT translocation to the cell membrane 
and ATP release in the pre-mortem state and HMGB1 release 
post-mortem.1

A recent study revealed that bleomycin alone has intrin-
sic immunogenic properties since, at a 200-fold higher dose 
than the one used in our study or in classical ECT, bleomycin 
was able to induce CRT translocation to the surface of dying 
cells and both ATP and HMGB1 release, eventually leading to 
ICD.45 Indeed, bleomycin can be internalized into cells through 
an endocytotic mechanism that involves binding to its mem-
brane receptor.46-48 A high drug concentration or a prolonged 
exposition to the drug increases the probability of internaliza-
tion and thus may allow bleomycin to generate DAMPs. In 
our study, CT26 cells treated with 50 nM bleomycin (without 
electric pulses) did not expose CRT on their cell membrane but 
did release a significant amount of ATP and HMGB1 (refer to 
Figs. 3–5). This probably results from the increased uptake of 

Figure  5. Electrochemotherapy induces HMGB1 release. To assay electroche-
motherapy (ECT)-stimulated release of high mobility group box 1 (HMGB1) pro-
tein, CT26 cells were treated with ECT (electric pulses + 50 nM bleomycin), 50 nM 
bleomycin only, electric pulses only, or 1 μM mitoxantrone (MTX) and seeded 
back in culture for 72 h. HMGB1 release was quantified in cell culture superna-
tants from 20 000 cells using an ELISA-based technique (HMGB1 detection kit; 
Gentaur). Statistical analysis was performed by Mann-Whitney-Wilcoxon test; *P 
< 0.05 and **P < 0.01 with respect to the non-treated cells (unless otherwise 
specified); ns = not statistically significant. Means ± SD are shown from n = 5–6 
from 3 independent experiments.
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bleomycin and consecutive toxicity (from 20% to 30%, data 
not shown) due to the 30 to 72 h drug treatment times.

In our study, we also demonstrated that CRT externaliza-
tion was similarly enhanced in both ECT-treated cells and cells 
treated with electric pulses alone. This reinforces the fact that, 
at a very low drug concentration such as the one used for ECT, 
bleomycin alone does not induce CRT exposure on the cell sur-
face, a response that does occur at a 200-fold higher bleomycin 
concentration.45 Therefore, one may surmise that CRT expo-
sure on ECT-treated cells is due to the application of the electric 
pulses.

There are several hypotheses that could support our find-
ings regarding CRT exposure after the application of electric 
pulses. Microsecond electric pulses were initially thought to 
affect only plasma membrane, leaving intact the membranes 
of organelles, such as the one surrounding the ER. However, 
recent mathematical calculations have shown that such pulses 
can actually have effects on internal membranes.49 This theo-
retical model has been confirmed in vitro by our laboratory 
(unpublished data) and by others, although a 2-fold higher 
field amplitude was used in this latter study.50 Hence, the 
microsecond electric pulses used in our study and in ECT 
might directly provoke CRT translocation to the cell mem-
brane. Another plausible scenario that may underlie our find-
ings is that the application of intense electric pulses to cells has 
been correlated with the generation of reactive oxygen species 
(ROS).51,52 Such ROS could be responsible for ER stress53,54 
that could indirectly lead to CRT exposure on the cell sur-
face as occurs in response to anthracycline-based treatments.9 
Finally, electric fields have been shown to increase endocytotic 

and exocytotic processes55,56 and could thus favor 
the endocytosis-dependent pathway and CRT 
translocation to the cell membrane.9

Regarding the ATP release stimulated by ECT, 
a massive and potentially relevant amount of 
ATP was detected in the pulsing buffer 30 min 
after the electropermeabilization procedure (refer 
to Fig.  4B). This result supports previous data 
reporting that electric pulses liberate both ATP57,58 
and inflammatory factors, ultimately leading 
to APC recruitment to the site of electric pulse 
application.59-61 We hypothesize that this immune 
cells recruitment is due to ATP released directly 
following electric pulse-mediated cell permeabili-
zation. Indeed, no ATP was detected 30 h after 
the application of electric pulses alone when cells 
were washed and put back in culture following 
membrane resealed. However, although to a lesser 
extent than directly after electric pulses-mediated 
permeabilization, a significant amount of ATP 
was detected 30 h after ECT treatment, despite 
the fact that the cells were washed thereby remov-
ing the ATP released by the electric pulses. This 
suggests a continued leakage of ATP from the 
ECT-treated cells, even after cell membranes were 
completely resealed. Since no significant release of 

ATP was observed 30 h after the application of electric pulses 
alone when the cell membrane was resealed, this demonstrates 
that bleomycin is mandatory for ATP leakage in cells with 
resealed membrane.

In regards to HMGB1, we demonstrated that its release 
occurred only when electric pulses application was combined 
with the bleomycin administration, consistently with the induc-
tion of cell death associated with the disruption of cellular com-
partments.13 Likewise, a 72-h exposition to 50 nM bleomycin 
alone induced a 30% drop in cell viability (data not shown) 
along with HMGB1 release. However, electric pulses alone did 
not kill cells and thus, naturally did not trigger HMGB1 release.

Our in vitro data correlated well with vaccination experi-
ments performed in syngenic BALB/c mice with intact immune 
systems, revealing that ECT-treated dying CT26 cells could 
elicit immunity against subsequent tumor challenge. Less than 
10% of tumor take was observed using a vaccination proto-
col that involved ECT-treated cells (refer to Fig.  6). By con-
trast, tumor take surpassed 90% when control immunization 
was performed with PBS only. Hence, an antitumor immune 
response was elicited by ECT-treated cells, presumably by the 
induction of ICD, as revealed by the protection afforded to 
mice subsequently injected with live tumor cells.

Likewise, we demonstrated that ECT treatment performed 
in immunocompetent mice was much more efficient than 
those that were immunodeficient (refer to Fig.  7). Indeed, a 
large number (7 out of 8) of complete responses was observed 
in wild-type BALB/c mice whereas all the tumors progressed in 
nude mice, despite a temporary decrease in volume and an ini-
tial arrest in tumor development caused by the debulking effect 

Figure 6. Vaccination with electrochemotherapy-treated cancer cells elicits a protec-
tive effect against tumor challenge in syngenic mice. CT26 cells were treated with 
electrochemotherapy (ECT) comprising electric pulses + 50 nM bleomycin. Thirty min 
later, 3 × 106 cells were subcutaneously injected in the left flank of immunocompetent 
BALB/c mice. A negative control of PBS injection and a positive control of immunization 
with cancer cells treated with 1 µM MTX over 30 h were also performed. One week later, 
5 x 105 CT26 viable cells were injected in the contralateral flank and tumor take was 
monitored over a 2-mo period. Statistical analysis was performed by Chi-2 test; ns = 
not statistically significant; ***P < 0.001 with respect to the PBS control immunization 
(unless otherwise specified); n = 12 animals from 3 independent experiments.



www.landesbioscience.com	 OncoImmunology	 e28131-7

of ECT. These results support previous data from our group22-

24 and show that the immune system can actually destroy the 
cancer cells that escaped the direct antitumoral effect of ECT, 
either because they were not sufficiently permeabilized by the 
electric pulses or not surrounded by enough bleomycin mol-
ecules for toxicity.

To summarize, ECT generated ICD, partially due to the 
application of electric pulses, that triggered on their own both 
CRT translocation to the cell membrane and an early and phys-
iologically relevant ATP release. Thus, electric pulses might be 
combined with other non-immunogenic cancer treatments such 
as cis-platin, not only to enhance cancer cell drug uptake but 
also in an attempt to generate DAMPs, i.e., CRT exposure on 
the cell membrane and ATP leakage, thereby inducing bona 
fide ICD.

Implications of ECT elicitation of cancer cell ICD encom-
passes long-term antitumor benefits. Indeed, there is evidence 
that cancer stem cells, purportedly a major factor underlying 
cancer recurrence,62 are depleted in response to extracellular 
ATP.63 Furthermore, it has been shown that cancer stem cells are 
efficiently recognized by cytotoxic T lymphocytes,64 the main 
antitumor effector activated as a consequence of ICD induction.1 
Our study also supports clinical observations describing the 
absence of tumor recurrence in ECT-treated areas, suggesting all 
tumor cells had been ablated in these sites due to sustained ECT 
effects. We hypothesize that the residual tumor cells not directly 
affected by ECT treatment (due to insufficent permeabilization 
or paucity of bleomycin molecules) were secondarily killed by 
the cytotoxic immune cells activated by ICD processes. Finally, 
preclinical evidence22,26,31-33 suggests that the generation of a sys-
temic antitumor immune response initiated by ECT-mediated 
immunogenic cancer cell death may be potentiated by combina-
tion with immunostimulatory agents, thus offering an elegant 

and efficient means to cure both the ECT-treated nodules as well 
as undetected metastases elsewhere.

Materials and Methods

Cultured cancer cells
CT26 murine colon carcinoma cells (kindly provided by Pr. 

Guido Kroemer) were cultivated in RPMI1640 medium supple-
mented with 10% heat-inactivated fetal bovine serum (FBS; 
Biowest), 1 mM sodium pyruvate, 10 mM HEPES, 100 U/mL 
penicillin, and 100 µg/mL streptomycin. Cells were propagated 
in this complete medium at 37 °C in a 95% humidity atmo-
sphere containing 5% CO

2
 and passaged upon confluency at a 

1:10 dilution using a TrypLE express solution. Unless otherwise 
specified, all components mentioned above were purchased from 
Life Technologies.

Electrochemotherapy treatment
A solution of 5 × 106 CT26 cells/mL containing bleomycin 

(0–100 nM) was prepared in a pulsing buffer consisting of modi-
fied Eagle’s medium (MEM) specifically modified for suspen-
sion cultures without calcium and without glutamine (S-MEM; 
Life Technologies). A 100 µL or 200 µL volume of this solution 
was placed into a 1 mm or 2 mm gap electroporation cuvette 
(Cellprojects), respectively and submitted to 8 electric pulses 100 
µs-long at 1200 V/cm by a Cliniporator generator (IGEA). Cells 
were subsequently kept at room temperature for 30 min before 
being washed and replaced back in culture.

Cytotoxicity clonal growth assay
Following ECT treatment as described above, 200 total CT26 

cells were seeded into a well of a 6-well plate containing complete 
medium. After 1 wk, medium was discarded, cells were washed 
with PBS, and fixed and stained using an aqueous solution 

Figure 7. ECT is much more efficacious in immunocompetent mice than in immunodeficient animals. (A and B) Comparison of electrochemotherapy 
(ECT) efficiency in wild-type and in nude BALB/c mice bearing established CT26 tumors. Once the mean volume of tumors reached approximately 60 
mm3, electrochemotherapy was applied by i.v. injection of 15 µg of bleomycin in 100 µL PBS into each anesthetized mouse and 4 min later, 8 electric 
pulses of 100 µs at 1300 V/cm were delivered to the tumors by Cliniporator. (A) ECT treatment in wild-type mice (n = 7 untreated mice and n = 8 treated 
mice). (B) ECT treatment in immunocompromised nude mice (n = 8 mice per group). Dotted bold lines represent the mean volume of the untreated 
tumors. The volume of each ECT-treated tumor is depicted with a thin full line.
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containing 20% ethanol, 3.7% formaldehyde, and 0.2% crys-
tal violet. Cytotoxicity was calculated as the number of colonies 
formed in the treated condition relative to the number of colo-
nies formed in the non-treated condition. Controls with electric 
pulses alone or exposed to bleomycin alone for 30 min or to 1 
µM MTX (Sigma–Aldrich) alone for 30 h were also performed.

ECT-mediated cell death kinetics
To assay the kinetics of ECT-mediated cell death in our sys-

tem, 5000 CT26 cells treated by electric pulses in the pres-
ence of 50 nM bleomycin (see above) were transferred into a 
well of a 96-well plate containing complete medium with 0.1 
µM YOYO-1 (Life Technologies) and then placed into an 
IncuCyteTM FLR imaging system (Essen Biosciences) inside 
a regular cell culture incubator. The IncuCyteTM FLR device 
monitored the degree of confluency and the percentage of f luo-
rescently stained dead cells over the course of 90 h. Control 
cells exposed to bleomycin alone for 30 min or electric pulses 
alone were also performed.

Detection of CRT exposure
In order to evaluate CRT externalization in response to ECT, 

treated CT26 cells were evaluated 30 h after being treated by 
ECT with 50 nM bleomycin, that is in the pre-mortem time 
scale.1 Cells were harvested, washed twice with cold PBS, and 
stained for 30 min with rabbit polyclonal anti-mouse CRT anti-
bodies (Abcam) at a 1:100 dilution in a 5% bovine serum albumin 
(BSA) solution in PBS. Cells were then washed twice with cold 
PBS and stained for 30 min with goat anti-rabbit Alexafluor488-
conjugated monoclonal secondary antibodies (Life Technologies) 
at a 1:500 dilution in a 5% BSA solution in PBS. Cells were then 
washed 3 times with cold PBS and analyzed using an Accuri C6 
flow cytometer (BD Biosciences). Control cells were treated with 
electric pulses alone, exposed to bleomycin alone or to 1 µM 
MTX alone over 30 h.

Quantification of extracellular ATP
In order to evaluate release of cellular ATP in response to ECT, 

treated CT26 cells were evaluated 30 h after being treated by ECT 
with 50 nM bleomycin, that is in the pre-mortem time scale.1 
Cell culture supernatants of 250 000 ECT (vs. control) treated 
cells (see above) were analyzed using an ATP Bioluminescent 
Assay kit (Sigma-Aldrich), according to the manufacturer’s 
instructions. Control cells were treated with electric pulses alone, 
exposed to bleomycin alone or to 1 µM MTX alone over 30 h. 
ATP release was also measured in the pulsing buffer 30 min after 
the application of electric pulses in the absence of drug.

Quantification of HMGB1 release
In order to evaluate release of HMGB1 in response to ECT, 

treated CT26 cells were evaluated 72 h after being treated by 
ECT with 50 nM bleomycin, that is in the post-mortem time 
scale.1 Cell culture supernatants of 20 000 cells were analyzed 
using an ELISA-based HMGB1 detection kit (Gentaur), accord-
ing to the manufacturer’s instructions. Control cells were treated 
with electric pulses alone, exposed to bleomycin alone or to 1 µM 
MTX alone during 72 h.

Antitumor vaccination activity of ECT-treated CT26 cells
To determine the potential of ECT to generate systemic anti-

cancer immunity, 30 min after being treated by ECT as above 

with 50 nM bleomycin, 3 × 106 total CT26 cells were injected 
subcutaneously in 200 µL of PBS in the left flank of 7-wk-old 
wild-type BALB/c mice (Janvier). A negative control of PBS 
injection and a positive control of immunization with cancer cells 
treated with 1 µM MTX over 30 h were also performed. One 
week later, 5 × 105 non-treated cells were injected subcutaneously 
in the contralateral flank. Tumor take was monitored 2 to 3 per 
week for 2 mo.

ECT treatment of established CT26 tumors
In vivo ECT experiments were performed by injecting 

500 000 viable CT26 cells in 100 µL PBS subcutaneously into 
the flanks of 7-wk-old BALB/c mice, either wild-type or nude 
(Janvier). Once the mean volume of tumors reached approxi-
mately 60 mm3, electrochemotherapy was applied by i.v. injec-
tion of 15 µg of bleomycin in 100 µL PBS into each anesthetized 
mouse and 4 min later, 8 electric pulses of 100 µs at 1300 V/
cm were delivered to the tumors using the Cliniporator. Non-
invasive electrodes (IGEA) with 0.5 cm-spaced metallic plates 
were used and conductive gel (NM Médical) was applied on the 
treated-to-be area in order to improve the contact between the 
metallic plates and the tumor. Tumor progress was monitored 3 
times a week and the tumor response was determined according 
to the RECIST 1.1 guidelines.65

Statistical analyses
Data are presented as mean ± standard deviation (unless other-

wise specified). Data were analyzed with GraphPad Prism 4 soft-
ware. Statistical analyses were performed using Kruskall–Wallis 
test with Dunn’s multiple comparison test, Mann–Whitney–
Wilcoxon test, Wilcoxon signed rank test or Chi-2 test and P < 
0.05 was considered statistically significant.
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