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A B S T R A C T   

Hybrid nanostructures exhibit a synergistic combination of features derived from their individual 
components, showcasing novel characteristics resulting from their distinctive structure and 
chemical/physical properties. Surface modifiers play a pivotal role in shaping INPs’ primary at-
tributes, influencing their physicochemical properties, stability, and functional applications. 
Among these modifiers, dendrimers have gained attention as highly effective multifunctional 
agents for INPs, owing to their unique structural qualities, dendritic effects, and physicochemical 
properties. Dendrimers can be seamlessly integrated with diverse inorganic nanostructures, 
including metal NPs, carbon nanostructures, silica NPs, and QDs. Two viable approaches to 
achieving this integration involve either growing or grafting dendrimers, resulting in inorganic 
nanostructure-cored dendrimers. The initial step involves functionalizing the nanostructures’ 
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surface, followed by the generation of dendrimers through stepwise growth or attachment of pre- 
synthesized dendrimer branches. This hybridization imparts superior qualities to the resulting 
structure, including biocompatibility, solubility, high cargo loading capacity, and substantial 
functionalization potential. Combining the unique properties of dendrimers with those of the 
inorganic nanostructure cores creates a multifunctional system suitable for diverse applications 
such as theranostics, bio-sensing, component isolation, chemotherapy, and cargo-carrying ap-
plications. This review summarizes the recent developments, with a specific focus on the last five 
years, within the realm of dendrimers. It delves into their role as modifiers of INPs and explores 
the potential applications of INP-cored dendrimers in the biomedical applications.   

1. Introduction 

The field of nanotechnology, which spans a wide variety of scientific domains, such as chemistry, medicine, engineering, elec-
tronics, optics, and biomaterials science, has had a profound impact on scientific exploration, particularly in the advancement of 
healthcare [1–3]. Recently, there has been a dramatic increase in the conception and utilization of nanotechnology within these 
domains, indicating a significant leap forward in the application of nanotechnology [4–6]. The nanotechnology industry has emerged 
as a formidable ally in the healthcare industry, with its applications in biomedicine expanding to encompass early disease detection 
and sophisticated imaging methodologies, especially in the context of cancers such as breast, lung, colon, prostate, ovarian, and cervix 
[7–12]. It is often the case that individuals who are suffering from these conditions are confronted by the difficult challenge of hidden 
or visible secondary colonies. A substantial reduction in the incidence of these diseases can be expected with the advent of diagnostic 
nanotechnology. It is very likely that this paradigm shift will play a major role in reshaping the landscape of medical science, 
increasing the precision and efficacy of diagnostic tools, which, in turn, will revolutionize the outcomes of healthcare [13–15]. 

In recent years, nanomaterials have attracted significant interest due to the exceptional physical and chemical properties they 
possess, spanning optical, electrical, and magnetic properties. As a result of their versatility, these nanomaterials have found a wide 
range of uses across a variety of scientific disciplines, engineering fields, and technological sectors, including electronic and electrical 
engineering, biomedicine, cosmetics, catalysis, diagnostics, medicine, food production, textiles, and the automotive industry [16–20]. 
While there is a wide array of nanomaterial types available, NPs have emerged as one of the primary choices in biomedical research, 
especially in the areas of diagnosis, drug delivery, and treatment [21]. NPs have unique properties that allow for the targeted delivery 
of drugs, imaging, and other therapies to specific areas of the body [22–26]. Additionally, they are highly versatile and can be 
customized for a variety of medical applications [27–29]. 

Within the extensive array of NPs, both organic NPs and inorganic NPs stand out prominently [30]. Particularly, INPs have been 
widely used in a wide range of biomedical applications, and they have played a significant role in MRI systems, drug delivery systems, 
gene transfer, biosensing, proteins and enzymes immobilization, cancer treatment modalities, and cell separation techniques, among 
other biomedical applications [31–35]. It is imperative to develop tunable and multifunctional INPs, incorporating diverse surface 
modifications in order to enhance their physicochemical characteristics in a variety of applications [36–38]. To fully unlock the 
potential of these INPs as a tool for advancing biomedical research and applications, it is crucial to improve their biocompatibility, 
stability, and solubility under physiological conditions [39–41]. It is clear that efforts toward advancing the efficacy and versatility of 
INPs in biomedical applications hold enormous promise for the future [42–44]. As an example, GNPs have been utilized as carriers for 
drug delivery due to their ability to effectively bind drugs via the Au–S bond, resulting in enhanced therapeutic effectiveness of the 
drugs [45]. Furthermore, Au complexes demonstrate heightened selectivity and potency against cancer cells, attributed to their 
reduced DNA-binding activity and heightened affinity towards protein targets via sulfhydryl and thiol groups [46] However, there are 
some obstacles that must be overcome before these remarkable discoveries are translated from laboratory settings to practical ap-
plications. These obstacles include stability under real-world conditions, substantial differences between batches, and the need for 
multifunctionality [47]. In an effort to overcome these challenges, researchers are exploring the possibility of using capping agents to 
coat the surface of NPs in order to overcome these hurdles. As a result of this approach, stability issues could be mitigated and 
consistent performance ensured, emphasizing the need for continued research into bridging the gap between experimental success and 
practical implementation in nanotechnology [48,49]. 

The challenges associated with the stability and consistency of NPs can effectively be mitigated or eliminated through the strategic 
application of a capping agent at the surface of the NPs. Capping agents, including organic ligands, surfactants, and polymers, are 
integral functional molecules that reside at the surface of NPs and play an important role in their function. They play a vital role in 
shaping the physicochemical properties and overall performance of NPs. Aside from providing steric and/or electrostatic stability to 
the NPs through strong adsorption at their surface and forming a protective mono-/multilayer coating on their surfaces, these agents 
also have many additional functional roles and advantages. Capping agents act as activators of the NPs surface for subsequent 
conjugation, protecting NPs from environmental factors such as moisture and unwanted chemical reactions, prolonging NPs shelf life, 
enabling the production of NPs of various sizes, geometries, and morphologies, and facilitating easy dispersion in various solvents. The 
capping agents play a pivotal role in achieving the desired physicochemical characteristics and functionality in NPs [50,51]. 

Various types of INPs have been coated with natural or synthetic polymers, including dendrimers/dendrons, PEG, PVP, poly-L- 
lysine, and chitosan [52]. In particular, dendrimers have been prominently featured in NPs research and as modifiers for NPs, 
providing a multitude of therapeutic possibilities for cancer research [21]. Dendrimers belong to the class of synthetic macromolecules 
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with an exceptionally high density of functional groups on their surface and a well-defined three-dimensional polymeric architecture. 
The unique characteristics of dendrimers, including their precise shape, size, molecular weight, and versatility in designing various 
types, have resulted in their expanded use across a wide range of applications [53]. Dendrimers typically consist of three distinct 
domains: the core, dendrons, and terminal functional groups. There are areas formed between the dendrons, known as dendrimeric 
crevices, that are capable of encapsulating guest molecules through hydrophobic or electrostatic interactions. Although dendrimers are 
primarily characterized by their peripheral functional groups, their overall characteristics are also influenced by the type of func-
tionality of the core, dendrimer generation, the layer of branching units, and dendrimeric crevices [54]. 

Dendrimers, with their distinctive characteristics such as multifunctionality, a high density of peripheral groups and their ability to 
be tailored for diverse design requirements, are proving to be a superior capping agent in the formulation of multifunctional NPs. As a 
result of the well-defined surface groups on dendrimers, these molecules can be conjugated to an array of biomolecules, such as an-
tibodies, aptamers, nucleic acids, targeting ligands, imaging probes, drugs, and biosensors [54]. Dendrimers can be used in a wide 
variety of biomedical applications because of their versatility as surface-functionalizing or coating agents [55]. Dendrimers are 
characterized by their internal architecture, which is marked by voids or cavities between branches. Spaces like these provide an ideal 
environment for the transportation of drugs, dyes, and other NPs. A notable characteristic of dendrimers is their high reactivity, and a 
phenomenon known as the dendritic effect describes the enhanced activity of substances encapsulated within dendritic cavities as 
opposed to their unentrapped counterparts [56]. As a result of dendrimers’ unique properties, various dendrimer-encapsulated and 
dendrimer-coated INPs have been developed through various chemical processes. The advantageous properties of INP-cored den-
drimers for biomedical applications can be attributed to several key factors: Firstly, their well-defined and controllable size, shape, and 
surface functionality allow for precise tuning of drug-loading capacities and release kinetics, ensuring optimal therapeutic outcomes 
[57–59]. Secondly, the inherent stability and biocompatibility of the inorganic core impart enhanced structural integrity and resis-
tance to degradation, facilitating prolonged circulation in the bloodstream and improved bioavailability of encapsulated drugs [60, 
61]. Moreover, the versatile surface chemistry of inorganic cored dendrimers enables facile conjugation of targeting ligands and 
therapeutic agents, enabling selective recognition and uptake by cancer cells while minimizing off-target effects on healthy tissues [21, 
62]. Additionally, the ability of these dendrimers to encapsulate a wide range of therapeutic payloads, including small molecules, 
nucleic acids, and imaging agents, further enhances their utility in multifunctional cancer theranostics [63–65]. A remarkable 
advancement has been achieved in leveraging the synergistic potential of dendrimers with INPs, leading to the development of so-
phisticated materials with integrated functionalities [66]. These encompass capabilities ranging from tumor thermal imaging and 
targeted CT imaging to photothermal therapy and gene therapy, all deliverable through a singular intravenous injection. This 
breakthrough not only represents a significant stride in multifaceted medical interventions but also underscores the efficiency and 
versatility of this approach in addressing complex biomedical challenges [67,68]. In addition, intricate architecture of dendrimers, in 
conjunction with the versatile properties of NPs, has sparked considerable interest in their utilization across various biomedical ap-
plications, including drug delivery, nucleic acid delivery, bioimaging, diagnostics, and the advancement of biochemical sensors [69]. 

This review focuses on recent advancements in utilizing dendrimers as modifiers for INPs in biomedical applications. To the best of 
our knowledge, there are only a limited number of reviews available on this topic [70], so this review focuses on INPs as dendrimer 
cores. We present recent insights into INPs-cored dendrimers’ characteristics, physiological and toxicological properties and highlight 
their advantages in biomedical applications. Furthermore, we discuss key challenges and future prospects in this area of research. 

2. Intentions of fabricating INP-cored dendrimers 

A dendrimer made up of an inorganic core is known as an inorganic core dendrimer, entails a unique process in which the inorganic 
nanomaterial is initially used to form the dendrimer core, following which the branches are formed and anchored. As a result of this 
method, direct contact between NPs and surfaces is reduced, thus minimizing the risk of cytotoxicity to healthy tissues. Esmaeili and 
coworkers conducted a study where MNPs were synthesized using the coprecipitation method. These MNPs were grafted to APTES and 
then functionalized by PAMAM through a stepwise process involving the addition of methyl acrylate and ethylenediamine, resulting in 
a dendron-like structure with an average diameter of 21 nm. The impact of G3–dendrimer–SPIONs on cell viability was assessed using 
the MTT assay. Even at a high NPs concentration of 100 μg/ml, there was no statistically significant difference in cell viability between 
the control (untreated) cells and those treated with NPs. This suggests that these NPs exhibit no cytotoxic effects on these cells [71]. 
Maiti et al. employed computational modeling to elucidate the impact of dendrimer functionalization on graphene cytotoxicity [72]. 
Their investigation focused on the direct interaction between a functionalized graphene sheet and a dimyristoylphosphatidylcholine 
bilayer, a model for cell membranes. Intriguingly, they examined a graphene-dendrimer complex with both good surface coverage and 
a remaining, uncoated graphene portion. This unique architecture resulted in minimal contact with the dimyr-
istoylphosphatidylcholine bilayer. Notably, unlike pristine graphene, the functionalized complex exhibited no evidence of lipid bilayer 
disruption. The study suggests that the protonated dendrimer interacts favorably with surrounding water molecules, rendering the 
graphene-dendrimer complex less hydrophobic and consequently less stable at the lipid-water interface. This reduced hydrophobicity 
presumably hinders the penetration of the complex into the lipid bilayer, thereby mitigating the cytotoxic effects previously observed 
with unfunctionalized graphene [72]. 

By exploiting dendrimers’ diverse properties, including their ability to carry functional groups and exhibit high electrical charges, 
dendrimers can be used to stabilize nanostructures and improve their water solubility. Xiao and coworkers created a novel nanoprobe 
of GDSNPs linked with FA and DTA to enhance tumor CT imaging [73]. They employed PAMAM dendrimers of G5 with amine termini 
to trap GNPs through a stepwise complexation/reduction approach, achieving higher Au loading compared to the traditional one-step 
method. The resulting [(Au0)120-G5.NH2] NPs underwent sequential functionalization with DTA, FA via a PEG spacer, and 
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mPEG-COOH, followed by complete acetylation of the remaining dendrimer amine termini. The formed GDSNPs -DTA-FA displayed 
outstanding aqueous dispersibility in cell medium and PBS, indicating sustained water dispersibility across various aqueous media 
despite successive surface functionalization. The colloidal stability of GDSNPs-DTA-FA is ascribed to the expanded dendrimer pe-
riphery resulting from surface PEGylation modification [73]. 

Also, research indicates that dendrimers enhance biocompatibility, prolong biodistribution, and reduce toxicity by forming a 
protective shell that limits opsonization and corona formation [71,74]. The intrinsic properties of dendrimers, such as a substantial 
surface area, abundant modifiable functional groups, considerable loading capacity, distinctive drug release kinetics, and dendritic 
formation, inspire researchers to graft or cultivate dendrimers on other nanostructures, thereby enabling the development of multi-
functional complexes [54]. Nanostructures can be interconnected by dendrimers, enabling the fabrication of intricate structures that 
can be used for a wide variety of applications, including biosensing and theranostics [75–77]. Moreover, dendrimers are capable of 
altering the optical properties of specific nanostructures, such as QDs, resulting in unique properties such as fluorescence quenching 
and FRET phenomena [78]. Martins and coworkers explored the formation of nanohybrids by self-assembling CDs with G4-G6 
PAMAM-NH2 dendrimers, aiming for applications in transfection and bioimaging. The nanohybrids exhibited persistent high fluo-
rescence levels even under non-neutral pH conditions, which was attributed to the presence of dendrimers and their buffering effect on 
the overall structure. The cytocompatibility of these nanohybrids ranged between that of CDs (which proved non-toxic at the tested 
concentrations) and pristine dendrimers. Notably, the nanohybrids displayed efficient cellular internalization, surpassing the per-
formance of CDs alone, and could be identified through fluorescence emission in different colors, depending on the excitation 
wavelength used [79]. 

INPs exhibit concentration-dependent and time-dependent cytotoxicity, thus underscoring the importance of dosage considerations 
and time exposure in toxicity assessments [80,81]. On a promising note, polymeric functionalization has demonstrated efficacy in 
enhancing NPs stability and mitigating toxicity [82]. Despite the exciting prospects offered by INP-cored dendrimers for biomedical 
applications, several key challenges and limitations necessitate careful consideration and resolution. Firstly, the scalability of current 
synthesis methods for INP-core dendrimers presents a formidable hurdle, characterized by intricate multi-step procedures and the need 
for specialized equipment [83,84]. To address this, the development of robust and scalable synthetic protocols is imperative to ensure 
cost-effectiveness and widespread availability. Secondly, achieving reproducible synthesis of INP-cored dendrimers with consistent 
functionality is hindered by inherent variability in current fabrication techniques [85]. Standardization of protocols and imple-
mentation of stringent quality control measures are paramount to ensure reliable therapeutic efficacy. Thirdly, the long-term stability 
of INP-cored dendrimers in biological environments is paramount for their successful application, necessitating strategies to mitigate 
factors such as aggregation, dendrimer shell degradation, and cargo leaching [86,87]. Optimization of core-shell interactions and 
integration of stabilizing surface modifications are indispensable for safeguarding therapeutic efficacy and ensuring safety in vivo. 
Overcoming these challenges demands the implementation of innovative synthetic methodologies, coupled with meticulous charac-
terization techniques and comprehensive investigations into the biological behavior of INP-cored dendrimers. Such endeavors are 
indispensable for facilitating the seamless translation of these nanomaterials into clinical applications [33]. Both in vitro and in vivo 
studies must be intensified to surmount these hurdles and advance therapeutics employing INPs from laboratory research to clinical 
practice [88]. By surmounting these obstacles, the full potential of this promising class of nanomaterials can be unleashed, thereby 
revolutionizing the landscape of disease diagnosis and treatment. 

3. Fabrication strategies for INP-cored dendrimers 

Expanding upon the established field of INPs synthesis, researchers have actively explored diverse methodologies to efficiently 
engineer INP-cored dendrimers. These methods were inspired by strategies previously used to synthesize INPs with surfactants or 
polymers in the presence of colloidal synthesis of INPs [89]. This synergistic relationship capitalizes on existing expertise in achieving 
precise control over size, shape, and composition during INPs colloidal synthesis [90,91]. Notably, this integration introduces a novel 
dimension by harnessing the distinctive functionalities inherent to dendrimers. These functionalities, derived from the well-defined 
structure and versatile surface chemistry of dendrimers, enable meticulous control over critical properties such as surface charac-
teristics, biocompatibility, and cargo loading/release profiles within the resultant INP-cored dendrimer architecture [92]. This 
convergence of established INPs synthesis methodologies with the adaptive nature of dendrimers provides a wide range of possibilities, 
facilitating the design and fabrication of advanced nanomaterials tailored to address an array of biomedical challenges. 

Most fabrication methods for INP-cored dendrimers center around the in situ generation of INPs within a dendrimer shell. These 
methods utilize well-established techniques such as chemical reduction, UV irradiation, or thermal/microwave/ultrasound-assisted 
decomposition, all executed in the presence of dendrimers. This in situ approach confers several advantages, including controlled 
nucleation and growth of the INP core, facilitated by interactions with the surrounding dendrimer molecules [93–95]. In one approach 
to creating dendrimers with INP cores, the dendrimer, a reducing agent, and a metal salt are combined in a reaction vessel to form 
dendrimers with INP cores. As a result of the reduction reaction, metal ions (Men+) are converted into zero-valent metal atoms (Me0), 
resulting in the precipitation of dendrimers that are cored with INPs. With this method, freshly formed NPs come into contact with 
dendrimer molecules within the first few minutes, thereby offering a facile and rapid synthesis procedure in which initial NPs are 
immediately capped with dendrimers by adsorption, electrostatic interaction, chelation, and chemisorption [96–99]. There are several 
factors that can affect the yield, size, and shape distribution of the NPs including dendrimer generation, metal-dendrimer molar ratios, 
and the activity of the reducing agents [98,99]. Kim et al. present a novel method for synthesizing dendrimer-encapsulated Pt 
nanoparticles with a significantly higher Pt loading compared to traditional methods [93]. Their approach utilizes a combination of 
chemical reduction and galvanic exchange reactions, enabling the encapsulation of over 1300 Pt atoms per dendrimer. This method 
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overcomes the limitations of conventional techniques restricted by the fixed number of Pt binding sites within dendrimers. The rapid 
and efficient synthesis (10 min) involves co-adding Cu and Pt precursor solutions to a dendrimer solution, followed by reduction with 
BH−

4 . This leads to selective Cu2+ complexation with the dendrimer and subsequent reduction to Cu nanoparticles within the den-
drimer shell. These Cu nanoparticles then undergo galvanic exchange with nearby Pt2+ ions, leading to Pt nanoparticle formation. This 
cycle repeats until all Pt2+ ions are converted into encapsulated Pt nanoparticles. These findings are significant as they demonstrate the 
controllable synthesis of large and homogeneous Pt dendrimers, thereby expanding the research scope of dendrimers without con-
straints posed by limited atom numbers and heterogeneous oxidation states [93]. Maki et al. developed a targeted cancer therapy 
nanoplatform by combining GNPs, tetrahydrocurcumin (a potent therapeutic agent), and HA for precise delivery [63]. This approach 
involved a straightforward one-pot chemical synthesis at room temperature, employing generation 3.0 PAMAM dendrimers as both 
reducing and stabilizing agents for GNP fabrication. The resulting nanoparticles exhibited optimal size, charge, stability, and high drug 
loading efficiency of 96.45 %. Subsequent HA coating improved biocompatibility, specificity, and cellular uptake via CD44 
receptor-mediated endocytosis in Caco-2 cancer cells. Moreover, the nanoplatform demonstrated pH-responsive drug release, facili-
tating the co-delivery of tetrahydrocurcumin and GNPs, which synergistically induced oxidative stress and mitochondrial damage in 
cancer cells, enhancing anti-cancer efficacy [63]. Li et al. showcased the benefits of facile one-pot synthesis by developing 
near-infrared-II fluorescent probes for in vivo imaging [61]. Their approach entailed synthesizing PEG-polyacylthiourea dendrimer 
encapsulated silver sulfide quantum dots (PEG-polyacylthiourea Ag2S QDs) in a single step. This straightforward method enabled size 
adjustment of the QDs by varying reaction time and precursor concentrations. The resulting QDs exhibited robust fluorescence 
emission peaking at 1110 nm, ideal for near-infrared-II imaging with deep tissue penetration capabilities. Furthermore, these QDs 
demonstrated excellent stability and biocompatibility, rendering them suitable for in vivo applications [61]. 

There is also another approach that involves the preparation of nanostructures in order to serve as the cores of dendrimers. The 
inorganic nanostructures can be functionalized with a variety of groups, including amines [100], silanes [101], and carboxyl groups 
[102], making them suitable for the conjugation of dendrimers. As a result, dendrimers can be anchored and conjugated to these 
functionalized nanostructures via covalent coupling, ligand exchange, electrostatic interactions, or some combination of these tech-
niques [103]. The addition of monomers that contribute to radial growth is designated as one generation at each step of the process. 
This conjugation method offers several advantages over the one-pot synthesis approach, including efficient coupling, controlled 
uniformity, versatility in the use of any dendrimer as a capping agent, precise control over dendrimer surface density on the NP surface, 
as well as preservation of NP stability [103]. Tabakoglu and coworkers developed novel folate-receptor-targeted PAMAM 
dendrimer-functionalized mesoporous silica-coated MNPs as drug delivery agents for photodynamic therapy [104]. The synthesis 
involved coating the surface of MNPs with mesoporous silica, followed by functionalization with siloxane-cored PAMAM dendrons 
(generation 1 to 3) and targeting the surface with FA. Indocyanine green, a near-infrared dye, was loaded into the nanocarriers, and 
their photodynamic therapy efficiency was evaluated on MCF-7 cells. The study successfully demonstrated safe and tumor-specific 
drug delivery. These nanoparticles exhibited good stability under various conditions, with the highest loading capacity observed 
for G3. Furthermore, the presence of FA increased the loading capacity of indocyanine green and enhanced pH-sensitive drug release, 
essential for cancer treatment. Lochab et al. developed a novel drug nanocarrier using a surface chemistry method [105]. They 
chemically linked PAMAM to the surface of NDs, transforming their surface chemistry and enhancing their stability in aqueous so-
lutions across a wide pH range. The modified NDs, known as PAMAM-tethered NDs, showed no cytotoxicity and efficiently encap-
sulated the poorly water-soluble drug cabazitaxel. This encapsulation reduced the size of cabazitaxel particles and enabled controlled, 
sustained release under acidic conditions (pH 4), resembling the tumor microenvironment. Importantly, the resulting nanocarrier 
exhibited significant uptake by cancer cells, resulting in a notably reduced IC50, indicating enhanced therapeutic effectiveness. 
Comprehensive coverage of synthesis techniques and fabrication methods for some INP-cored dendrimers is available in previous 
publications [106–110]. 

4. INPs as cores of dendrimers 

4.1. Metallic nanoparticles 

4.1.1. Gold nanoparticles 
GNPs have emerged as valuable tools in biomedicine due to their straightforward preparation, strong chemical stability, 

biocompatibility, well-established surface chemistry, low toxicity, and customizable size. With sizes ranging from 1 nm to 8 μm and 
diverse shapes like cuboctahedral and spherical, GNPs offer versatile optical properties suitable for applications such as photothermal 
ablation and imaging [111,112]. The integration of dendrimers with GNPs, achieved through growth or grafting on the NP surface, has 
been a subject of extensive investigation [113]. 

In a research initiative exploring the attributes of GNP-dendrimer colloidal hybrids, their drug release patterns, and cytotoxicity, 
PPI was grafted onto GNPs to generate a dendrimer-grafted GNP [114]. Synthesis methods involved the Turkevich method for GNPs 
creation and iterative Michael addition for PPI. Significant discoveries include pH-dependent release of DOX drug (with minimal 
release at pH = 7.4 and maximum release at pH = 5.4), a reverse association between dendrimer grafting and drug release, and a direct 
link between elevated dendrimer grafting and increased toxicity [114]. The study suggests that lower drug release at pH 5.4 arises from 
a combined effect of high osmotic pressure within the dendrimer shell and steric hindrance caused by the grafted dendrons, hindering 
drug diffusion from the nanocarrier [114]. 

Sun et al. outlined a novel heat-treatment technique for crafting dendrimer-protected GNPs with controlled sizes, achieved without 
the need for a reducing agent. The process involved diluting aqueous solutions of HAuCl4 and PPI-G3 with different initial molar ratios, 
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heating the mixture to 80 ◦C until a purple-red color emerged. This innovative single-step synthetic approach allowed precise size 
manipulation and control of the GNPs’ nucleation and growth kinetics by adjusting the initial molar ratios, all without employing a 
reducing agent [115]. 

For efficient cargo delivery, Golshan et al. developed nanocarriers for DOX delivery utilizing GNP-cored dendrimers (Au-G4A). This 
involved synthesizing a 4th generation PPI dendrimer grown on a GNP core, created by reducing HAuCl4 with trisodium citrate and 
modifying with cysteamine to yield amine-functionalized GNPs. Au–NH2 cores were then utilized to fabricate Au-G4A NPs by 
introducing acrylonitrile and reducing with lithium aluminum hydride. The investigation of bioconjugation effects on drug release 
behavior involved conjugating peripheral amine groups of Au-G4A with FA to produce Au-G4F. Loading both structures with DOX and 
subjecting them to varying pH environments (0.033 and 0.045 mg of drug/mg of dendrimers) revealed superior drug release properties 
attributed to enhanced cavities and drug release through the polymeric matrix [100]. 

Shi et al. presented a new technique to form and functionalize Au(III) (HAuCl4) using G5 PAMAM dendrimers with terminal amines, 
resulting in GDSNPs. The method involves the spontaneous mixing of methanol solutions containing HAuCl4 and G5.NH2 dendrimers 
at room temperature, followed by the addition of triethylamine to create a pink solution. Subsequent washing with PBS and water 
yields water-soluble and stable GDSNPs for six months [116]. These GDSNPs, pre-functionalized with FA and Fluorescein isothio-
cyanate, exhibit potential for targeting and detecting cancer cells, with experimental assays confirming their binding to cancer cells 
overexpressing high-affinity FAR in vitro [117]. 

In a separate study, Vásquez-Villanueva et al. produced STC-GNPs and CTC-GNPs by coating GNPs with sulfonate and 
trimethylammonium-terminated carbosilane dendrons or carboxylate-terminated carbosilane dendrons, respectively. These coated 
NPs demonstrated antimicrobial and antiviral properties. The most favorable conditions for protein-GNP interaction occurred at acidic 
and neutral pH, with optimal results achieved using second-generation STC-GNPs and CTC-GNPs [118]. 

In another study, Wang et al. harnessed the combined attributes of GNPs and dendrimers to construct a bio-sensing device [119]. 

Fig. 1. Schematic illustration of the preparation of the DAN/AAO hybrid.  
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They engineered an ionic rectification device by crafting a dendrimer-GNP network on the surface of a nanoporous AAO membrane, 
specifically designed for detecting circulating tumor cells, as it is shown in Fig. 1. The fabrication process involved assembling a 
dendrimer-Au complex onto the nanoporous anodic aluminum oxide. This assembly of the dendrimer-NP network film was achieved 
by linking PAMAM dendrimer and carbon disulfide as the linker. The high surface-to-volume ratio of GNPs combined with the dense 
network of binding sites offered by PAMAM dendrimers creates a highly branched structure with a significantly increased surface area. 
This extensive surface exposes a multitude of functional groups, leading to inherent asymmetries in both the structure and surface 
charge density of the resulting DAN/AAO hybrid membrane. These asymmetries are believed to be the key factor behind the observed 
rectified ion transport behavior. Furthermore, the presence of amino groups on the DAN/AAO surface facilitates anion selectivity, 
allowing the hybrid membrane to selectively process negatively charged ions. Notably, the ionic rectification properties can be further 
tailored by manipulating the ion valence and the bulk solution’s pH. This study demonstrates the successful construction of a highly 
sensitive platform for circulating tumor cell detection with a limit of detection as low as 80 cells mL⁻1. This platform leverages the 
unique properties of the DAN/AAO hybrid, achieving sensitivity through a combination of chemical, electrical, and optical readouts. 
This versatile platform holds great promise for in situ studies of cell adhesion and behavior [119]. 

4.1.2. Silver nanoparticles 
Modifying the surface of AgNPs with dendrimers has proven effective in improving their colloidal stability [120,121]. However, the 

use of high-generation dendrimers for AgNP stabilization is often economically unviable for commercial purposes. To address this 
challenge, Lataifeh et al. proposed a cost-effective method [121]. They introduced low-generation L-glutamic acid peptide dendrimers, 
which self-assemble on the surface of AgNPs, providing both stabilization and a consistent spherical shape to the NPs [121]. In a similar 
context, Vijayalakshmi et al. developed Ag@TiO2 and Co@AgCl NPs stabilized with a zeroth generation triazolylchalcone dendrimer. 
The positioning of Ag and Ag+ ions on the surface of Co@AgCl, rather than the core as observed in Ag@TiO2, resulted in enhanced 
antibacterial activity for Co@AgCl due to the inherent antibacterial properties of these ions [122]. 

An innovative approach was explored by Liu et al., who utilized Ferrocenyl Janus mixed-dendron stars for AgNP stabilization 
[123]. Janus particles are a distinct class of nanomaterials known for their unique "Janus-faced" structure, featuring two distinct 
regions with their own specific physical and chemical properties. This inherent asymmetry enables Janus particles to exhibit dual 
properties simultaneously, which can be strategically distributed across their mass or surface. Recently, Janus dendrimers have 
emerged as a novel class addressing limitations of conventional dendrimers, boasting a unique architecture with different function-
alities on separate parts of their surface. Typically, this is achieved by combining a hydrophilic dendron, often containing functional 
groups like PEG, amino, hydroxyl, or carboxyl, with a hydrophobic counterpart utilizing aliphatic chains, poly(benzyl ether) groups 
[124]. The hydrophobic segment of the Janus structure, in the study conducted by Liu et al., consisted of three ferrocenyl units, while 
the hydrophilic part featured three TEG termini. Beyond their role in stabilization, these dendrons facilitated the synthesis of AgNPs. 
The ferrocenyl-containing macromolecule stabilized AgNPs, and the TEG-terminated dendrimers aided in the reduction of Ag(I) to 
AgNPs. The combination of ferrocenyl-terminated dendrons and TEG-terminated dendrons created conducive conditions for the 
reduction of Ag(I), leading to the formation of AgNPs [123]. 

4.1.3. Titanium nanoparticles 
The biomedical applications of titanium are extensively explored due to its high biocompatibility, resistance to body fluids, and 

impressive corrosion resistance [125,126]. Titanium nanostructures, in particular, have shown promise for diverse biomedical uses. 
Some studies have investigated the incorporation or growth of dendrimers onto both titanium materials and nanostructures. In a study 
led by Nakanishi et al., dendrimer-protected TiO2 NPs were synthesized to enhance the photo-degradation of organic molecules in 
aqueous NPs suspensions [127]. Dendrimers served as stabilizers, enhancing the stability of TiO2 NPs in water. The synthesis process 
involved the hydrolysis of TiCl4 in PAMAM dendrimer solutions under cooling conditions. Photodegradation assessments, particularly 
with 2,4-dichlorophenoxyacetic acid, revealed increased activity in dendrimer-protected TiO2 NP suspensions compared to bare TiO2 
NPs [127]. Li et al. conducted another study focusing on amino-terminated dendrimers on TiO2 films. Through simple iterative 
Michael addition and aminolysis reactions, dendrimer generations were grown. The study thoroughly examined the structure and 
properties of surface-immobilized amino-terminated dendrimers and assessed their functionalities using platelet adhesion and 
endothelial cell proliferation tests. The dendrimers exhibited outstanding performance in reducing platelet adhesion and activation, 
highlighting the advantages of their systematic construction. Endothelial cell culturing results indicated some degree of cytotoxicity in 
amino-terminated dendrimers, but successful generational growth on TiO2 films was confirmed [128]. 

4.2. Magnetic nanoparticles 

MNPs play a crucial role in various applications, including tissue engineering, theranostics, cancer treatment, targeted cargo de-
livery, Lab-on-Chip technology, and bio-imaging [129,130]. MNPs can be categorized into pure metals, metal oxides, and magnetic 
nanocomposites. The advantages of MNPs lie in their appropriate functionalization, colloidal stability, and low toxicity [131]. To 
enhance their properties further, numerous studies focus on grafting or growing dendrimers onto MNPs cores. This strategic approach 
aims to attain more desirable characteristics and functionalities for the effective utilization of magnetic NPs in diverse biomedical and 
technological applications [132,133]. 

DMNPs emerge as valuable candidates for cargo delivery applications. The unique combination of MNP cores and dendritic 
structures enhances the potential for targeted and efficient cargo transport. This innovative platform offers advantages such as 
improved cargo loading capacity, controlled release kinetics, and the ability to navigate through biological barriers [134]. Parsian 
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et al. have synthesized 4.5 and 7.5 generation dendrimers with MNPs cores as a carrier for Gemcitabine to improve the biological 
half-life of the drug and its delivered load effectively in the body. Gemcitabine is effectively bound to the surface of half-generations of 
PAMAM generation DMNPs. There are several advantages to using this carrier, such as its low toxicity, magnetic field conductivity, 
stability, high accessibility to tumor cells, and high uptake by the cells. It has been reported that Gemcitabine has a limited affinity for 
G4 and G5 dendrimers; on the other hand, the highest drug loading was obtained for DMNPs with G5.5. Moreover, Gemcitabine 
incorporated in the G5.5 DMNPs was more stable than free Gemcitabine. The results of this study show that drug-free NPs had no 
significant cytotoxicity on SKBR-3 and MCF-7 cells, while NPs loaded with Gemcitabine were 6.0 times more toxic in SKBR-3 and 3.0 
times more toxic in MCF-7 cells. 94 % of the loaded drug on this carrier was retained for 6 weeks at pH 7.2 [135]. 

In another study, Karimi et al. have synthesized a drug carrier for DOX based on the third-generation triazine dendrimer modified 
with GQDs and grown onto the magnetic core (Fe3O4@C@TD-G3). Firstly, the magnetic core was capped with maltose to form a 
carbon shell, and then the magnetic-carbon complex was modified with 3-aminopropyltrimethoxysilane. Afterward, 3G dendrimer 
branches were formed on this core. GQDs were conjugated with amino-functionalized dendrimers via a cross-linking reaction between 
carboxyl groups of GQDs and amine groups of the dendrimers. The combination of Fe3O4@C@TD-G3 did not change the crystal 
structure of pure Fe3O4 with a cubic spinel structure. It is stated that incorporation of dendrimer functional groups on the surface 
would decrease Fe3O4 magnetization intensity. Also, Fe3O4@C@TDGQDs had DOX loading efficiency of 63.09 %, and DOX release was 
time and pH-dependent. Also, drug entrapment efficiency of Fe3O4@C@TDGQDs microspheres was calculated to be 63.09 %. Five 
structural properties explain the structure’s high drug loading capacity. 1) DOX can be attached to the carrier through π-π interaction 
between the aromatic ring of Fe3O4@C@TDGQDs’ carbon shell and the conjugated rings of DOX molecules, electrostatic interaction 
between acidic, phenolic, hydroxyl, and alkaline amino groups of DOX and carboxyl and OH groups of the Fe3O4@C@TDGQDs, and 
hydrogen bonding between the surface OH/COOH groups of the Fe3O4@C@TDGQDs and the NH2/OH groups of DOX; 2) Three- 
dimensional structure of dendrimer with abundant branches and cavities; 3) Entrapment of DOX within the dendritic network and 
addition of the GQDs cavity to the drug; 4) Retention of the drug within dendrimer branches and cavities due to hydrogen bonding and 
hydrophobic effects between triazine dendrimer and DOX; 5) A large drug storage provided by large central hollow cavity and pores in 
the Fe3O4@C@TDGQDs microspheres. These properties would make Fe3O4@C@TDGQDs a highly effective drug carrier. MTT results 
show no toxicity of Fe3O4@C@TDGQDs microspheres to A549 cell lines. Fe3O4@C@TDGQDs microspheres can be used as a 

Fig. 2. The synthesis process of liver cancer antigens ECL immunosensor and its function. (A) D5 PAMAM dendrimer stabilized Fe3O4 NPs, (B) 
Conjugation of antibodies to the NPs via glutaraldehyde, (C) Placement of step (B) nanoparticles onto LSG electrode, (D) Addition of antigens to the 
immunosensor, (E) and (F) ECL signal measurements performed by addition of ECL mixture. 
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nanocarrier for safe, biocompatible, and effective drugs for medical applications [102]. 
Several studies have explored the application of DMNPs in bio-sensing, relying on enzymatic processes or ECL phenomenon 

[136–138]. Chikhaliwala et al. synthesized dendrimers with different generations grafted on magnetic NPs using Ru(bpy)3
2+ complexes 

for ECL-based detection, as it is shown in Fig. 2. The structure, influenced by the amount of amine, carbonyl, hydroxyl groups, and 
nanostructure size, proved effective for ECL biosensing of alpha-fetoprotein and glypican-3. The detection limits were 6 pg/mL and 
0.03 pg/mL for alpha-fetoprotein and glypican-3, respectively. PAMAM@Fe3O4 presented an efficient clinical diagnostic method, 
showcasing enhanced ECL with low concentration. The magnetic property of the Fe3O4 core provides external magnetic control, 
contributing to the sensitivity and specificity of biosensing [75]. 

Enzyme immobilization using DMNPs presents a promising avenue for applications in detection and biosensing. In a study by 
Shende et al. [139], biosensors based on PAMAM-MNPs were developed for the detection of glucose in saliva. The PAMAM dendrimers 
were systematically grown on the surface of MNPs through a repeated Michael addition process. Glucose oxidase was immobilized 
onto the PAMAM-MNPs using glutaraldehyde as a cross-linking agent and encapsulation by PAMAM-MNPs. A notable observation was 
a significant decrease in the oxidation activity of the bio-conjugated PAMAM-MNPs dendrimers between two runs, potentially 
attributed to the alteration in the MNP’s structure during the processes. The PAMAM-MNPs biosensor exhibited a steady-state response 
within 4–6 days, and no disruptions were reported in the presence of artificial saliva. Particularly noteworthy was the biosensor’s 
higher fluorescence intensity at elevated glucose concentrations in a sample. The advantages of this PAMAM-MNPs biosensor 
encompass cost-effectiveness, reproducibility, and noninvasive glucose detection in saliva, underscoring its potential for practical and 
efficient biosensing applications. 

In another investigation, Doaga et al. engineered cholesterol biosensors using MNPs as a core, serving as a substrate for the growth 
of PAMAM dendrimers through iterative reactions involving methyl acrylate and ethylenediamine [101]. The biosensor design 
necessitated the incorporation of cholesterol oxidase and cholesterol esterase for functionality. MNPs were strategically functionalized 
with APTES and PAMAM to enhance their performance and binding affinity to these enzymes. Functionalization with APTES resulted 
in a cholesterol-free response rate of 101.9 μAmM− 1cm− 2, exhibiting a dynamic range of 0.1–1 mM and a LOD of 80 μM at an operating 
temperature of 37 ◦C. Meanwhile, MNPs-PAMAM modified biosensors showed a response rate increase of 73.88 μAmM− 1cm− 2, 
extended linear range of 0.1–1.5 mM, and a LOD of 90 μM. Remarkably, free cholesterol biosensors retained 98 % of their activity after 
25 days, while total cholesterol biosensors maintained 85 % of their activity over the same storage duration. These findings highlight 
cholesterol biosensors’ increased performance and stability, emphasizing their application potential in biomedical and analytical 
applications. 

MNP-dendrimers offer a versatile approach for immobilizing enzymes exclusively for enzymatic applications. In a study by Li et al. 
[140], melamine-glutaraldehyde dendrimer-like polymers were synthesized with aminated magnetic NP nuclei to enhance the activity 
and stability of lipase. The dendrimer-like polymers on the structure’s surface served as effective protein binding sites for the 
immobilization of the enzyme. This unique structure played a pivotal role in preserving the conformation of lipase, resulting in 
improved thermal stability and enhanced organic solvent tolerance compared to lipase powder. Notably, even after eight cycles of use, 
the enzyme retained its catalytic activity. These MNP-dendrimers NPs not only elevate the stability and performance of the enzyme but 
also facilitate increased contact between the substrate and the enzyme’s active site. The catalyst boasts advantages such as high 
stability, exceptional performance, accuracy, selectivity, high resolution, efficiency, and reusability. This demonstrates the potential of 
MNP-dendrimers as efficient and reliable tools in enzymatic processes, promising advancements in various enzymatic applications 
with enhanced attributes and sustained catalytic efficacy. 

DMNPs find utility in isolation applications, as demonstrated by Yu et al., who engineered magnetic composite nanospheres 
incorporating PAMAM dendrimer PAMAM-grafted PMAA brushes [141]. Specifically designed for the identification of low abundance 
phosphopeptides, this nanocomposite exhibits remarkable features, including high detection sensitivity (1 fmol μL− 1), outstanding 
selectivity (1:500 M ratios of β-casein/BSA), and exceptional recyclability. The abundance of amine groups in the PAMAM-PMAA 
brushes, coupled with the superparamagnetism of the Fe3O4 core, contributes to its high-performance attributes. The nano-
composite’s elevated content of functional groups imparts enhanced affinity to target molecules, enabling selective enrichment of 
mono, multi, or global phosphopeptides. This adaptability is achieved by adjusting bond strength through modulation of buffer po-
larity and acidity, positioning the nanocomposite as a promising candidate for comprehensive phosphoproteome research. The 
structure’s advantages encompass superior magnetic properties, efficient performance, high selectivity, remarkable detection sensi-
tivity, and easy separation, allowing for reusability for up to 5 cycles. In a comparable vein, Jiang et al. [142] conducted the synthesis 
of dendrimers featuring MNP nuclei adorned with TiO2 (MS MALDI-TOF) for the isolation and enrichment of phosphopeptides. The 
unique interaction mechanisms at play involved PAMAM and phosphopeptides binding through electrostatic attraction, while the TiO2 
and the target phosphopeptides were held together through Lewis acid-base interactions. This strategic combination harnessed the 
synergistic effects of these interactions to facilitate efficient and selective isolation of phosphopeptides. This innovative approach not 
only underscores the versatility of dendrimers with MNP cores but also highlights their potential in advancing methodologies for 
phosphopeptide isolation and enrichment in mass spectrometry applications. 

DMNPs exhibit versatility in modification for the isolation of small molecules, as demonstrated by Alaei et al. [143]. In their study, 
magnetized NPs were synthesized and coated with P-MIPs, further modified with PAMAM dendrimers to create dendrimer-modified 
MNPs coated with P-MIPs (DMNPs @ PMIPs) for the isolation of Aza. The active amine groups of the PAMAM dendrimer enable precise 
control over drug delivery behavior and drug loading ratio. This adsorbent showcases a high capacity for interaction with Aza, 
allowing the drug to attach to the binding site and be released into the solution under intermittent light irradiation, induced by 
trans–cis isomerization of the binding site. The recycling rate of Aza reaches an impressive 95 %. DMNPs@PMIPs offer notable ad-
vantages, including high adsorption capacity, stability for selective extraction, controlled photoresponsive separation from human 

S.T. Fateh et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e29726

10

biological fluids or pharmaceutical samples for quantitative analysis, retrievability, and high accuracy. These features underscore the 
potential of modified DMNPs for efficient and controlled isolation of small molecules with applications in drug delivery and analytical 
chemistry. 

Some investigations have employed DMNPs as MRI contrast agents, either exploiting the inherent properties of the MNP core or 
integrating conjugated contrast agents. Esmaeili et al. conducted a study on SPION-PAMAM for enhancing MRI contrast and enabling 
hyperthermia therapy. G3-PAMAM-SPION, among various dendrimer generations, demonstrated minimal toxicity at a high NPs 
concentration of 100 μg/ml. Key benefits of this structure include low toxicity, biocompatibility, high stability, and resistance to 
cellular excretion. The extended half-life in blood circulation is ascribed to the dendrimer, reducing protein absorption. Furthermore, 
dendrimer branches diminish the intermolecular attraction between SPIONs, augmenting water solubility. The numerous terminal 
amines on the dendrimer’s surface allow for versatile functionalization, supporting medical applications such as drug delivery, bio- 
labeling, and diagnosis [71]. 

Almasi et al. synthesized MNPs as dendrimer cores, onto which 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)- 
acetyl-PAMAM dendrimers were grown. This process yielded IO@G4PM-DOTAX-NPS, radiolabeled with Gallium-68 for PET-MR 
imaging. Incorporating the DOTA chelator on the NP’s surface increased the hydrodynamic size and polydispersity index of 
IO@G4PM(DOTAx) NPs, prompting researchers to acetylate free amine groups and reduce the hydrodynamic size for IO@G4PM 
(DOTA3)(Ac). IO@G4PM-DOTAX-NPS exhibited prolonged blood circulation with 3.4 % ID/g uptake, and PET-CT imaging revealed 
distinct uptake at the tumor site. Although surface modification with PAMAM is expected to boost NP uptake in the tumor, potential 
liver sequestration may limit NP uptake in tumor tissue following intravenous administration [77]. 

Nosrati et al. developed magnetic core dendrimers as drug carriers to enhance both chemotherapy and magnetic resonance per-
formance. The study illustrated the efficacy of curcumin loaded onto the 5th generation DMNP in treating MCF-7 cells, demonstrating 
controlled and gradual curcumin release for effective human breast cancer treatment. PAMAM-MNP presents several advantages, 
including controlled drug release, slow-release capabilities, easy preparation and scalability, efficient loading of small molecules, and 
inherent magnetic properties. The dendrimer’s magnetic characteristics also make it suitable for applications in MRI and cancer 
diagnosis [60]. 

In a recent investigation, Nori et al. developed Fe3-δO4@Au magnetic NPs by employing a thiol-ended dendrimer. These NPs were 

Fig. 3. Schematic illustration of Graphene and MNP-cored PAMAM dendrimer hybrid, loaded with Doxorubicin and Curcumin.  
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employed as carriers for the anti-cancer drug 6-mercaptopurine and assessed on breast cancer cells under RF hyperthermia. Addi-
tionally, their suitability as contrast agents for MRI imaging was explored. The results suggested that the designed magneto-dendrimer 
stands out as a promising option for theranostic applications in cancer therapy [62]. 

4.3. Carbon nanostructures 

4.3.1. Graphene 
Graphene, a carbon-based nanomaterial arranged in a two-dimensional structure, consists of a single layer of carbon atoms [144]. It 

possesses unique qualities, such as a high surface-to-volume ratio, remarkable chemical versatility, superior mechanical strength, 
thermal stability, electrical conductivity, and the ability to bond with various macromolecules. Due to its diverse potential applica-
tions, recent focus has shifted towards modifying graphene and its derivatives with dendrimers [145,146]. 

Several investigations have been dedicated to creating graphene-cored dendrimers or hybrids of graphene with dendrimers, 
particularly for drug delivery, notably the anticancer drug DOX. Despite its effectiveness in cancer treatment, DOX often produces side 
effects due to its non-specific impact on tumor cells. Addressing this concern, Pourjavadi and colleagues explored the simultaneous 
delivery of drugs to cancer cells using a graphene-dendrimer hybrid. In this research, the edges of graphene sheets were functionalized 
with PAMAM dendrimers modified with magnetic NPs, as it is shown in Fig. 3. The resulting hybrid exhibited amphiphilic properties, 
combining the hydrophilic characteristics of dendrimer branches with the hydrophobic attributes of graphene sheets. The carrier was 
loaded with hydrophilic DOX through covalent interactions and hydrophobic curcumin through π-π stacking. This hybrid displayed a 
pH-dependent release of both drugs. The inclusion of two distinct drugs into the carrier resulted in increased cellular uptake, inter-
nalization, and a more potent chemotherapeutic effect compared to carriers loaded with a single drug [147]. 

In an independent study, Pooresmaeil and her team introduced an innovative carrier for DOX by combining GQDs and dendrimers. 
The process commenced with the modification of GQDs through citric acid pyrolysis, leading to amine-functionalized GQDs through 
salinization. Subsequently, the GQDs’ surface served as the platform for the growth of a PAMAM dendrimer, resulting in GQDs- 
PAMAM. To augment nanocarrier properties, the GQDs-PAMAM was further enriched with β-CD, a torus-shaped carbohydrate, 
forming the glycodendrimer (GQDs-PAMAM-β-CD). The ultimate structure was loaded with DOX. The pH-sensitive behavior of DOX- 
GQDs-PAMAM-β-CD in drug release ensured secure and targeted drug delivery to cancer cells. It demonstrated effective cell entrance 
capability and displayed high efficacy in eliminating target cells, positioning it as a promising solution for cancer treatment [148]. 

Graphene-cored dendrimers have been tailored for gene delivery applications in a study led by Liu et al. This innovative design 
utilized graphene-cored dendrimers as gene delivery vectors for the plasmid DNA encoding the enhanced green fluorescent protein, 
pEGFP-N1. The system involved incorporating a PAMAN dendrimer with oleic-acid-functionalized graphene. Initial steps included 
chemically adsorbing oleic acid onto graphene and covalently anchoring functionalized graphene and PAMAN dendrimer through the 
amidation process. Oleic acid was chosen for its unique interaction with both graphene and PAMAN, along with its high affinity for 
cellular membranes. The resulting vector demonstrated dose-dependent in vitro cytotoxicity and proved biocompatible with HeLa 
cells. This graphene-oleate-PAMAM structure exhibited notable efficacy in GFP transfection, showcasing its potential as a biocom-
patible gene carrier [149]. In another innovative development, a graphene-dendrimer nanostar was engineered for the targeted de-
livery of a plasmid encoding metalloproteinase 9 into macrophages. The design involved creating a graphene-PAMAN-G5 structure 
through the cross-linking of GNS with 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-Hydroxysuccinimide and utilizing gen-
eration 5 PAMAM dendrimer for gene therapy targeting. This strategic approach aimed at selectively targeting inflammatory mac-
rophages that overexpress metalloproteinase 9 in cirrhotic livers, ultimately reducing hepatic fibrosis. Given the adverse effects 
associated with conventional anti-fibrotic and anti-inflammatory drugs, pMMP9-DGNS gene therapy emerges as an enticing option for 
enhancing hepatic function and promoting regression of the fibrosis process without causing additional harm. This approach in-
troduces a fresh perspective to the treatment of inflammatory and fibrotic diseases [150]. 

Graphene-cored dendrimers emerge as a promising solution for detection and bio-sensing, exemplified in a study by Fen and co-
workers [151] addressing the crucial need for early detection of DENV. With DENV posing a significant global health threat without an 
available vaccine, the challenge lies in devising sensitive detection methods, especially during the early febrile phase. While SPR 
sensors have been applied for DENV detection, their effectiveness has been deemed inadequate. In response, the research team 
introduced an innovative SPR sensor based on an amine-functionalized rGO-PAMAM composite. Monoclonal antibodies were 
immobilized on a self-assembled DSU substrate to facilitate DENV detection and quantification. The deliberate choice of rGO over 
graphene was driven by its advantages, including enhanced stability in organic solvents, prolonged storage without agglomeration, 
and superior electrical properties. The outcome was the successful detection of DENV at an exceptionally low concentration of 0.08 pM 
within a rapid 8-min timeframe. This achievement was realized through the utilization of an Au/DSU/amine-functionalized 
rGO–PAMAM/IgM thin film-based SPR optical sensor, underscoring its potential as a highly efficient and sensitive tool for DENV 
detection. 

Jayakumara et al. [76] conducted a study introducing a nano-biosensor characterized by exceptional selectivity and sensitivity, 
tailored for the rapid voltammetric analysis of ultra-trace DNA hybridization. The biosensor was created by synthesizing a 
first-generation PAMAM dendrimer with an rGO core, employing a layer-by-layer assembly, and covalently functionalizing it with a 
self-assembled nanolayer of mercaptopropinoic acid onto the surface of GNPs. This meticulously engineered biosensor demonstrated 
rapid and highly sensitive capabilities in detecting DNA hybridization. Its potential applications extend to being a cutting-edge bio-
device in genetic studies and a diagnostic method for genetic disorders, underlining its significance in advancing genetic research and 
facilitating accurate diagnoses. 

DGO was employed as a probe to immobilize trypsin, utilizing glutaraldehyde as a coupling agent. The process involved covalently 
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binding trypsin to the DGO nanosheets, establishing a new amide bond with the assistance of 1-Ethyl-3-(3-dimethylaminopropyl)-car-
bodiimide and N-Hydroxysuccinimide. Amino-terminated dendrimer was strategically assembled on the GO surface, and the amino 
group of DGO reacted with glutaraldehyde, which acted as a cross-linker. Finally, the amino group of trypsin bonded with the aldehyde 
group of the glutaraldehyde-modified dGO. This trypsin-linked DGO demonstrated efficiency in rapidly digesting proteins on plates, 
possessing notable features like high dispersibility, exceptional biocompatibility, a substantial enzyme loading capacity, and efficient 
proteolysis [152]. 

4.3.2. Carbon nanotubes 
CNTs stand out among carbon allotropes as an intermediary structure between flat graphene and fullerene cages. Discovered in 

1991 by Iijima [153], they come in SWCNTs or MWCNTs forms based on the arrangement of rolling graphene layers. CNTs exhibit 
distinctive features like excellent electrical and thermal conductivity, high tensile strength, elasticity, and photoluminescence, posi-
tioning them as promising nanomaterials for biomedical applications [154]. Over the past decade, CNTs have gained traction in the 
medical and pharmaceutical sectors due to their extensive surface area, enabling absorption and attachment to various agents such as 
genes, drugs, biosensors, and antibodies [155,156]. Furthermore, enhancing CNTs with dendrimers improves their biocompatibility, 
solubility, and chemical agent binding [157]. 

Research findings indicate a link between increased α2,3-sialylated glycan concentrations in the blood and specific tumors, sug-
gesting their potential as early cancer diagnostic targets. Niu and team devised a CNT-based biosensor for α2,3-sialylated glycans, 
utilizing Maackia amurensis lectin for recognition. Enhancements to the biosensor included the modification of a glassy electrode by 
integrating PAMAM dendrimers with amino groups on the surface to carboxyl-functionalized multiwalled carbon nanotubes, 
improving water dispersion. Crosslinking PAMAM dendrimers to Maackia amurensis lectin with PDITC reduced toxicity, accelerated 
reactions, and enhanced structural stability. The addition of chitosan, valued for its film-forming ability and adhesion, contributed to 
improved biosensor sensitivity and electron transfer rates, facilitating the effective detection of α2,3-sialylated glycans in samples 
[158]. 

Dysregulation of miRNA is implicated in numerous genetic disorders, with increased miRNA expression identified in various 
cancers, positioning it as a potential biomarker for cancer diagnosis and treatment. Fengye Li and coworkers crafted an ultrasensitive 
electrochemical biosensor for miRNA detection. They functionalized a GCE with MWCNT-PAMAM dendrimer and immobilized a 
synthetic oligonucleotide capture probe containing 5′-carboxyl group terminated DNA. Utilizing the phenothiazine dye Methylene 
Blue as an indicator, the results showcased improved immobilization of the captured DNA, heightened sensitivity of Methylene Blue, 
reduced detection limit, and increased specificity, culminating in enhanced performance of the miRNA biosensor [159]. 

CNT-based dendrimers play a crucial role in targeted drug delivery, exemplified by Wen et al.’s development of a pH-responsive 
nano-system for cancer therapy involving dendrimers and CNT. They employed amine-terminated 5.0 generation PAMAM dendrimers 
modified with FI and FA. Covalent bonding of the nanomaterial (G5. NH2-FI-FA) onto acid-treated MWCNTs followed, with acetylation 
of the remaining amine terminals to neutralize the surface’s positive charge. Loading DOX onto the final structure (MWCNT/G5. 
NHAc–FI–FA) as the anti-cancer drug occurred through π - π stacking interactions with MWCNTs. This drug delivery system effectively 
targeted cancer cells overexpressing high-affinity FAR, demonstrating therapeutic efficacy with increased release in acidic pH con-
ditions, leading to the inhibition of tumor cell growth [160]. 

CNTs play a role in cancer photodynamic therapy, as evidenced by Huang et al. They functionalized MWCNTs with 5.0 generation 
dendrimers and incorporated 5-ALA as the photosensitizer. The successful entrance of 5-ALA into tumor cells was indicated by the 
fluorescence of protoporphyrin IX in the cytoplasm. The final structure (5-ALA-DMNTs) demonstrated excellent biocompatibility, 
improved cell uptake, and targeted cell accumulation, evidenced by increased protoporphyrin IX fluorescence intensity and a sig-
nificant enhancement in tumor cell eradication [161]. 

Qin and collaborators developed a dendrimer-based gene delivery system for transferring the GFP gene into cultured HeLa cells. 
The COOH-functional groups on the MWCNT surface were covalently functionalized with PAMAN dendrimers, enhancing stability and 
water dispersion. The electrostatic interaction between the negative charge of the DNA plasmid and the positive charge of the MWCNT- 
PAMAM hybrid facilitated pEGFP-N1 immobilization on the hybrid’s surface. Compared to MWCNT-COOH alone, the MWCNT- 
PAMAM hybrid demonstrated superior immobilization, resulting in increased gene transfer performance and reduced cellular 
toxicity, making it a potentially efficient non-viral gene delivery system [157]. 

In a study conducted by Kavyani et al., the exploration of carbon nanotube-dendrimer (CNT-dendrimer) complexes in molecular 
delivery systems involved examining various pH levels and temperatures. Two types of dendrimers, PAMAM and Poly[PPI], were 
studied, with end branches modified by different chemical groups (COOH, COO− , NH2, NH3

+, and OH). The presence of polar or 
charged chemical groups at the dendrimer’s terminal branches allowed for the manipulation of cavity size. Adjusting pH at different 
temperatures enabled the development of CNT-dendrimer delivery systems with tailored cavities capable of encapsulating molecules 
of different sizes. The findings underscored the stability of the dendrimers’ molecular structure and their potential for customization in 
drug delivery applications [162]. 

In a study by Saleh Mohammadnia et al., the focus was on designing a novel electrochemical sensor for Imatinib mesylate, a 
medication used in treating gastrointestinal stromal tumors and chronic myelogenous leukemia. Researchers successfully synthesized a 
hybrid nanocomposite named N,S-doped CDs/carbon nanotube-PAMAM dendrimer (N,S-CDs/DCNT) as a significant modifier. The N, 
S-CDs/DCNT/GCE exhibited a higher oxidation peak current for imatinib mesylate compared to GCE and DCNT/GCE. The concen-
tration of imatinib mesylate showed a linear relationship with the oxidation peak current in the range of 0.01–100 μM, with a detection 
limit of 3 nM. Successful quantification of imatinib mesylate in blood-serum samples demonstrated excellent reproducibility and 
stability of the N,S-CDs/DCNT/GCE throughout the study [163]. 
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4.3.3. Fullerene 
In 1985, Kroto, Curl, and Smalley [164] discovered fullerene, a unique hollow spherical carbon allotrope. Renowned for its 

distinctive physical and chemical properties, fullerene has become extensively utilized in diverse fields such as materials science, 
electronics, nanotechnology, and biomedicine. Notably, the combination of fullerene with dendrimers results in supramolecular 
nanocomposites, merging the characteristics of both entities, particularly the C60 fullerene with its distinctive ball-shaped structure 
[165–167]. The low water solubility of fullerene necessitates its conjugation with dendrimers, a critical aspect for biomedical ap-
plications [168,169]. 

Glycosidases are focal points in pharmacotherapy. Nierengarten et al. synthesized a robust glycosidase inhibitor, a large construct 
based on a fullero-dendrimer. Comprising iminosugar-terminated dendrons and a clickable ]]]]fullerene hexa-adduct scaffold, the 
108-valent nanoconstruct exhibited nanomolar range inhibition of the enzyme, showcasing enhanced binding compared to its 36-val-
ent counterparts [170]. 

An ultra-fast growth technique facilitates the synthesis of a dendrimer based on fullerene. A derivative of tridecafullerene, initially 
a first-generation dendrimer featuring 132 peripheral ethyl ester groups, is created in a single dendritic growth step. In a stepwise 
process, twelve macromonomeric units of the fullerene hexa-adduct building block with azide functionality are produced through six 
synthetic steps. Subsequently, these units are attached to a central fullerene core using copper-catalyzed azide-alkyne cycloaddition 
conditions. This synthesis approach results in a monodisperse compound with significant fragmentation, showcasing the potential for 
rapid synthesis of large macromolecules by minimizing synthesis steps [171]. 

Kay et al. presented the synthesis of a fullerene-cored dendrimer spanning first, second, and third generations, surrounded by eight 
azobenzene groups functioning as potential photoswitches. The synthesis of the dendrimer follows Fre’chet’s convergent method, 
where azobenzene derivatives [Gn]-Br react with the monomer 3,5-dihydroxybenzyl alcohol in each step, leading to a new generation 
of dendrons with each repetition. Subsequently, the corresponding dendritic azides [Gn]-N3 react with C60 in chlorobenzene in the 
final step, resulting in the formation of dendritic fullerenes. The photoresponsive characteristics of these dendrimers are verified 
through various experimental approaches [172]. 

Giannopoulos explored the potential of utilizing water-soluble C60 as a drug delivery agent for the treatment of Coronavirus 
Disease 2019 (COVID-19). Molnupiravir, a compound known for its efficacy in saving lives during hospitalization, was chosen for 
transport. The proposed formulation involves connecting a carboxyfullerene, specifically dendro fullerene, with two Molnupiravir 
molecules using nitrogen single bonds as linkers. The study extensively investigated the energetics of the molecular system and its 
interactions with water and n-octanol using classical molecular dynamics. Solvation-free energies of the drug delivery system were 
calculated and compared with those of the water-soluble dendro fullerene to evaluate its solubility capabilities [173]. 

4.4. Silica 

SiO2 is primarily found in a crystalline state, with occasional occurrences in amorphous form, constituting a major component of 
sand. Its versatile applications encompass electronics (semiconductor), the food and drug industries, construction, and structural 
materials [174,175]. MSNPs represent a promising inorganic nanomaterial with unique physicochemical properties, such as a sub-
stantial surface area, considerable pore volume, high loading capacity, tunable pore size, and stability against thermal and chemical 
influences [176]. These attributes position MSNPs as attractive elements in the Nanobiomedicine field, finding use in drug delivery, 
sensing, and biomolecule immobilization. Despite their advantages, MSNPs face limitations like toxicity and solubility, which can be 
overcome by integrating dendritic structures to form DMSNPs [74,177–179]. 

A pH-responsive nanocarrier for drug delivery was created using MSNPs. These MSNPs were prepared using CTAB and TEOS as the 
silica source. A pH-responsive PAMAM dendrimer, functionalized with APTES, was grown on the surface of the MSNPs. The resulting 
MSNPs-PAMAM-G3 was conjugated with GA, a glucose derivative acting as the targeting agent. Deferasirox, an anti-tumor drug, was 
loaded onto the MSNPs-PAMAM-GA. When introduced to the retinoblastoma cell line Y79, the nanocarrier demonstrated high drug- 
loading capacity and increased uptake by tumor cells, leading to enhanced cytotoxicity of the drug. This highlights the potential 
application of the nanocarrier in cancer treatment [180]. 

Fei et al. designed a nanocarrier for co-delivering an anticancer drug and gene to targeted tumor cells in a responsive manner. The 
nanocarrier involved large pore DMSNPs and β-CD-modified PAMAM G3 dendrimers (β-CD-PAMAN). The orifice rim of the DMSNPs 
was occupied by ROS-responsive nitrophenyl-benzyl-carbonate (NBC) groups, and disulfide-bonded azido ligands were introduced 
onto the inner pore channels through a heterogeneous modification method. PAMAM-CD dendrimers were then immobilized on the 
pores through a click reaction. Anticancer model drugs, including SN-38 and Bcl-2 siRNA, were loaded onto the structure through a 
self-assembly process. In the final step, the DMSNPs/dendrimer was enveloped by 4T1 cancer cell membrane (CCM), enhancing the 
nanocomposite’s resistance against degeneration upon entering the body. The resulting anticancer drug co-delivery system displayed 
effective cell entrance and cargo release, proposing a novel approach for combined anti-tumor therapy [181]. 

With the increasing incidence of thrombotic diseases, new iterations of thrombolytic drugs have been introduced. Nattokinase 
(NK), an effective fibrinolytic drug known for its affordability, simple production, and minimal side effects, faces a critical drawback: 
rapid loss of biological activity after administration. In a recent study, Huang et al. explored a silica-dendrimer-based delivery system 
for NK. The synthesis process involved preparing carboxylated magnetic mesoporous silica NPs (M-MSNPs-COOH) as the dendrimer 
core. Conjugating this core with polyglutamic acid peptide dendrimer (M-MSNPs-G3) and grafting RGD onto M-MSNPs-G3 resulted in 
the final nanostructure, M-MSNPs-G3-RGD. Drug loading occurred through electrostatic interaction between NK and M-MSNPs-G3- 
RGD, enhancing stabilization and drug performance. The NP demonstrated an effective thrombolytic effect with low toxicity, sug-
gesting a potential approach for the swift and straightforward diagnosis and treatment of thrombotic diseases [179]. 
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González et al. proposed an inventive solution for antibiotic delivery and penetration through the bacterial cell wall in infectious 
diseases. The designed nanosystem, named "nanoantibiotics," comprises MSNPs covalently adorned with a third-generation poly-
propyleneimine dendrimer on the external surface (MSN-G3). Functionalizing MSNPs with the G3 dendrimer enhances drug perme-
ability into the gram-negative bacterial cell wall, attributed to the positive surface charge and flexible dendrimer structure. 
Levofloxacin acts as the primary antibiotic drug, loaded into the inner pores of MSNPs. The sustained release of the antibiotic after 
internalization ensures a stable and effective drug dosage within targeted bacteria. The nanoantibiotic exhibits remarkable antibac-
terial activity, suggesting a potential novel approach for managing infectious diseases [182]. 

Omidi and colleagues developed a nanocomposite by combining mesoporous silica and PAMAM generation 5 using 3-glycidoxy-
propyltrimethoxysilane and assessed its antibacterial properties. Surface analysis revealed a substantial surface area of 1321 m2/g 
and an average pore diameter of 2 nm. The composite demonstrated effective antibacterial activity against Staphylococcus aureus and 
Escherichia coli at a concentration of 256 μg/mL, maintaining cell viability above 70 % after 72 h [183]. 

In the realm of psoriasis treatment, Yu et al. addressed challenges by utilizing Eri, a potent drug known for inhibiting cell pro-
liferation and inducing apoptosis. To overcome Eri’s limited water solubility and poor skin penetration, the researchers developed a 
novel carrier system, Eri-DMSNPs@FSP, based on dendritic mesoporous silica NPs responsive to UV radiation. This carrier significantly 
improved Eri’s bioavailability and enabled sustained release. The UV-responsive erianin-loaded dendritic mesoporous silica NPs 
exhibited superior efficacy in inhibiting HaCat cells compared to other formulations, demonstrating their potential for targeted drug 
release in response to UV radiation, offering promise for psoriasis treatment [184]. 

In a different context, MSNPs-PAMAM dendrimer hybrid NPs were employed as a nano-drug delivery system for neuroblastoma 
treatment. This system provided enhanced control over drug loading and release. Hydrolysis of tetraethyl orthosilicate TEOS by 
hydrochloric acid resulted in the hybrid, combining hydrolyzed silica and PAMAN dendrimer. Encapsulation of black carrot antho-
cyanins, selectively active against neuroblastoma cells, was achieved in these hybrid NPs. Investigation of drug release kinetics and the 
anti-tumor effect demonstrated the direct inhibitory effect of anthocyanins. Importantly, the Silica-PAMAN hybrid showed no sig-
nificant toxic effects, underscoring its potential as a targeted and controlled drug delivery system for neuroblastoma treatment [185]. 

Lin et al. engineered a responsive co-delivery system for cancer treatment, combining gene therapy and chemotherapy. They 
employed MSNPs modified with second-generation PAMAM dendrimer (G2), chitosan-grafted onto MSNPs via a disulfide linker 
(MSNPs–SS–COOH). The NP’s inner surface housed DOX and p53 plasmid, utilizing the carrier’s positive charge for effective cell entry. 
The developed structure exhibited outstanding biocompatibility, efficient gene transfection, and rapid intracellular drug release, 
leading to cancer cell apoptosis through the combined effects of gene therapy and chemotherapy [74]. 

Clinical molecular imaging is pivotal in cancer diagnostics and treatment planning. A multimodal imaging system was designed 
using hyper-branched PAMAM (G3) grafted onto synthetic amorphous silica NPs for imaging HER2-expressing cancer cells. The 
PAMAM-based functionalized silica NPs incorporated near-infrared fluorescence (indocyanine green), with Technetium-99 m and 
Anti-HER2 antibodies attached for labeling PAMAM-based functionalized silica NPs. This dual imaging probe effectively imaged 
HER2-overexpressing cells, demonstrating potential applications in biomedical research [186]. 

Chen et al. achieved targeted co-delivery of chemotherapeutic drugs using fluorescent MSNPs. Synthesized through a sol-gel 
process, these MSNPs featured thiol groups on both internal and external surfaces (MSNPs-S-S-NH2). Subsequent reactions with 
fluorescein isothiocyanate (MSNPs -S-S-FITC) and attachment of 2nd generation PAMAM dendrimer (PAMAM-G2) facilitated hy-
drophobic and hydrophilic drug loading. HA conjugation onto dendrimers resulted in MSNPs-dendrimer-HA, a nanocomposite 
effectively targeting tumors, releasing loaded drugs, displaying a potent therapeutic effect, and making it a promising candidate for 
targeted cancer therapy [187]. 

4.5. Quantum dots 

The surface modification of QDs brings about several advantages, enhancing their dispersity, water solubility, and lowering toxicity 
while increasing the surface area [188]. Dendrimers, when employed for quantum dot modification, not only improve these properties 
but also facilitate better penetration into cell membranes and cytoplasm. PAMAM dendrimers, specifically, exhibit the capability to 
create nanoscale holes in cell membranes, enhancing cellular uptake. Furthermore, dendrimer-based surface modification contributes 
to the improved clearance of QDs from the body, enhancing their biocompatibility. Another advantage lies in the incorporation of more 
functional groups [189,190]. 

Han et al. presented a fluorescent film designed for the swift and visual detection of TNP utilizing polyethyleneimine-capped QDs. 
The fabrication process involved a ligand exchange. The sensor relies on the fluorescence quenching phenomenon, triggered by the 
interaction between amino groups of PEIs, nitro groups, and phenol hydroxyl groups of TNP. Importantly, the quenching mechanism 
differs from FRET. Noteworthy is the specificity of the quenching efficacy towards hydroxyl groups rather than nitro groups [191]. 

Campos et al. harnessed the quenching phenomenon for detection, creating Silicon QDs coated with a hydroxyl-functionalized fifth- 
generation PAMAM dendrimer (PAMAM-OH). This single-step process involved hydrothermal treatment of APTES in an aqueous 
solution. The researchers attributed the heightened fluorescent signal to the abundant hydroxyl groups on the NP’s surface. Similar to 
the prior study, the fluorescence intensity of their NP responds to variations in pH [192]. 

Kavosi et al. employed a parallel fluorescent quenching principle with a FRET process to detect the PSA antigen. Although 
dendrimer-modified GNPs were used instead of QDs, this study is being addressed here due to the analogous underlying mechanism. 
The researchers developed a combination of CdTe QDs with attached antibodies and aptamer-PAMAM-GNPs with attached antigens. In 
the presence of PSA, an immunocomplex forms, causing fluorescence reduction. PSA detection relied on monitoring this reduction 
after the fluorophore and quencher closed during the sandwiched immunocomplex formation between antibody-PSA-aptamer. The 
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multiple functional groups on dendrimers amplified sensitivity in PSA detection, and the expansive surface area of PAMAM dendrimers 
facilitated efficient immobilization of the PSA aptamer, enhancing sensitivity and dynamic range [193]. 

Conversely, linking the target molecule to dendrimer-modified QDs can amplify fluorescence intensity. In the work of Liu et al., 
CdTeSe QDs were functionalized with PAMAM dendrimers using the solvent evaporation method for the detection of Cry1Ab protein, 
both in vivo and in vitro. Their findings indicated that the presence of Cry1Ab protein resulted in heightened fluorescence intensity, 
aligning with the Langmuir binding isotherm equation. The boosted fluorescence intensity was associated with a potential hydrogen 
bond formation between Cry1Ab protein and COOH-terminated PAMAM-functionalized QDs, introducing a new radiative process that 
hampers nonradiative pathways [194]. Similarly, Xu et al. illustrated that 3.0G quaternary ammonium PAMAM dendrimer-modified 
QDs functioned as detectors for the pesticide p-fluorophenoxyacetic acid, exhibiting increased fluorescence intensity upon exposure. 
The fluorescence intensity enhancement was more pronounced in instances where the acidity of the pesticides was stronger [195]. 

It is worth noting that alterations in fluorescence emission intensity accompany the increasing generations of PAMAM dendrimers 
attached to QDs, yet no observable shift occurs in the emission wavelength. Moreover, the quantum yield of water-soluble QDs shows 
an increase parallel to the generation of ester-terminated PAMAM dendrimers [190]. 

Access to brain tissue for brain cancer diagnostics faces challenges due to the blood-brain barrier. QDs, owing to their ultra-small 
size, are potential candidates for brain diagnostics; however, their high toxicity remains an obstacle. Bai et al. addressed this concern 
by modifying CdTe/CdS core-shell QDs with PAMAM dendrimers. These modified QDs exhibited lower toxicity, good dispersibility, 
and water-solubility. The modification induced a blue shift in the absorption band with increasing dendrimer generation and a shift to 
a higher emission wavelength of 650 nm. Additionally, the excitonic peak of the core/shell CdTe/CdS QDs shifted to a shorter 
wavelength with increasing dendrimer generations, consistent with quantum size effects. This modification also extended the pho-
toluminescence lifetime of QDs. Furthermore, the photoluminescence intensity of dendrimer-modified QDs decreased in acidic con-
ditions due to the surface charge characteristics of dendrimer-modified QDs [196]. 

Dendrimers play a crucial role as stabilizers in achieving colloidally stable QDs in aqueous solutions. A comparison of size, charge, 
and optical properties between QDs functionalized with the 4th and 5th generations of PAMAM and amphiphilic polymer-covered QDs 
revealed a slight blue shift in the emission maximum for both modifications compared to hydrophobic core/multi-shell QDs in toluene. 
The PAMAM-coated QDs exhibited significantly higher quantum yields than the QD-PMAO–Jeffamine sample, displaying a Zeta 
potential exceeding 50 mV, indicating exceptional colloidal stability in aqueous dispersion. The abundant terminal amino groups of 
PAMAM dendrimers facilitate bioconjugation reactions [197]. 

Toxicity associated with drugs involves different dimensions, such as target toxicity, immune hypersensitivity, and off-target 
toxicity. Recent progress in drug delivery through nanotechnology has significantly contributed to mitigating toxicity, enhancing 
drug solubility, and optimizing targeted drug delivery. In a recent investigation, Edet et al. introduced an innovative drug delivery 
system for isoniazid employing heteroatom-functionalized QDs (QD-NBC and QD-NBS). Density functional theory calculations 
demonstrated the stability of these functionalized QDs, featuring an adequate energy gap suitable for drug delivery. The adsorption 
energy range of the drug on the QDs highlighted a substantial interaction between the drug and the quantum dot surface, indicating 
their suitability for isoniazid delivery [198]. 

In another study, Samanta et al. delved into the influence of attachment chemistry on the resulting FRET cascade in QDs func-
tionalized with Y-shaped DNA tiles, forming a dendritic structure as originally proposed by previous reports [199]. Within this 
structure, a photonic energy cascade occurs from the quantum dot core to the periphery through multistep FRET. The dendrimers’ high 
dye packing density effectively channels photonic energy to the redder spectrum region. This hybrid structure serves as a 
chemically-driven self-illuminating nanoantenna, capable of concentrating energy to an apex [200,201]. 

The diagnosis and treatment of TNBC present a formidable medical challenge due to the absence of specific receptors. TNBC cells 
are characterized by the Memo enzyme, a metal-binding enzyme linked to Cu(II) ion for oxidase activity, playing a vital role in breast 
cancer cell motility. To leverage this unique attribute, a gene delivery system based on carbon QDs (CQDs) was developed, capable of 
detecting Cu(II) ions in cells. Synthesized carbon QDs were coupled with first-, second-, and third-generation PAMAM dendrimers 
(CDP1, CDP2, CDP3) through a carbodiimide coupling reaction. Subsequent modification of CDP3 with the RGDS (Arg-Gly-Asp-Ser) 
peptide enabled the recognition of overexpressed integrin in TNBC. Assessment of the nanocarrier demonstrated that CDP3 exhibited 
enhanced gene complexation, superior protection against enzymatic digestion, and improved gene transfection with reduced toxicity, 
establishing it as a promising nanocarrier for TNBC gene therapy [202]. 

5. Conclusions and future prospects 

Over the past two decades, dendrimer chemistry has undergone significant advancement, leading to the creation of intricately 
designed macromolecules with precise control over their size, structure, and surface properties. This targeted approach has paved the 
way for the development of multifunctional nanocarriers, holding tremendous promise in the realm of biomedicine. One particularly 
intriguing avenue involves harnessing INPs as cores for dendrimer growth or attachment. INPs encompass a diverse array of nano-
materials, including metal NPs, MSNPs, QDs, and CDs, each offering unique properties such as tunable optical characteristics, high 
surface area, and inherent biocompatibility, making them well-suited for various biomedical applications. However, INPs often lack 
essential functionalities necessary for optimal biological performance. This is where dendrimers step in, serving as versatile modifiers 
to enhance the properties of INPs. Through strategic attachment onto the INP surface, either via "grafting-from" or "grafting-to" ap-
proaches, researchers can incorporate these hybrid nanostructures with a multitude of advantageous properties. These include 
enhanced biocompatibility, facilitated by the dendrimer’s ability to mask the surface chemistry of the INP core, thereby minimizing 
potential interactions with biological systems that may lead to adverse immune responses or cytotoxicity. Additionally, dendrimers 
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contribute to improved solubility of hydrophobic INPs by providing hydrophilic surface groups, facilitating their dispersion in 
physiological fluids and enhancing their biological performance. Furthermore, dendrimers play a crucial role in imparting tunable 
stability to these hybrid nanocarriers, acting as a protective layer for the INPs core to prevent aggregation and degradation in biological 
environments. Moreover, their intricate branching structure offers a high cargo loading capacity, enabling efficient encapsulation of 
therapeutic agents, imaging probes, or other biomolecules. The versatility of dendrimers extends to their functionalization potential, 
where the terminal groups on their periphery can be readily modified to incorporate targeting moieties, stimuli-responsive func-
tionalities, or other bioactive molecules, thereby enabling the creation of highly targeted and stimuli-responsive drug delivery systems. 
Through careful selection of both the INP core and dendrimer type, researchers can engineer hybrid nanostructures with tailored 
properties precisely suited for specific biomedical applications. This integration of dendrimers with INPs represents a promising 
frontier in nanomedicine, offering unprecedented opportunities for the development of advanced therapeutics, diagnostics, and 
biomedical imaging agents with enhanced efficacy and specificity. 

Recent studies indicate that INPs, particularly those based on metals, have the potential to overcome challenges associated with 
drug resistance in cancer therapy. Au and Ag have demonstrated positive interactions with biomolecules on and within cells. While 
dendrimers have been utilized as drug delivery systems, their full potential remains untapped. An intriguing application involves using 
dendrimers as modified polymers for INPs. This modification enhances NPs’ stability and provides multiple binding sites for conju-
gating various ligands and therapeutic molecules like monoclonal antibodies, peptide chains, and plasmids. Additionally, dendrimers’ 
hydrophilic nature allows the encapsulation of drug molecules and therapeutic biomolecules, leading to the development of novel drug 
delivery systems based on their unique physicochemical properties. Progress in dendrimer research has driven the creation of 
multifunctional, highly selective nanocarriers, responding to the demand for combination therapeutic approaches. Over the past ten 
years, dendrimer-based delivery systems have gained prominence, promising to significantly enhance the effectiveness of existing 
cancer treatments and extend their application to clinical settings. Dendrimers in biomedical applications have vast potential, with 
ongoing research anticipated to yield novel combination therapies and innovative drug and gene products. Furthermore, the use of 
dendrimers in conjunction with therapeutic agents such as monoclonal antibodies, peptide chains, and plasmids holds promise for 
overcoming current limitations in cancer treatments. 

While dendrimers exhibit considerable promise as carriers for therapeutic applications, a comprehensive assessment of their safety 
and efficacy is imperative before progressing to in vivo trials. To overcome associated dendrimer toxicities, one viable approach in-
volves surface modifications using biocompatible compounds, a strategy that mitigates their cationic nature. This consideration brings 
forth the intriguing prospect of employing dendrimers as modifiers of INPs, presenting a twofold advantage. Firstly, the surface 
modification of NPs holds the potential to mitigate the cationic charge of dendrimers, thereby addressing concerns related to den-
drimer toxicity. This modification contributes to the overall safety profile of the nanocarrier system. Secondly, the presence of den-
drimers on NP surfaces introduces a stabilizing effect on the resulting nanocomplex, fostering enhanced compatibility with therapeutic 
agents such as nucleic acids and drugs. This intricate interplay not only augments the therapeutic potential of these nanocomplexes in 
cancer treatment but also opens avenues for exploring synergistic effects between dendrimers and therapeutic payloads. However, the 
journey toward practical application of dendrimer-based NPs encounters challenges associated with scaling up production. Histori-
cally, various techniques have been employed, and a rationalized approach is crucial for overcoming production hurdles and ensuring 
the reproducibility and consistency needed for clinical translation. A deeper understanding of the exact mechanisms underlying these 
production challenges is pivotal for addressing concerns related to in vivo toxicity and optimizing the development of dendrimer-based 
nanocarrier systems for therapeutic interventions in cancer and beyond. 

Overall, dendrimers and dendrimer-based INPs have emerged as transformative agents, paving the way for a wide range of po-
tential applications in the biomedical field, with a specific focus on enhancing and advancing cancer treatment in the foreseeable 
future. Employing ingenious and sophisticated designs, the creation of multifunctional INPs becomes a tangible reality, showcasing 
versatility in addressing various aspects of cancer care, encompassing therapeutic interventions, diagnostics, and imaging techniques. 
The vast potential of dendrimers within the area of biomedical applications is profound, offering a broad range of possibilities. Further 
exploration through ongoing research is expected to unlock new horizons, potentially leading to the formulation of innovative 
combination therapies and the introduction of novel drug and gene products. The collaborative synergy between dendrimers and INPs 
holds the promise of reshaping cancer treatment landscape, providing not only advanced therapeutic approaches but also trans-
formative breakthroughs in diagnostics and imaging technologies. As exploration in this field deepens, research is likely to uncover 
innovative approaches, ultimately shaping the future landscape of cancer care with effective solutions. 
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[85] J.A. Ulloa, J. Barberá, J.L. Serrano, Controlled growth of dendrimer-coated gold nanoparticles: a solvent-free process in mild conditions, ACS Omega 6 (2021) 
348–357, https://doi.org/10.1021/acsomega.0c04662. 

[86] K. Hariharan, P. Patel, T. Mehta, Surface modifications of gold nanoparticles: stabilization and recent applications in cancer therapy, Pharmaceut. Dev. 
Technol. 27 (2022) 665–683, https://doi.org/10.1080/10837450.2022.2103825. 

[87] E. Pędziwiatr-Werbicka, M. Gorzkiewicz, S. Michlewska, M. Ionov, D. Shcharbin, B. Klajnert-Maculewicz, C.E. Peña-González, J. Sánchez-Nieves, R. Gómez, F. 
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[166] I. Rašović, Water-soluble fullerenes for medical applications, Mater. Sci. Technol. 33 (2017) 777–794, https://doi.org/10.1080/02670836.2016.1198114. 
[167] F. Moussa, [60]Fullerene and derivatives for biomedical applications, in: Nanobiomaterials, Elsevier, 2018, pp. 113–136, https://doi.org/10.1016/B978-0-08- 

100716-7.00005-2. 
[168] C. Kojima, Y. Toi, A. Harada, K. Kono, Aqueous solubilization of fullerenes using poly(amidoamine) dendrimers bearing cyclodextrin and poly(ethylene 

glycol), Bioconjugate Chem. 19 (2008) 2280–2284, https://doi.org/10.1021/bc8001503. 
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